The impact of Parton Distributions in determinations of M_W in hadronic colliders

Juan Rojo

INFN, Sezione di Milano

W mass workshop, 18/03/2009

Juan Rojo (INFN Milano)

PDFs and W mass determination

W mass, 18/03/09 1 / 14

PDFS IN M_W DETERMINATION

Juan Rojo (INFN Milano)

PDFs and W mass determination

W mass, 18/03/09 1 / 14

• At hadronic colliders, electroweak bosons (W/Z) are produced predominantly through $q_i \bar{q}_j$ scattering

- At hadronic colliders, electroweak bosons (W/Z) are produced predominantly through $q_i \bar{q}_j$ scattering
- The differential distributions, m_T^W, p_T^1, p_T^ν used to determine M_W are thus affected by (mostly quark) PDF uncertainties at $Q^2 = M_W^2$ (x-range depends on collider) M_W from shape of distributions \rightarrow Reduced sensitivity to PDF normalizations

- At hadronic colliders, electroweak bosons (W/Z) are produced predominantly through $q_i \bar{q}_j$ scattering
- The differential distributions, m^W_T, p¹_T, p^ν_T, used to determine M_W are thus affected by (mostly quark) PDF uncertainties at Q² = M²_W (x-range depends on collider) M_W from shape of distributions → Reduced sensitivity to PDF normalizations
- PDF uncertainties fully correlated between experiments and channels at same collider (Ex. CDF/D0) ?

PDF uncertainties contribution important at Tevatron Estimations $\rightarrow \delta_{M_W}^{\rm PDFs}(p_T^l) \sim 20$ MeV, $\delta_{M_W}^{\rm PDFs}(p_T^{\nu}) \sim 13$ MeV, $\delta_{M_W}^{\rm PDFs}(m_T^W) \sim 11$ MeV CDF First Run II M_W measurement, Phys. Rev. D 77, 112001 (2008)

p_T Fit Uncertainties			
Source	$W \rightarrow \mu \nu$	$W \rightarrow e \nu$	Correlation
Tracker Momentum Scale	17	17	100%
Calorimeter Energy Scale	0	25	0%
Lepton Resolution	3	9	0%
Lepton Efficiency	6	5	0%
Lepton Tower Removal	0	0	0%
Recoil Scale	17	17	100%
Recoil Resolution	3	3	100%
Backgrounds	19	9	0%
PDFs	20	20	100%
W Boson p_T	9	9	100%
Photon Radiation	13	13	100%
Statistical	66	58	0%
Total	77	73	-

PDF effects are very different from Tevatron and LHC Tevatron probes PDFs for $x \ge 10^{-3}$...

... while for LHC $x \ge 10^{-5}$ in W production Small-x PDF evolution effects + larger PDF uncertainties

 \rightarrow Small correlation at TeVatron between $\sigma(W^{\pm})$ and $q_k (x \leq 10^{-3}, Q^2 = M_W^2) \dots$ (Nadolsky et al., CTEQ6.6 study)

.. but sizable correlation at LHC between $\sigma(W^{\pm})$ and $q_k (x \le 10^{-3}, Q^2 = M_W^2)!$ PDF effects for M_W determination, which are already important at TeVatron, could become dominant at the LHC

CTEQ6.5/CTEQ6.6 (Phys.Rev.D78:013004,2008, JHEP 0702:053,2007)

- General Mass treatment of heavy quark mass effects
- Additional data sets, strange sector better determined
- Study of phenomenological implications at colliders for ${\it W}$ production

From ZM (CTEQ6.1) to GM (CTEQ6.6) \rightarrow Sizable shift in $\sigma(W^{\pm})$ at LHC Impact in M_W determination?

- CTEQ6.5/CTEQ6.6
- MSTW08 (arXiv:0901.0002)
 - New method for dynamical determination of tolerances T_i
 - Additional data sets, but PDF errors larger because enlarged PDF params.
 - Corrected wrong implementation of GM-VFN which affected all MRST sets before 2006 (including MRST2004QED)
 - Neglected experimental correlations in most datasets

Juan Rojo (INFN Milano)

PDFs and W mass determination

W mass, 18/03/09 4 / 14

- CTEQ6.5/CTEQ6.6
- 2 MSTW08
- NNPDF1.0 (Nucl.Phys.B809:1-63,2009), see later
 - Faithful determination of PDF errors from DIS data, ZM-VFN for HQ
 - Unbiased parametrizations (artificial neural networks)
 - No linear/gaussian approximations in error propagation

- CTEQ6.5/CTEQ6.6
- 2 MSTW08
- INNPDF1.0
- HERAPDF0.1 (arXiv:0901.2504)

Reduced uncertainties at small-*x* from final combined HERA I data set Extremely restrictive parametrization (artificial error reduction?)

Juan Rojo (INFN Milano)

PDFs and W mass determination

4 / 14

- CTEQ6.5/CTEQ6.6
- 2 MSTW08
- INNPDF1.0
- HERAPDF0.1
- Others: AKP08, GJR08 (dynamical partons),

THE NNPDF APPROACH

The **NNPDF Collaboration**: R. D. Ball¹, L. Del Debbio¹, S. Forte², A. Guffanti³, J. I. Latorre⁴, A. Piccione², <u>Juan Rojo²</u>, M. Ubiali¹ ¹University of Edinburgh, ² Università di Milano, ³Albert-Ludwigs-Universität Freiburg, ⁴Universitat de Barcelona

Standard PDF determinations (CTEQ/MSTW) might be affected by several drawbacks:

- Fixed functional forms, q_i(x, Q₀²) = A_ix^{b_i}(1 x)^{c_i}(1 + ...). Are they flexible enough?
- Artificial large tolerances $\Delta \chi^2 \gg 1$ Are they really needed due to incompatible data
- 3 Gaussian linear error propagation Is this really enough for all observable
- Summary \rightarrow Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of $\Delta \chi^2$) need to be tuned to experimental data
- Situation not satisfactory, specially delicate to predict behaviour of PDFs in extrapolation regions like for the LHC at small-x
- Large tolerances \rightarrow Error blow-up by a factor $S = \sqrt{\Delta \chi^2/2.7}$ $\rightarrow S_{\text{cteq}} \sim 6$, $S_{\text{mstw}} \sim 4.5$ both in input data and in PDFs (B. Cousins, PDF4)

- Standard PDF determinations (CTEQ/MSTW) might be affected by several drawbacks:
 - Fixed functional forms, $q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+\ldots)$. Are they flexible enough?
 - Artificial large tolerances $\Delta \chi^2 \gg 1$ Are they really needed due to incompatible data?
 - Gaussian linear error propagation Is this really enough for all observables
- Summary \rightarrow Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of $\Delta \chi^2$) need to be tuned to experimental data
- Situation not satisfactory, specially delicate to predict behaviour of PDFs in extrapolation regions like for the LHC at small-x
- Large tolerances → Error blow-up by a factor S = √Δχ²/2.7
 →S_{cteq} ~ 6, S_{mstw} ~ 4.5 both in input data and in PDFs (B. Cousins, PDF4I)

18

- Standard PDF determinations (CTEQ/MSTW) might be affected by several drawbacks:
 - Fixed functional forms, $q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+\ldots)$. Are they flexible enough?
 - e Artificial large tolerances ∆ χ² ≫ 1 Are they really needed due to incompatible data?
 - Gaussian linear error propagation Is this really enough for all observables?
- Summary \rightarrow Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of $\Delta \chi^2$) need to be tuned to experimental data
- Situation not satisfactory, specially delicate to predict behaviour of PDFs in extrapolation regions like for the LHC at small-x
- Large tolerances \rightarrow Error blow-up by a factor $S = \sqrt{\Delta \chi^2/2.7}$ $\rightarrow S_{\text{cteq}} \sim 6$, $S_{\text{mstw}} \sim 4.5$ both in input data and in PDFs (B. Cousins, PDF4)

19

- Standard PDF determinations (CTEQ/MSTW) might be affected by several drawbacks:
 - Fixed functional forms, $q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+\ldots)$. Are they flexible enough?
 - e Artificial large tolerances ∆ χ² ≫ 1 Are they really needed due to incompatible data?
 - Gaussian linear error propagation Is this really enough for all observables?
- Summary \rightarrow Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of $\Delta \chi^2$) need to be tuned to experimental data
- Situation not satisfactory, specially delicate to predict behaviour of PDFs in extrapolation regions like for the LHC at small-x
- Large tolerances \rightarrow Error blow-up by a factor $S = \sqrt{\Delta \chi^2/2.7}$ $\rightarrow S_{\text{cteq}} \sim 6$, $S_{\text{mstw}} \sim 4.5$ both in input data and in PDFs (B. Cousins, PDF4)

- Standard PDF determinations (CTEQ/MSTW) might be affected by several drawbacks:
 - Fixed functional forms, $q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+\ldots)$. Are they flexible enough?
 - e Artificial large tolerances ∆ χ² ≫ 1 Are they really needed due to incompatible data?
 - Gaussian linear error propagation Is this really enough for all observables?
- Summary \rightarrow Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of $\Delta \chi^2$) need to be tuned to experimental data
- Situation not satisfactory, specially delicate to predict behaviour of PDFs in extrapolation regions like for the LHC at small-x
- Large tolerances → Error blow-up by a factor S = √Δχ²/2.7 →S_{cteq} ~ 6, S_{mstw} ~ 4.5 both in input data and in PDFs (B. Cousins, PDF)

- Standard PDF determinations (CTEQ/MSTW) might be affected by several drawbacks:
 - Fixed functional forms, $q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+\ldots)$. Are they flexible enough?
 - e Artificial large tolerances ∆ χ² ≫ 1 Are they really needed due to incompatible data?
 - Gaussian linear error propagation Is this really enough for all observables?
- Summary \rightarrow Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of $\Delta \chi^2$) need to be tuned to experimental data
- Situation not satisfactory, specially delicate to predict behaviour of PDFs in extrapolation regions like for the LHC at small-x

• Large tolerances \rightarrow Error blow-up by a factor $S = \sqrt{\Delta \chi^2/2.7}$ $\rightarrow S_{\text{cteq}} \sim 6$, $S_{\text{mstw}} \sim 4.5$ both in input data and in PDFs (B. Cousins, PDF)

- Standard PDF determinations (CTEQ/MSTW) might be affected by several drawbacks:
 - Fixed functional forms, $q_i(x, Q_0^2) = A_i x^{b_i} (1-x)^{c_i} (1+\ldots)$. Are they flexible enough?
 - e Artificial large tolerances ∆ χ² ≫ 1 Are they really needed due to incompatible data?
 - Gaussian linear error propagation Is this really enough for all observables?
- Summary \rightarrow Both the PDF input parametrization (and flavour assumptions) and the statistical treatment (value of $\Delta \chi^2$) need to be tuned to experimental data
- Situation not satisfactory, specially delicate to predict behaviour of PDFs in extrapolation regions like for the LHC at small-x
- Large tolerances \rightarrow Error blow-up by a factor $S = \sqrt{\Delta \chi^2/2.7}$ $\rightarrow S_{cteq} \sim 6$, $S_{mstw} \sim 4.5$ both in input data and in PDFs (B. Cousins, PDF4LHQ)

• Generate N_{rep} Monte Carlo replicas $F_i^{(art)(k)}$ of the original data $F_i^{(exp)}$

$$F_{i}^{(\text{art})(k)} = \left(1 + r_{N}^{(k)}\sigma_{N}\right)\left(F_{i}^{(\text{exp})} + \sum_{p=1}^{N_{\text{sys}}} r_{p}^{(k)}\sigma_{i,p} + r_{i}^{(k)}\sigma_{i,s}\right)$$

• Evolve each PDF parametrized with Neural Nets $q_{\alpha}^{(net)(k)}(x, Q_0^2)$ $F_i^{(net)(k)}(x, Q^2) = C_{i\alpha}(x, \alpha(Q^2)) \otimes q_{\alpha}^{(net)(k)}(x, Q^2)$

• Training: Minimize χ^2 using Genetic Algs. + Dynamical Stopping.

$$\chi^{2(k)} = \frac{1}{N_{\rm dat}} \sum_{i,j=1}^{N_{\rm dat}} \left(F_i^{(\rm art)(k)} - F_i^{(\rm net)(k)} \right) \left(\operatorname{cov}_{ij}^{-1} \right) \left(F_j^{(\rm art)(k)} - F_j^{(\rm net)(k)} \right)$$

• Set of trained NNs \rightarrow Representation of the PDFs probability density

$$\left\langle \mathcal{F}\left[q_{lpha}^{(\mathrm{net})}
ight]
ight
angle =rac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\mathcal{F}\left[q_{lpha}^{(\mathrm{net})(k)}
ight]$$

• Generate N_{rep} Monte Carlo replicas $F_i^{(art)(k)}$ of the original data $F_i^{(exp)}$

$$F_{i}^{(\text{art})(k)} = \left(1 + r_{N}^{(k)}\sigma_{N}\right)\left(F_{i}^{(\text{exp})} + \sum_{p=1}^{N_{\text{sys}}} r_{p}^{(k)}\sigma_{i,p} + r_{i}^{(k)}\sigma_{i,s}\right)$$

• Evolve each PDF parametrized with Neural Nets $q_{\alpha}^{(net)(k)}(x, Q_0^2)$ $F_i^{(net)(k)}(x, Q^2) = C_{i\alpha}(x, \alpha(Q^2)) \otimes q_{\alpha}^{(net)(k)}(x, Q^2)$

• Training: Minimize χ^2 using Genetic Algs. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \left(\text{cov}_{ij}^{-1} \right) \left(F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

• Set of trained NNs \rightarrow Representation of the PDFs probability density

• Generate N_{rep} Monte Carlo replicas $F_i^{(art)(k)}$ of the original data $F_i^{(exp)}$

$$F_{i}^{(\text{art})(k)} = \left(1 + r_{N}^{(k)}\sigma_{N}\right)\left(F_{i}^{(\text{exp})} + \sum_{p=1}^{N_{\text{sys}}} r_{p}^{(k)}\sigma_{i,p} + r_{i}^{(k)}\sigma_{i,s}\right)$$

• Evolve each PDF parametrized with Neural Nets $q_{\alpha}^{(net)(k)}(x, Q_0^2)$ $F_i^{(net)(k)}(x, Q^2) = C_{i\alpha}(x, \alpha(Q^2)) \otimes q_{\alpha}^{(net)(k)}(x, Q^2)$

• Training: Minimize χ^2 using Genetic Algs. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \left(\text{cov}_{ij}^{-1} \right) \left(F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

• Set of trained NNs \rightarrow Representation of the PDFs probability density

• Generate N_{rep} Monte Carlo replicas $F_i^{(art)(k)}$ of the original data $F_i^{(exp)}$

$$F_{i}^{(\text{art})(k)} = \left(1 + r_{N}^{(k)}\sigma_{N}\right)\left(F_{i}^{(\text{exp})} + \sum_{p=1}^{N_{\text{sys}}} r_{p}^{(k)}\sigma_{i,p} + r_{i}^{(k)}\sigma_{i,s}\right)$$

- Evolve each PDF parametrized with Neural Nets $q_{\alpha}^{(net)(k)}(x, Q_0^2)$ $F_i^{(net)(k)}(x, Q^2) = C_{i\alpha}(x, \alpha(Q^2)) \otimes q_{\alpha}^{(net)(k)}(x, Q^2)$
- Training: Minimize χ^2 using Genetic Algs. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \left(\text{cov}_{ij}^{-1} \right) \left(F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

 $\bullet~$ Set of trained NNs \rightarrow Representation of the PDFs probability density

$$\left\langle \mathcal{F}\left[q_{lpha}^{(\mathrm{net})}
ight]
ight
angle =rac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\mathcal{F}\left[q_{lpha}^{(\mathrm{net})(k)}
ight]$$

• Generate N_{rep} Monte Carlo replicas $F_i^{(art)(k)}$ of the original data $F_i^{(exp)}$

$$F_{i}^{(\text{art})(k)} = \left(1 + r_{N}^{(k)}\sigma_{N}\right)\left(F_{i}^{(\text{exp})} + \sum_{p=1}^{N_{\text{sys}}} r_{p}^{(k)}\sigma_{i,p} + r_{i}^{(k)}\sigma_{i,s}\right)$$

- Evolve each PDF parametrized with Neural Nets $q_{\alpha}^{(net)(k)}(x, Q_0^2)$ $F_i^{(net)(k)}(x, Q^2) = C_{i\alpha}(x, \alpha(Q^2)) \otimes q_{\alpha}^{(net)(k)}(x, Q^2)$
- Training: Minimize χ^2 using Genetic Algs. + Dynamical Stopping:

$$\chi^{2(k)} = \frac{1}{N_{\text{dat}}} \sum_{i,j=1}^{N_{\text{dat}}} \left(F_i^{(\text{art})(k)} - F_i^{(\text{net})(k)} \right) \left(\text{cov}_{ij}^{-1} \right) \left(F_j^{(\text{art})(k)} - F_j^{(\text{net})(k)} \right)$$

 $\bullet~$ Set of trained NNs \rightarrow Representation of the PDFs probability density

$$\left\langle \mathcal{F}\left[q_{lpha}^{(\mathrm{net})}
ight]
ight
angle =rac{1}{N_{\mathrm{rep}}}\sum_{k=1}^{N_{\mathrm{rep}}}\mathcal{F}\left[q_{lpha}^{(\mathrm{net})(k)}
ight]$$

What are neural networks?

Each independent PDF at the initial scale $Q_0^2 = 2 \text{GeV}^2$ is parameterized by a multi-layered feed-forward neural network.

- * Each neuron receives input from neurons in preceding layer.
- Activation determined by weights and thresholds according to a non linear function:

$$\xi_i = g(\sum_j \omega_{ij}\xi_j - heta_i), \qquad g(x) = rac{1}{1+e^{-x}}$$

In a simple case (1-2-1) we have,

7 parameters

...Just a convenient functional form which provides a redundant and flexible parametrization

Best fit to be independent of any assumptions in parametrization.

- NNPDF1.0 \rightarrow DIS data, ZM-VFN, 5 independent PDFs, $N_{par} \sim 200$ free parameters (Nucl.Phys.B809:1-63,2009)
- NNPDF1.1 \rightarrow Independent parametrizations for $s_{\pm}(x, Q_0^2)$ (arXiv:0811.2288)
- NNPDF1.2 → Strangeness determination from dimuon data (in progress)
- NNPDF2.0 \rightarrow Global fit DIS + Drell-Yan + W/Z prod. + Jets (in progress)

PDFs AND M_W DETERMINATION TOWARDS AN UPDATE

Juan Rojo (INFN Milano)

PDFs and W mass determination

New sets of PDFs with important updates \rightarrow Timely to revisit the impact of PDF uncertainties in M_W determination at TeVatron and LHC

Strategy:

- HORACE MC to generate the m^W_T distribution with recent PDF sets with uncertainties
- Translate results into shifts of M_W due to PDFs, δM^{PDFs}_W, with FITTER (See C. Carloni's talk)
- Check distribution of M_W obtained from different PDF sets with uncertainties: Asymmetric/Non-gaussian effects? Shifts in M_W from different PDF sets compatible?

- INDRACE MC to generate the m_T^W distribution with recent PDF sets with uncertainties
- 2 Translate results into shifts of M_W due to PDFs, δM_W^{PDFs} , with FITTER (See C. Carloni's talk)
- Oteck distribution of M_W obtained from different PDF sets with uncertainties: Asymmetric/Non-gaussian effects? Shifts in M_W from different PDF sets compatible?

- INCLUSION HORACE MC to generate the m_T^W distribution with recent PDF sets with uncertainties
- **2** Translate results into shifts of M_W due to PDFs, δM_W^{PDFs} , with FITTER (See C. Carloni's talk)
- Oteck distribution of M_W obtained from different PDF sets with uncertainties: Asymmetric/Non-gaussian effects? Shifts in M_W from different PDF sets compatible?

- INTRACE MC to generate the m_T^W distribution with recent PDF sets with uncertainties
- **2** Translate results into shifts of M_W due to PDFs, δM_W^{PDFs} , with FITTER (See C. Carloni's talk)
- Check distribution of M_W obtained from different PDF sets with uncertainties: Asymmetric/Non-gaussian effects? Shifts in M_W from different PDF sets compatible?

- INTRACE MC to generate the m_T^W distribution with recent PDF sets with uncertainties
- **2** Translate results into shifts of M_W due to PDFs, δM_W^{PDFs} , with FITTER (See C. Carloni's talk)
- Check distribution of M_W obtained from different PDF sets with uncertainties: Asymmetric/Non-gaussian effects? Shifts in M_W from different PDF sets compatible?

- INTRACE MC to generate the m_T^W distribution with recent PDF sets with uncertainties
- **2** Translate results into shifts of M_W due to PDFs, δM_W^{PDFs} , with FITTER (See C. Carloni's talk)
- Check distribution of M_W obtained from different PDF sets with uncertainties: Asymmetric/Non-gaussian effects? Shifts in M_W from different PDF sets compatible?

Juan Rojo (INFN Milano)

PDFs and W mass determination

• Differences in shape and normalization in individual NNPDF replicas

• Determine M_W independently for each error PDF $M_W^{(k)}$ and compute uncertainties

$$\delta_{M_{W}}^{\text{PDFs}} \bigg|_{\text{NNPDF}} = \left(\frac{1}{N_{\text{rep}} - 1} \sum_{k=1}^{N_{\text{rep}}} \left(M_{W}^{(k)} - \langle M_{W} \rangle \right)^{2} \right)^{1/2}$$

Juan Rojo (INFN Milano)

PDFs and W mass determination

Effects in M_W determination - Preliminary

PDF uncertainty in m_T^W channel close to CDF estimate: $\delta_{M_W}^{\rm PDFs} (m_T^W) \sim 11 \text{ MeV}$

43

This is not a conference but a workshop Thus we need to work!

- Confirm FITTER results with higher accuracy templates
- Generalize preliminary studies systematically to other PDF sets and other channels for M_W determination: ρ¹_T, ρ^x_T
- Study the (potentially different) situation at LHC
- Single PDF set with photon PDF γ(x, Q²), MRST2004QED Need to update other sets (CTEQ/NNPDF) with QED effects?
- Exploit PDF correlations between channels/experiments?

44

This is not a conference but a workshop Thus we need to work!

- Confirm FITTER results with higher accuracy templates
- Generalize preliminary studies systematically to other PDF sets and other channels for M_W determination: ρ⁺_L, ρ⁺_L
- Study the (potentially different) situation at LHC
- Single PDF set with photon PDF γ(x, Q²), MRST2004QED Need to update other sets (CTEQ/NNPDF) with QED effects?
- Exploit PDF correlations between channels/experiments?

This is not a conference but a workshop Thus we need to work!

- Confirm FITTER results with higher accuracy templates
- 2 Generalize preliminary studies systematically to other PDF sets and other channels for M_W determination: p_T^1, p_T^{ν}
- Study the (potentially different) situation at LHC
- Single PDF set with photon PDF γ(x, Q²), MRST2004QED Need to update other sets (CTEQ/NNPDF) with QED effects?
- Section 2 States Sta

This is not a conference but a workshop Thus we need to work!

- Confirm FITTER results with higher accuracy templates
- **②** Generalize preliminary studies systematically to other PDF sets and other channels for M_W determination: p_T^1, p_T^{ν}
- Study the (potentially different) situation at LHC
- Single PDF set with photon PDF γ(x, Q²), MRST2004QED Need to update other sets (CTEQ/NNPDF) with QED effects?
- Exploit PDF correlations between channels/experiments?

This is not a conference but a workshop Thus we need to work!

- Confirm FITTER results with higher accuracy templates
- **(a)** Generalize preliminary studies systematically to other PDF sets and other channels for M_W determination: p_T^1, p_T^{ν}
- Study the (potentially different) situation at LHC
- Single PDF set with photon PDF $\gamma(x, Q^2)$, MRST2004QED Need to update other sets (CTEQ/NNPDF) with QED effects?
- Sector State St

This is not a conference but a workshop Thus we need to work!

- Confirm FITTER results with higher accuracy templates
- **(2)** Generalize preliminary studies systematically to other PDF sets and other channels for M_W determination: p_T^1, p_T^{ν}
- Study the (potentially different) situation at LHC
- Single PDF set with photon PDF γ(x, Q²), MRST2004QED Need to update other sets (CTEQ/NNPDF) with QED effects?
- 6 Exploit PDF correlations between channels/experiments?

This is not a conference but a workshop Thus we need to work!

- Confirm FITTER results with higher accuracy templates
- **②** Generalize preliminary studies systematically to other PDF sets and other channels for M_W determination: p_T^1, p_T^{ν}
- Study the (potentially different) situation at LHC
- Single PDF set with photon PDF $\gamma(x, Q^2)$, MRST2004QED Need to update other sets (CTEQ/NNPDF) with QED effects?
- Section 2015 Exploit PDF correlations between channels/experiments?

This is not a conference but a workshop Thus we need to work!

- Confirm FITTER results with higher accuracy templates
- **②** Generalize preliminary studies systematically to other PDF sets and other channels for M_W determination: p_T^1, p_T^{ν}
- Study the (potentially different) situation at LHC
- Single PDF set with photon PDF γ(x, Q²), MRST2004QED Need to update other sets (CTEQ/NNPDF) with QED effects?
- Section 2 States Sta

This is not a conference but a workshop Thus we need to work!

- Confirm FITTER results with higher accuracy templates
- **②** Generalize preliminary studies systematically to other PDF sets and other channels for M_W determination: p_T^1, p_T^{ν}
- Study the (potentially different) situation at LHC
- Single PDF set with photon PDF $\gamma(x, Q^2)$, MRST2004QED Need to update other sets (CTEQ/NNPDF) with QED effects?
- Section 2015 Se

