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I (Quick) introduction
I LO vs. NLO vs. Standard Monte Carlo’s: need of higher

accuracy
I Merging of NLO and Parton Showers: the POWHEG method
I POWHEG results for W hadroproduction
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INTRODUCTION (1/3)

Our way of describing (high-energy) hadronic collisions is based on the parton model
and is well summarized by this picture:

Main stages:
I beam of hadrons = beam of

partons (parton model)
I radiation off incoming partons
I primary hard scattering

(µ ≈ Q� ΛQCD)
I radiation off outgoing partons

(Q > µ > ΛQCD)
I hadronization (µ ≈ ΛQCD)
I secondary scatterings and/or

underlying event �����
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I hard scattering: pQCD, EW, BSM
I all the rest: radiation off charged particles (QCD&EW showers) + hadronization

Monte Carlo Event Generators are computer codes able to simulate all these stages...



INTRODUCTION (2/3)

... and to produce as output a detailed description of the generated ’events’ (momenta of
all outgoing leptons and hadrons):

that are used as inputs by high-energy experimentalists to study analysis strategies.

I Traditional Monte Carlo’s like HERWIG or PYTHIA have LO accuracy in the hard
scattering and resum Leading Logarithms in the shower

I Inclusion of higher-order corrections in Monte Carlo generators is one of the main
recent development in this field

This talk will deal only with QCD corrections.



INTRODUCTION (3/3)

Collinear (and soft) splitting processes in the initial
and final state are strongly enhanced. This is due to
the fact that, in perturbation theory, propagators can
go almost on-shell:

q(Q)→q(k)+g(l)

M∼
1

(k + l)2
=

1

2EqEg(1− cos θqg)

I When compared with the Born cross section, this enhancement is of order 1
→ need of include it

I The whole analytic structure would be arbitrarly complicated→ approximation→
resummation of (some classes of) Logs

I Virtual corrections has to be included at the same level of accuracy→ Sudakov
form factors

⇒ Shower algorithms

I Description of a hard collision up to distances of order 1/ΛQCD (in the domain of
pQCD)

I At larger distances, pQCD breaks down: need of models of hadronization, that
should be process independent.



NLO VS. SMC’S (LO + PARTON SHOWER)

W− @ LHC, no K-factors

I NLO alone fails at low pT (no Sudakov suppression of small pT radiation)
I HERWIG (without ME corrections) wrong in shape at large pT



NLO VS. SMC’S (LO + PARTON SHOWER)

W− @ LHC

no K-factors K-factors included

I HERWIG and PYTHIA are wrong in the overall normalization

σNLO

σSMC

' 1.15− 1.19



NEED OF HIGHER ACCURACY

NLO

I accurate shapes at high-pT
I total normalization accurate at order
αs

I reduced dependence on µR and µF
(virtual corrections included)

I wrong shapes in small-pT region
I not so easy to be used: non trivial

numerical cancellations to produce a
sensible plot

I description only at the parton level

SMC’s (LO+shower)

I bad description of high-pT emissions
I total normalization accurate only at LO

I Sudakov suppression of small pT
emissions

I can be used as black-box
I simulate events down to the hadron

level→ used by experimentalists to
study detectors calibration and find
strategies to isolate signals from
backgrounds

⇓

It is natural to try to merge the 2 approaches, keeping the good features of both.

I As one can argue, the main problem is to avoid the double-counting of emissions
I There are two known and tested ways to perform the merging: MC@NLO (Frixione,

Webber 2001) and POWHEG (Nason 2004)



MERGING NLO AND PARTON SHOWER

I We need to look the formula for a NLO calculation and for the first branching of a
LO Parton Shower.

I NLO cross section:

dσNLO = dΦn
n
B(Φn) + V (Φn) + [R(Φn+1)− C(Φn+1)] dΦr

o
where

dΦn+1 = dΦndΦr , Φr = {t, z, ϕ} , V (Φn) = Vdiv(Φn) +

Z
dΦrC(Φn,Φr)

and
R(Φn+1)

B(Φn)
dΦr →

„
αs

2π

1

t
P (z)

«
dt dz when t→ 0 coll. factorization

I Due to the ordering in t, the SMC hard emission cross section is roughly given by
the shower first emission contribution:

dσSMC = B(Φn)dΦn

»
∆(t0) + ∆(t)

αs

2π

1

t
P (z)dΦr

–
∆(t) = exp


−
Z tmax

t
dΦr

αs

2π

1

t
P (z)

ff
SMC Sudakov form factor



THE POWHEG METHOD (1/2)

The key idea is to modify dσSMC in such a way that, expanding in αs, one recovers the
exact NLO cross section.

I With the substitutions

B(Φn) ⇒ B̄(Φn) = B(Φn) + V (Φn) +

Z
[R(Φn+1)− C(Φn+1)] dΦr

∆(t) ⇒ ∆(kT ) = exp

(
−
Z
kT

R(Φn+1)

B(Φn)
dΦr

)
POWHEG Sudakov

one obtains the POWHEG master formula for the hardest emission:

dσPOW = B̄(Φn) dΦn


∆(kminT ) + ∆(kT )

R(Φn,Φr)

B(Φn)
dΦr

ff

I To avoid double-counting, subsequent emissions must be pT vetoed !
I At high kT , ∆(kT )→ 1, so the NLO large kT accuracy is preserved:

dσP OW ' B̄ ×
R

B
dΦn+1 ≈ R dΦn+1 × (1 +O(αs))

I At small kT the POWHEG Sudakov reduces to the SMC one. Thus:

all features of SMC’s are preserved when kT → 0



THE POWHEG METHOD (2/2)

Differences with MC@NLO:
I Only positive weighted events are generated: B̄ > 0, because LO > NLO
I The method is independent from the subsequent shower, while MC@NLO works only

with the HERWIG shower
I We noticed that MC@NLO has problems in filling some Phase Space regions (“dips

in jet rapidities”). The reason is that some events with high-kT are generated with
the HERWIG accuracy

Available POWHEG implementations:
I pp→ ZZ [Nason and Ridolfi,JHEP 0608:077,2006]

I pp→ QQ̄ , Q = c, b, t with spin correlations in top decay
[Frixione,Nason and Ridolfi,JHEP 0709:126,2007]

I e+e− → qq̄ [Latunde-Dada,Gieseke,Webber,JHEP 0702:051,2007]
e+e− → tt̄ with top decay [Latunde-Dada, Eur.Phys.J.C58:543-554,2008]

I pp→ Z,W with spin correlations [Alioli,Nason,Oleari,ER, JHEP 0807:060,2008]
[Hamilton,Richardson and Tully, JHEP 0810:015,2008]

I pp→ H via gluon fusion [Alioli,Nason,Oleari,ER, arXiv:0812.0578] , also in HERWIG++

I pp→W ′ [Latunde-Dada and Papaefstathiou, arXiv:0901.3685]



RESULTS: POWHEG VS. MC@NLO

W− @ LHC, POWHEG interfaced to HERWIG

I Good agreement both at high and low pT ;
I Similar results @TeV [Alioli,Nason,Oleari,ER, JHEP 0807:060]



RESULTS: POWHEG VS. PYTHIA
W− @ LHC, POWHEG interfaced to PYTHIA

I PYTHIA includes hard ME corrections in a POWHEG-like fashion.
Nevertheless wrong normalization !

I Mismatch at low pT : could be due to the fact that POWHEG Sudakov has
Next-to-Leading-Log accuracy [Catani et al., Nucl.Phys.B349 (1991)]



RESULTS: POWHEG VS. NLO VS. SMC’S

W− @ LHC, no K-factors

I No need of K-factors to reach NLO accuracy in inclusive observables



CONCLUSIONS (AND FUTURE PROSPECTS)

I POWHEG is a valid method to include NLO corrections in SMC’s
I It is independent from the Parton Shower used
I It outputs only positive weighted events, just as traditional (LO) SMC’s

→ in principle it works not only for QCD corrections

I Single-top and Z + 1 jet hadroproduction are close to be completed
I To implement Z + 1 jet, we have set up a general framework that should give the

possibility to implement an arbitrary NLO calculation without being an expert of the
method itself.

I Our codes can be found at

http://moby.mib.infn.it/˜nason/POWHEG



END



A TECHNICALITY

PROOF OF POWHEG NLO ACCURACY

〈O〉POW =

Z
dΦn B̄(Φn)

(
∆(Φn; pminT )O(Φn) +

Z
pmin

T

∆(Φn; kT )
R(Φn+1)

B(Φn)
O(Φn+1)dΦr

)

=

Z
dΦn B̄(Φn)

("
∆(Φn, p

min
T ) +

Z
pmin

T

∆(Φn; kT )
R(Φn+1)

B(Φn)
dΦr

#
O(Φn)

Z
pmin

T

∆(Φn; kT )
R(Φn+1)

B(Φn)
[O(Φn+1)−O(Φn)] dΦr

)
but Z

pmin
T

dΦr
R(Φn+1)

B(Φn)
∆(Φn; kT ) = Pemis(kT > pminT ) = 1−∆(Φn; pminT )

B̄(Φn)

B(Φn)
= 1 +O(αs)

∆ ≈ 1 far from singular region and O(Φn+1)−O(Φn)→ 0 when kT → 0

so»
〈O〉POW

–
O(αs)

=

Z
dΦn


B(Φn) + V (Φn) +

Z
[R(Φn+1)− C(Φn+1)] dΦr

ff
O(Φn)

+

Z
dΦndΦrR(Φn+1) [O(Φn+1)−O(Φn)]

!
= 〈O〉NLO



MC@NLO - POWHEG

MC@NLO
Take the NLO formula and “add and subtract” the shower first emission contribution

1. Generate the first emission according to

dσMC@NLO = dΦn


B(Φn) + V (Φn) +

Z
dΦr [RMC(Φn,Φr)− C(Φn,Φr)]

ff
+ dΦn dΦr

˘
R(Φn,Φr)−RMC(Φn,Φr)

¯
→ double-counting is avoided (R−RMC ).

2. Apply the shower algorithm, starting with t equal to the hardness of the generated
phase space point
→ (medium-)high-pT jets will come not only from real-like events

It works! Several processes implemented, no conceptual problems.
Nevertheless, there are 2 “undesired” features:

I the difference R−RMC can be negative→ negative weighted events
I to perform the subtraction, use the kinematics inherited from the SMC→ specific

Parton Shower dependence (HERWIG)

POWHEG
I We interface POWHEG to the shower using the Les Houches interface (SCALUP is

the variable that controls subsequent vetoes)
I when interfaced to angular-ordered Shower, need of a pT -vetoed PS + truncated Shower to

generate correctly soft radiation at large angle; implemented in HERWIG++



SHOWER BASICS: COLLINEAR FACTORIZATION (1/2)

QCD emissions are enhanced near the collinear limit and cross sections factorize near
this limit:

|Mn+1|2dΦn+1 → |Mn|2dΦn
αs

2π

dt

t
Pq,qg(z)dz

dϕ

2π

where

z = k0/(k0 + l0) quark energy fraction

t =
˘

(k + l)2, l2T , E
2θ2
¯

splitting hardness

Pq,qg(z) = CF
1 + z2

1− z
AP splitting function

t→ 0: collinear limit, z → 1: soft limit (ignore for a moment)



SHOWER BASICS: COLLINEAR FACTORIZATION (2/2)
If another collinear gluon is emitted off the quark leg with a smaller angle (θ, θ′ → 0,
θ′ > θ), we can iterate the previous formula:

|Mn+1|2dΦn+1 → |Mn−1|2dΦn−1

„
αs

2π

dt′

t′
Pq,qg(z′)dz′

dϕ′

2π

«„
αs

2π

dt

t
Pq,qg(z)dz

dϕ

2π

«
Θ(t′ − t)

⇒ Collinear emissions can be described by a factorized integral ordered in t

Within this approximation, the cross section for a hard process dressed with n collinear
emissions goes as

σn ≈ σ0 α
n
s

Z Q2

t0

dt1

t1

Z t1

t0

dt2

t2
...

Z tn−1

t0

dtn

tn
= σ0 α

n
s

1

n!

„
log

Q2

t0

«n
where

I Q2 = hardness of the hard scattering (and upper cutoff for the ordering variable t)
I t0 ≈ Λ2

QCD is an infrared cutoff

I σn/σ0 is of order 1; (αs log)n is called leading-log approximation (LLA)



SHOWER BASICS: VIRTUAL AND SOFT CORRECTIONS

VIRTUAL CORRECTIONS
It can be shown that the inclusion of virtual corrections, in the LLA, can be obtained by:

I At each vertex, calculate the splitting probability with

αs(Q
2)→ αs(t)

where t is the hardness of the incoming line;
I For each intermediate line, include the Sudakov form factor

∆a(ti, ti+1) = exp

24−X
(bc)

Z ti

ti+1

dt′

t′

Z
αs(t′)

2π
Pa,bc(z) dz

35
where ti and ti+1 are the virtualities of the vertexes where the line respectively
begins and ends

SOFT EMISSIONS

I Mueller (1981) showed that angular ordering is the correct choice (t = θ):

dPemis =
dθ

θ

αs(p2
T )

2π
P (z)dz , θ1 > θ2 > θ3... , p

2
T = E2z2(1− z)2θ2

The argument of αs is chosen equal to p2
T for a correct treatment of the charge

renormalization in the soft region.



PROBABILISTIC INTERPRETATION OF THE SUDAKOV FACTOR
There is a simple argument to understand why the Sudakov factor contains LL virtual
corrections:

I Probability of one emission off a quark line, in the interval δt, at order αs, in the
LLA, integrated over z and ϕ:

dPemis(t+ δt, t) =
αs(t)

2π

δt

t

Z
Pq,qg(z)dz

I Probability of no emission in δt:

dPno emis(t+ δt, t) = 1−
αs(t)

2π

δt

t

Z
Pq,qg(z)dz

Virtual corrections are included here because there is a power of αs but no splitting.
I The probability of no emission between two values t1 and t2 of the ordering scale is

given by

Pno emis(t1, t2) = lim
N→∞

NY
i=1

»
1−

δt

ti

αs(ti)

2π

Z
Pq,qg(z)dz

–
where we have divided the finite interval [t2, t1] in N small intervals
δt = (t1 − t2)/N and where ti is a point in the i-th intervall.

I Taking the limit N →∞ leads to

Pno emis(t1, t2) = exp

"
−
Z ti

ti+1

dt′

t′

Z
αs(t′)

2π
Pq,qg(z) dz

#
≡ ∆q(t1, t2) ∈ [0, 1]

⇒ the Sudakov factor ∆(t1, t2) is the probability of non emitting between t1 and t2.



COLOR COHERENCE
Up to now, all the approximations we did allowed to treat branchings incoherently.
Soft emissions from final-state-partons add coherently:

In the above figure, the soft large-angle gluon sees the net colour charge of the initial
quark, and not the charges of each emitter.

I In non angular-ordered Shower, this is not taken into account→ need of
corrections to the algorithm without spoiling the collinear accuracy.

I If the Shower is angular-ordered, the coherence is built-in: large-angle soft
emissions are generated first.

I The hardest emission (highest pT ), in general, happens later.

Among many, there are two commonly used Standard Monte Carlo (SMC) event
generators: HERWIG (Marchesini, Webber 1988) and PYTHIA (Bengtsson, Sjostrand
1987). They differ in the choice of the ordering variable and in the hadronization model,
but the main Parton Shower algorithm is the same:

↓



THE SHOWER ALGORITHM

We know how to deal between two emission at different scales: in that interval of
hardness, the ’exact’ probability of having no splittings is given by the Sudakov form
factor. The final rules are:

I generate a hard event according to dσB = |MB |2dΦB .
This automatically fixes the hard scale Q2 for the current event.

I for each colored parton i, generate a shower:

Key observation: Pemis(t′|t)dt′ ≡ Pno emis(t, t′)dPemis(t′)
!
= d∆(t, t′)

1. set t = Q2

2. extract a uniform random number in
[0, 1]

3. solve the equation ∆i(t, t
′) = r for t′

4. if t′ < t0, don’t split (we are at the
hadronization scale)

5. if t′ > t0, generate z and (jk) with
probability Pi,jk(z) and ϕ flat in [0, 2π]

6. restart a shower from each new
branch, setting the new ordering
parameter t = t′

7. when all legs have t ' t0, apply the
hadronization model

↓
Sudakov suppression of low kT radiation:

Pemis(k2
T

∼
< t0) = ∆(Q2, t0)→ 0



RAPIDITY & RAPIDITY DIFFERENCE @ TEV (Z)

POWHEG + HERWIG

MC@NLO

POWHEG + PYTHIA

PYTHIA × 1.3

I MC@NLO distribution are flatter in yjet and have a dip in yjet − yZ . It seems a
general feature of MC@NLO, already noticed...



RAPIDITY & RAPIDITY DIFFERENCE @ TEV (QQ̄, ZZ)



HARDEST JET RAPIDITY DIP

NNLO results obtained using HNNLO [Catani and Grazzini, arXiv:0802.1410]

I It seems a feature of HERWIG; MC@NLO only partially fill the dip



RESULTS: POWHEG VS. NLO VS. SMC’S

W− @ LHC, with K-factor



HIGGS BOSON HIGH−pT MISMATCH

B̄(Φn) = B(Φn) + V (Φn) +

Z
[R(Φn,Φr)− C(Φn,Φr)] dΦr

dσ = B̄(Φn) dΦn


∆(Φn; pminT ) + ∆(Φn; kT )

R(Φn,Φr)

B(Φn)
dΦr

ff
if pT � 1 ⇒ ∆(Φn; kT ) ≈ 1 and

dσrad ≈
B̄(Φn)

B(Φn)
R(Φn,Φr) dΦn dΦr ≈ {1 +O(αs)}R(Φn,Φr) dΦn dΦr

Fortunately this mismatch brings the POWHEG curve close to the NNLO result



REDUCTION OF REAL CONTRIBUTION IN THE SUDAKOV FF

We try to see if we were able to reproduce the NLO result.

R = [R× F ] + [R× (1− F )]

= RF + Rreg

F < 1,

F → 1 when kT → 0,

F → 0 when kT →∞

F =
h2

k2
T + h2

dσPOW = dσB̄ + dσreg

dσB̄ = dΦn B̄RF


∆RF

(Φn; pminT ) + ∆RF
(Φn; kT )

RF (Φn,Φr)

B(Φn)
dΦr

ff
← low kT

dσreg = Rreg(Φn,Φr) dΦn dΦr ← high kT

POWHEG seems a flexible method→ Good news in view of more complicated
processes


