ResBos and QCD aspects of W mass measurement

Pavel Nadolsky Southern Methodist University

in collaboration with Liang Lai, Jon Pumplin, Wu-Ki Tung, C.-P. Yuan

March 18, 2009

Pavel Nadolsky (SMU)

W mass workshop at Milano

March 18, 2009

QCD factorization as a function of q_T

(according to Collins, Soper, and Sterman approach)

 $k_{T} - dependent PDFs$ $<math>\mathcal{P}(x, \vec{k}_{T})$

Sudakov function $S(x, \vec{k}_T)$

actually, their impact parameter (b) space transforms Collinear PDFs $f_a(x, \mu)$

hard matrix elements *H* of order *N* Truncated perturbative expansion

$$\sum_{k=0}^{N} \alpha_s^k \sum_{m=0}^{2k-1} c_{km} \ln^m \left(\frac{q_T^2}{Q^2}\right)$$

Resummed cross section for $AB \rightarrow VX$

 $\frac{d\sigma_{AB\to VX}}{dQ^2 dy dq_T^2} = \sum_{a,b=g,\stackrel{(-)}{u},\stackrel{(-)}{d},\dots} \int \frac{d^2b}{(2\pi)^2} e^{-i\vec{q}_T\cdot\vec{b}} \widetilde{W}_{ab}(b,Q,x_A,x_B) + Y(q_T,Q,x_A,x_B)$

 $\widetilde{W}_{ab}(b, Q, x_A, x_B) = |\mathcal{H}_{ab}|^2 e^{-S(b,Q)} \overline{\mathcal{P}}_a(x_A, b) \overline{\mathcal{P}}_b(x_B, b)$ *S* is the soft (Sudakov) function:

$$\mathcal{S}(\mathcal{b}, \mathcal{Q}) = \int_{1/\mathcal{b}^2}^{\mathcal{Q}^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\mathcal{A}(\alpha_s(\bar{\mu})) \ln \frac{\bar{\mu}^2}{\mathcal{Q}^2} + \mathcal{B}(\alpha_s(\bar{\mu})) \right]$$

 $\overline{\mathcal{P}}_{a}(x,b)$ are b-dependent PDF's; if $b^{2} \ll Q^{-2}$,

$$\overline{\mathcal{P}}_{a}(x,b) = \sum_{c} \left[\mathcal{C}_{a/c} \otimes f_{c} \right] (x,b,\mu_{F} \sim \frac{1}{b})$$

Y is the difference of the finite-order and overlap (asymptotic) terms

Pavel Nadolsky (SMU)

- Resummation module for W and Z production slow (Legacy – Ladinsky, Yuan, 1993; Brock, Landry, P. N., Yuan, 2002)
- Monte-Carlo integration module for W and Z decay and matching of small-q_T and large-q_T terms – fast (ResBos – Balazs, Yuan, 1997)

Pavel Nadolsky (SMU)

Perturbative QCD contributions

Finite-order Y term (large q_T):

NNLO (= $\mathcal{O}(\alpha_s^2)$) boson-level cross section (Arnold, Reno, 1989; Arnold, Kauffman, 1991)

▶ parton-lepton spin correlations up to NLO (= $O(\alpha_s)$)

Resummed W term (small q_T)

- NNLL expressions for S(b, Q) and $\overline{\mathcal{P}}(x, b)$ ($A^{(3)}, B^{(2)}, C^{(1)}$ coefficients)
- Two representations for the hard vertex function H (Collins, Soper, Sterman; Catani, de Florian, Grazzini)

or produce similar predictions for vector boson production

► $\overline{\mathcal{P}}(x, b)$ for *c* and *b* quark scattering in general-mass (ACOT- χ) scheme (*Berge*, *P. N.*, *Olness*, 2006)

 m_b dependence in $b\bar{b} \rightarrow Z^0$

The shape of "massless" $d\sigma/dQ_T$ varies considerably depending on the assumed continuation to $b > 1/m_b$

With full m_b dependence, $d\sigma/dQ_T$ is well-defined; low sensitivity to nonperturbative scattering contributions

5 MeV effects at the LHC

Electroweak contributions at all Q_T

- W, Z width in effective Born approximation
- ResBos-A: + final-state QED radiation in W and Z production (Cao, Yuan)
 - both W term (2004) and Y term (near completion)

updated $\gamma^* - Z$ interference

Nonperturbative model at $b \ge 1$ GeV⁻¹:

- revised "b_{*}" approximation + a power-suppressed term x b² (Collins, Soper, Sterman, 1985; Konychev, P. N., 2005)
- replaces BLNY model (Brock, Landry, RN., Yuan) used in Tevatron Run-2 M_W measurements

Can approximate a variety of nonperturbative models (BLNY, Qui, Zhang; Kulesza, Sterman, Vogelsang)

Gaussian $\mathcal{F}_{NP}(b, Q) = b^2 [0.20 + 0.19 \ln(Q/3.2) - 0.026 \ln(100 x_A x_B)]$

- linear In Q dependence, in quantitative agreement with SIDIS q_T fit and infrared renormalon estimates (Tafat)
- small \sqrt{s} dependence
- no tangible flavor dependence
- supports dominance of soft contributions in *F_{NP}(b, Q)*
- applies at $x \gtrsim 10^{-2}$

PDF reweighting and ROOT ntuple output

If the central PDF cross section σ_0 and PDF uncertainty $\Delta \sigma^2$ are estimated by generating \overline{N} Monte-Carlo integrator events for each error PDF $f^{(i)}(x,\mu)$ (i = 0,2N), their MC estimates are

$$\overline{\sigma}_0 \sim \sigma_0 + rac{C}{\overline{N}^{1/2}}$$
 and $\overline{\Delta \sigma^2} \sim \Delta \sigma^2 + rac{C'N}{\overline{N}^{1/2}}$

a large factor of $N \sim 22$ in the MC error for $\Delta \sigma^2$ due to randomness of event generation for each PDF!

need N^2 more MC events to evaluate σ^2

PDF reweighting and ROOT ntuple output

PDF reweighting generates the same sequence of events to compute each of 2N cross sections

 $\blacktriangleright \overline{\Delta \sigma^2} \approx \Delta \sigma^2 + \mathcal{O}(\overline{N}^{-1})$

In multi-loop calculations, PDF reweighting saves CPU time drastically by reducing slow computations of hard-scattering matrix elements

FROOT: a theorist-friendly interface for Monte-Carlo reweighting

- Written in C, can be linked to standalone FORTRAN/C/C++ programs
- Simple 170 lines of the code
- Writes the output directly into a ROOT ntuple; no need in intermediate PAW ntuples
- Flexible; new columns (branches) with PDF weights or events can be added into an existing ntuple
- Kinematical cuts, selection conditions can be imposed a posteriori in interactive or batch ROOT sessions
- implemented in ResBos

http://www.physics.smu.edu/~nadolsky/projects.html

Pavel Nadolsky (SMU)

FROOT: a theorist-friendly interface for Monte-Carlo reweighting

У_{7.}

Sanity checks

Pavel Nadolsky (SMU)

ResBos'2009 predictions for forward-backward asymmetry (C.-P. Yuan)

 γ^* – Z interference in the latest ResBos correctly reproduces A_{FB} from D0

$Z q_T$ distribution (D0, 1 fb⁻¹)

Data shows significant excess above $\mathcal{O}(\alpha_s^2)$ resummed/fixed-order theory at $q_T \approx M_Z$

No analogous data from CDF

W charge asymmetry (D0, 1 fb $^{-1}$)

Tensions between D0 W asymmetry with DIS and CDF W asy data in the global fit observed both by CTEQ and MSTW, without clear path to resolution yet

Can CDF reduce the error on their measurement?

Impact of W charge asymmetry on PDF's

 Correlation of u(x)/d(x) and A_e for each η_e bin

H. Schellman, talk at BNL, 2009

W asymmetry constrains $d(x, M_W)/u(x, M_W)$ at large x; is believed to constrain the PDF uncertainty on M_W

Theoretical uncertainties on M_W : what is essential?

Measurements of Z differential cross section are (will be) used to constrain or cancel systematic effects in M_W measurement

(see, e.g., Reevaluation of the LHC potential for M_W measurement, N. Besson et al., 2008)

Common uncertainties of σ_W and σ_Z cancel in M_W measurement \Rightarrow not likely to affect ΔM_W significantly

Theoretical uncertainties on M_W : what is essential?

- Uncertainties that affect σ_W and σ_Z differently may be important
 - EW effects
 - Logarithmic scaling violations;
 In Q dependence of *F_{NP}(b, Q)* in dσ/dq_T
 - PDF dependence in subleading (s, c, b) scattering channels
 - Correlations between the PDFs and $\mathcal{F}_{NP}(b, Q)$
 - Strong rapidity dependence of *F_{NP}(b,Q)*; enhanced small-*x* corrections

W and Z cross sections and their ratio

- Radiative contributions have similar structure in W[±] and Z cross sections; cancel well in Xsection ratios
- The PDF uncertainty cancels partially because of differences in s, c, b scattering contributions

Pavel Nadolsky (SMU)

W and Z cross sections and their ratio

27% of $\sigma_{NLO}(W^{\pm})$ from $c\bar{s} \to W^{\pm}$, 20% of $\sigma_{NLO}(Z^0)$ from $s\bar{s} \to Z^0$

non-negligible effects from free strangeness and intrinsic charm (IC) PDF's

Pavel Nadolsky (SMU)

σ_Z/σ_W at the LHC

The remaining PDF uncertainty in σ_Z/σ_W is mostly driven by s(x); increases by a factor of 3 compared to CTEQ6.1 as a result of free strangeness in CTEQ6.6

Pavel Nadolsky (SMU)

Strangeness is the least constrained PDF

Resummation at $x < 10^{-2}$

(S. Berge, P. N., F. Olness, C.-P. Yuan, Phys. Rev. D72, 033015 (2005))

- W (Z) production at the LHC: typical $x \sim 0.005 (0.0065)$; behavior of higher-order resummed terms is far from certain
- Novel effects such as hardening (broadening) of q_T distributions are possible
- magnitude of broadening will be different in W and Z channels!
- Recent D0 search for broadening in $p\bar{p} \rightarrow ZX$ at $|y| \ge 1$ was inconclusive

q_T broadening at small x

dσ/dQ_T with SIDIS-inspired small-x contributions (red) is wider comparatively to conventional models (black)
 The Q_T broadening increases at large y; has different magnitude in W⁺, W⁻, and Z production

Combined analysis of PDF's and resummed nonperturbative function

(Lai, P.N., Pumplin, Tung, Yuan, to be presented at DIS'2009)

- The common origin of collinear PDF's $f_a(x, \mu)$ and $\mathcal{F}_{NP}(b, Q)$ from k_T -dependent PDF's indicates importance of their simultaneous analysis
 - ► The best-fit $\mathcal{F}_{NP}(b, Q)$ is correlated with $f_{\alpha}(x, \mu) \Rightarrow$ consequences for EW precision measurements
 - ► P_T data constrains poorly known degrees of freedom in $f_{\alpha}(x, \mu)$

The q_T resummation module is interfaced with the CTEQ PDF fitting package to carry out a combined PDF+q_T fit

Concluding remarks

Impact of M_W measurements on EW precision analysis/Higgs mass can't be overemphasized

Leading QCD uncertainties on M_W are mostly associated with our understanding of global aspects of QCD (especially PDF's and nonperturbative resummed function)

Still a lot of work to be done!

Backup slides

Pavel Nadolsky (SMU)

Three regions in bW(b, Q) in EW boson production

■ $b \lesssim 0.5 \, \text{GeV}^{-1}$ ($\mu_b \sim 1/b > 2 \, \text{GeV}$):

dominant region, described in PQCD at NNLL/NLO;

■ $0.5 \le b \le 1.5 - 2 \text{ GeV}^{-1}$ ($0.5 - 0.7 \le \mu_b \le 2 \text{ GeV}$):

higher-order terms in α_s and b^p affect $d\sigma/dQ_T$ at $Q_T \lesssim 10$ GeV; have a large effect on M_W

■ $b \gtrsim 1.5 - 2 \text{ GeV}^{-1}$: largely unknown; negligible effect on the analyzed data

Gaussian smearing in Z boson production

The large-*b* behavior of $\widetilde{W}(b, Q)$ is often approximated as $\widetilde{W}(b, Q, x_A, x_B)\Big|_{all \ b} \approx \widetilde{W}'_{LP}(b, Q, x_A, x_B)e^{-a(Q, x_A, x_B)b^2},$

where $W'_{LP}(b, Q, x_A, x_B)$ is a continuation of the perturbative (leading-power) contribution to $b \gtrsim b_{max} \sim 1 \text{ GeV}^{-1}$

For example, in the "b_{*}" model (CSS, 1985):

$$\widetilde{W}'_{LP}(b) \equiv \widetilde{W}_{pert}(b_*) \rightarrow \begin{cases} \widetilde{W}_{pert}(b), & b \ll b_{max} \\ \widetilde{W}_{pert}(b_{max}), & b \gg b_{max} \end{cases}$$

 $b_* \equiv \frac{b}{\sqrt{1 + b^2/b_{max}^2}}$

Pavel Nadolsky (SMU)

Gaussian smearing in *Z* **boson production II** The large-*b* behavior of $\widetilde{W}(b, Q)$ is often approximated as $\widetilde{W}(b, Q, x_A, x_B)\Big|_{all \ b} \approx \widetilde{W}'_{LP}(b, Q, x_A, x_B)e^{-a(Q, x_A, x_B)b^2}$

 $a(Q, x_A, x_B)$ is the nonperturbative "Gaussian smearing";

- dominates NP terms at $b \lesssim 2 \text{ GeV}^{-1}$
- is universal in Drell-Yan-like processes and SIDIS;
- can be found from a fit to p_T data (currently 3 low-Q Drell-Yan pair and 2 Run-1 Z production data sets)
- **RG** invariance + factorization properties of W(b, Q):

$$a(Q, x_A, x_B) \approx a_1 + a_2 \ln \frac{Q}{Q_0} + a_3 \left[\phi(x_A) + \phi(x_B)\right]$$

Renormalon analysis+lattice QCD: $a_2 = 0.19^{+0.12}_{-0.09} \text{ GeV}^2$ (Tafat)

b_* prescription with a revised μ_F scale

1. Take the original *b*_{*} prescription

 $\widetilde{W}(b,Q) = \widetilde{W}_{LP}(b_*,Q)e^{-\mathcal{F}_{NP}(b,Q;b_{max})}$

2. Choose $\mu_F = b_0/b'_*$ in $[\mathcal{C}_{j/a} \otimes f_{a/A}](x, b_*, \mu_F)$, with

 $b'_* \equiv b_*(b, b'_{max}),$

and

```
b'_{max} = \min(b_{max}, 1/Q_{ini})
```

eps/muF_2bstar_bstar.eps

 $\mu_F = \begin{cases} \sim 1/b & \text{for } b \ll Q_{ini} \\ Q_{ini} & \text{for } b \gtrsim Q_{ini} \end{cases}$

 b_{max} can be safely increased at least up to $2 - 3 \text{ GeV}^{-1}$, but the scale μ_F in $f_{a/A}(x, \mu_F)$ never exceeds Q_{ini}

Pavel Nadolsky (SMU)

Scan over b_{max}

$d\sigma/dq_T$ for Z bosons with large rapidities (D0, 1 fb⁻¹)

