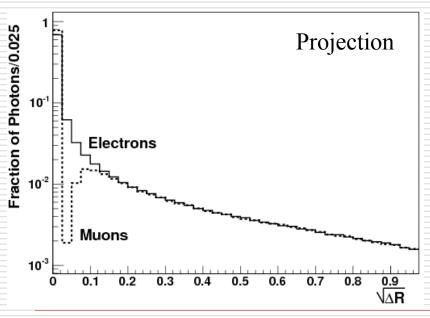
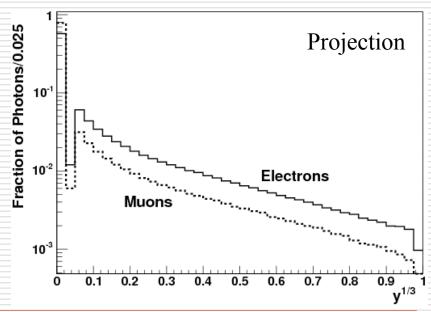

An Implementation of 2-Photon FSR

Chris Hays
Oxford University

for the CDF W mass group




QED and the W Mass Measurement

- \square Lepton momentum contains W mass information
 - FSR systematically reduces measured lepton momentum
 - \square O(150 MeV) reduction in measured W mass (without correction)
 - *ISR* has mild effect on lepton momentum
 - ☐ Swamped by QCD ISR
 - \square WGRAD study: ISR affects measured mass by ≤ 5 MeV
- ☐ Model for CDF Run II measurement (200 pb⁻¹):
 - Simulate only FSR using parametrization of WGRAD
 - *Apply correction to account for two-photon FSR*

FSR Parametrization

- ☐ Two-dimensional function:
 - Fractional momentum $y = E_{\gamma}/E_{l}$
 - Photon-lepton separation $\Delta R(l, \gamma)$
- \square Parametrize using 2-d histogram $y^{1/3}$ vs $\Delta R^{1/2}$

QED Model Validation

- □ 2-d histogram created using FSR-only mode of WGRAD
 - Parametrization consistent with FSR-only WGRAD
 - ☐ Tested to statistical precision of 5 MeV
 - \square : any dependence on lepton p_T has small effect
 - Histogram generated using lower bound of $y = 10^{-4}$
 - \square Raising bound to 10⁻³ has \le 5 MeV effect on measured mass
 - *ISR-FSR* interference has no noticable effect ($\leq 5 \text{ MeV}$)
 - ☐ Tested using interference-only mode of WGRAD
 - No test of effect of QCD on histogram
 - ☐ QCD-QED correlations?

Two-Photon FSR

- ☐ Expect second photon to reduce lepton momentum
 - Biases the measurement to a lower mass
- □ Naive procedure to estimate effect:
 - Order the photons in y
 - **Assume** y spectrum of first γ is same as for one- γ FSR
 - ☐ Second photon *y* spectrum is necessarily softer
 - Use WGRAD y vs \(\Delta R\) histogram twice
 - \square Require second photon to have smaller y than first
 - \square Effectively hardens total radiation y spectrum
 - \square 200 pb⁻¹ publication: one photon only, scale up y by 10%

Improving Two-Photon Model

- \square Significant assumption of the y spectra in the model
 - *Ideally obtain first and second photon spectra from theory*
 - Need generator with multi-photon FSR-only option
 - Alternatively tune procedure to match effect of complete higher-order generator
- \square Additional assumption in FSR model for Z events
 - Uncorrelated between leptons
 - Take y vs ΔR spectrum from WGRAD with m_W set to m_Z

Summary

- ☐ Implemented a two-photon FSR model
 - Crucial assumptions may not be correct
 - **E**xtrapolation of $O(\alpha)$ likely overestimates effect
- ☐ Ideally want a multi-photon FSR-only generator in addition to a generator based on the full higher-order calculation

QED Uncertainties

Source	Uncertainty
ISR and interference	5 MeV
Infrared cutoff	5 MeV
FSR model	5 MeV
Higher-order corrections	7 MeV

Need a detailed list with individual uncertainties: all-order 1-photon radiation, 2-photon radiation, radiated photons that split into e+e-, electroweak corrections...