Ambiguities in resummation prescriptions

Marco Bonvini

Dipartimento di Fisica, Università di Genova

W mass workshop, Milano, March 17, 2009

In collaboration with:
Stefano Forte, Giovanni Ridolfi, Alessandro Vicini

Resummation formalism

A typical observable (e.g. Drell-Yan cross-section) $\left(x=\frac{Q^{2}}{S}\right)$

$$
\sigma\left(x, Q^{2}\right)=\int_{x}^{1} \frac{d z}{z} \mathcal{L}\left(z, Q^{2}\right) \hat{\sigma}\left(\frac{x}{z}, \alpha_{s}\left(Q^{2}\right)\right)
$$

$\mathcal{L}\left(z, Q^{2}\right)$ is a luminosity (convolution of pdfs) and $\hat{\sigma}\left(z, \alpha_{s}\left(Q^{2}\right)\right)$ is the partonic cross-section.

Resummation formalism

A typical observable (e.g. Drell-Yan cross-section) $\left(x=\frac{Q^{2}}{S}\right)$

$$
\sigma\left(x, Q^{2}\right)=\int_{x}^{1} \frac{d z}{z} \mathcal{L}\left(z, Q^{2}\right) \hat{\sigma}\left(\frac{x}{z}, \alpha_{s}\left(Q^{2}\right)\right)
$$

$\mathcal{L}\left(z, Q^{2}\right)$ is a luminosity (convolution of pdfs) and $\hat{\sigma}\left(z, \alpha_{s}\left(Q^{2}\right)\right)$ is the partonic cross-section.

In the partonic threshold limit $z=\frac{Q^{2}}{s} \rightarrow 1$ large logarithms $\log (1-z)$ appear in the partonic cross-section.

Resummation formalism

A typical observable (e.g. Drell-Yan cross-section) $\left(x=\frac{Q^{2}}{S}\right)$

$$
\sigma\left(x, Q^{2}\right)=\int_{x}^{1} \frac{d z}{z} \mathcal{L}\left(z, Q^{2}\right) \hat{\sigma}\left(\frac{x}{z}, \alpha_{s}\left(Q^{2}\right)\right)
$$

$\mathcal{L}\left(z, Q^{2}\right)$ is a luminosity (convolution of pdfs) and $\hat{\sigma}\left(z, \alpha_{s}\left(Q^{2}\right)\right)$ is the partonic cross-section.

In the partonic threshold limit $z=\frac{Q^{2}}{s} \rightarrow 1$ large logarithms $\log (1-z)$ appear in the partonic cross-section.

These large logs need to be resummed

Resummation is usually preformed in Mellin space in order to have factorization:

$$
\hat{\sigma}^{\mathrm{res}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)=\exp \mathcal{S}\left(N, Q^{2}\right)
$$

$\mathcal{S}\left(N, Q^{2}\right)$: Sudakov exponent

Landau pole

$$
\mathcal{S}\left(N, Q^{2}\right)=\int_{1}^{N^{2}} \frac{d n}{n} g\left(\alpha_{s}\left(\frac{Q^{2}}{n}\right)\right), \quad g\left(\alpha_{s}\right) \text { analytic in } \alpha_{s}
$$

Landau pole singularity \Rightarrow branch cut in N-space.

Landau pole

$$
\mathcal{S}\left(N, Q^{2}\right)=\int_{1}^{N^{2}} \frac{d n}{n} g\left(\alpha_{s}\left(\frac{Q^{2}}{n}\right)\right), \quad g\left(\alpha_{s}\right) \text { analytic in } \alpha_{s}
$$

Landau pole singularity \Rightarrow branch cut in N-space.
For example the quantity $\gamma\left(N, \alpha_{s}\left(Q^{2}\right)\right)=\frac{\partial \mathcal{S}\left(N, Q^{2}\right)}{\partial \log Q^{2}}$ at leading $\log (\mathrm{LL})$ approximation

$$
\gamma_{\mathrm{LL}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)=A \log \left(1+\beta_{0} \alpha_{s}\left(Q^{2}\right) \log \frac{1}{N}\right)
$$

Landau pole

$$
\mathcal{S}\left(N, Q^{2}\right)=\int_{1}^{N^{2}} \frac{d n}{n} g\left(\alpha_{s}\left(\frac{Q^{2}}{n}\right)\right), \quad g\left(\alpha_{s}\right) \text { analytic in } \alpha_{s}
$$

Landau pole singularity \Rightarrow branch cut in N-space.
For example the quantity $\gamma\left(N, \alpha_{s}\left(Q^{2}\right)\right)=\frac{\partial \mathcal{S}\left(N, Q^{2}\right)}{\partial \log Q^{2}}$ at leading $\log (\mathrm{LL})$ approximation

$$
\gamma_{\mathrm{LL}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)=A \log \left(1+\beta_{0} \alpha_{s}\left(Q^{2}\right) \log \frac{1}{N}\right)
$$

has a branch cut on the real axis for

$$
N>N_{L} \equiv \exp \frac{1}{\beta_{0} \alpha_{s}\left(Q^{2}\right)}
$$

Landau pole

$$
\mathcal{S}\left(N, Q^{2}\right)=\int_{1}^{N^{2}} \frac{d n}{n} g\left(\alpha_{s}\left(\frac{Q^{2}}{n}\right)\right), \quad g\left(\alpha_{s}\right) \text { analytic in } \alpha_{s}
$$

Landau pole singularity \Rightarrow branch cut in N-space.
For example the quantity $\gamma\left(N, \alpha_{s}\left(Q^{2}\right)\right)=\frac{\partial \mathcal{S}\left(N, Q^{2}\right)}{\partial \log Q^{2}}$ at leading $\log (\mathrm{LL})$ approximation

$$
\gamma_{\mathrm{LL}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)=A \log \left(1+\beta_{0} \alpha_{s}\left(Q^{2}\right) \log \frac{1}{N}\right)
$$

has a branch cut on the real axis for

$$
N>N_{L} \equiv \exp \frac{1}{\beta_{0} \alpha_{s}\left(Q^{2}\right)}
$$

The Mellin inverse does NOT exist

Connection with divergence of perturbative expansion

We can expand in series of $\alpha_{s}\left(Q^{2}\right)$ and invert term by term:

$$
\mathcal{M}^{-1}\left[\gamma_{\mathrm{LL}}\right]=-A \sum_{k=1}^{\infty} \frac{\left(-\beta_{0} \alpha_{s}\left(Q^{2}\right)\right)^{k}}{k} \mathcal{M}^{-1}\left[\log ^{k} \frac{1}{N}\right]
$$

Connection with divergence of perturbative expansion

We can expand in series of $\alpha_{s}\left(Q^{2}\right)$ and invert term by term:

$$
\mathcal{M}^{-1}\left[\gamma_{\mathrm{LL}}\right]=-A \sum_{k=1}^{\infty} \frac{\left(-\beta_{0} \alpha_{s}\left(Q^{2}\right)\right)^{k}}{k} \mathcal{M}^{-1}\left[\log ^{k} \frac{1}{N}\right]
$$

but the series diverges!

Connection with divergence of perturbative expansion

We can expand in series of $\alpha_{s}\left(Q^{2}\right)$ and invert term by term:

$$
\mathcal{M}^{-1}\left[\gamma_{\mathrm{LL}}\right]=-A \sum_{k=1}^{\infty} \frac{\left(-\beta_{0} \alpha_{s}\left(Q^{2}\right)\right)^{k}}{k} \mathcal{M}^{-1}\left[\log ^{k} \frac{1}{N}\right]
$$

but the series diverges!

A possible way out

Approximate the Mellin inversion of the single log at LL:

$$
\mathcal{M}^{-1}\left[\log ^{k} \frac{1}{N}\right]=k\left[\frac{\log ^{k-1}(1-z)}{1-z}\right]_{+}+\mathrm{NLL}
$$

and take the sum:

$$
\frac{\mathcal{M}^{-1}\left[\gamma_{\mathrm{LL}}\right]}{A}=\left[\frac{1}{1-z} \frac{\beta_{0} \alpha_{s}\left(Q^{2}\right)}{1+\beta_{0} \alpha_{s}\left(Q^{2}\right) \log (1-z)}\right]_{+}=\left[\frac{\alpha_{s}\left(Q^{2}(1-z)\right)}{1-z}\right]_{+}
$$

Connection with divergence of perturbative expansion

We can expand in series of $\alpha_{s}\left(Q^{2}\right)$ and invert term by term:

$$
\mathcal{M}^{-1}\left[\gamma_{\mathrm{LL}}\right]=-A \sum_{k=1}^{\infty} \frac{\left(-\beta_{0} \alpha_{s}\left(Q^{2}\right)\right)^{k}}{k} \mathcal{M}^{-1}\left[\log ^{k} \frac{1}{N}\right]
$$

but the series diverges!

A possible way out

Approximate the Mellin inversion of the single log at LL:

$$
\mathcal{M}^{-1}\left[\log ^{k} \frac{1}{N}\right]=k\left[\frac{\log ^{k-1}(1-z)}{1-z}\right]_{+}+\mathrm{NLL}
$$

and take the sum:

$$
\frac{\mathcal{M}^{-1}\left[\gamma_{\mathrm{LL}}\right]}{A}=\left[\frac{1}{1-z} \frac{\beta_{0} \alpha_{s}\left(Q^{2}\right)}{1+\beta_{0} \alpha_{s}\left(Q^{2}\right) \log (1-z)}\right]_{+}=\left[\frac{\alpha_{s}\left(Q^{2}(1-z)\right)}{1-z}\right]_{+}
$$

Landau pole!

Minimal prescription

Proposed by S.Catani, M.Mangano, P.Nason, L.Trentadue:

$$
\sigma^{\mathrm{MP}}\left(x, Q^{2}\right)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d N x^{-N} \mathcal{L}\left(N, Q^{2}\right) \hat{\sigma}^{\mathrm{res}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)
$$

with $c<N_{L}$, as in the figure.

Minimal prescription

Proposed by S.Catani, M.Mangano, P.Nason, L.Trentadue:

$$
\sigma^{\mathrm{MP}}\left(x, Q^{2}\right)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d N x^{-N} \mathcal{L}\left(N, Q^{2}\right) \hat{\sigma}^{\mathrm{res}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)
$$

with $c<N_{L}$, as in the figure.
Good properties:

- well defined for all x

Minimal prescription

Proposed by S.Catani, M.Mangano, P.Nason, L.Trentadue:

$$
\sigma^{\mathrm{MP}}\left(x, Q^{2}\right)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d N x^{-N} \mathcal{L}\left(N, Q^{2}\right) \hat{\sigma}^{\mathrm{res}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)
$$

with $c<N_{L}$, as in the figure.
Good properties:

- well defined for all x
- exact for invertible functions

Minimal prescription

Proposed by S.Catani, M.Mangano, P.Nason, L.Trentadue:

$$
\sigma^{\mathrm{MP}}\left(x, Q^{2}\right)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d N x^{-N} \mathcal{L}\left(N, Q^{2}\right) \hat{\sigma}^{\mathrm{res}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)
$$

with $c<N_{L}$, as in the figure.
Good properties:

- well defined for all x
- exact for invertible functions
- asymptotic to the original divergent series

Minimal prescription

Proposed by S.Catani, M.Mangano, P.Nason, L.Trentadue:

$$
\sigma^{\mathrm{MP}}\left(x, Q^{2}\right)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d N x^{-N} \mathcal{L}\left(N, Q^{2}\right) \hat{\sigma}^{\mathrm{res}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)
$$

with $c<N_{L}$, as in the figure.
Good properties:

- well defined for all x
- exact for invertible functions
- asymptotic to the original divergent series

But...

- a non-physical region of the parton cross-section contributes

Minimal prescription

Proposed by S.Catani, M.Mangano, P.Nason, L.Trentadue:

$$
\sigma^{\mathrm{MP}}\left(x, Q^{2}\right)=\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d N x^{-N} \mathcal{L}\left(N, Q^{2}\right) \hat{\sigma}^{\mathrm{res}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)
$$

with $c<N_{L}$, as in the figure.
Good properties:

- well defined for all x
- exact for invertible functions
- asymptotic to the original divergent series

But...

- a non-physical region of the parton cross-section contributes
- problems in numerical implementation

Borel prescription (1)

Generic resummed quantity (for example $\Sigma(\bar{\alpha} L)=\gamma_{\mathrm{LL}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)$)

$$
\Sigma(\bar{\alpha} L)=\sum_{k=0}^{\infty} h_{k}(\bar{\alpha} L)^{k}, \quad\left\{\begin{array}{l}
\bar{\alpha} \equiv 2 \beta_{0} \alpha_{s}\left(Q^{2}\right) \\
L \equiv \log \frac{1}{N}
\end{array}\right.
$$

Borel prescription (1)

Generic resummed quantity (for example $\Sigma(\bar{\alpha} L)=\gamma_{\mathrm{LL}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)$)

$$
\Sigma(\bar{\alpha} L)=\sum_{k=0}^{\infty} h_{k}(\bar{\alpha} L)^{k}, \quad\left\{\begin{array}{l}
\bar{\alpha} \equiv 2 \beta_{0} \alpha_{s}\left(Q^{2}\right) \\
L \equiv \log \frac{1}{N}
\end{array}\right.
$$

Treat the divergent series $\mathcal{M}^{-1}(\Sigma)$ with Borel method:*

* Proposed by R.Abbate, S.Forte, G.Ridolfi, J.Rojo, M.Ubiali

Borel prescription (1)

Generic resummed quantity (for example $\Sigma(\bar{\alpha} L)=\gamma_{\mathrm{LL}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)$)

$$
\Sigma(\bar{\alpha} L)=\sum_{k=0}^{\infty} h_{k}(\bar{\alpha} L)^{k}, \quad\left\{\begin{array}{l}
\bar{\alpha} \equiv 2 \beta_{0} \alpha_{s}\left(Q^{2}\right) \\
L \equiv \log \frac{1}{N}
\end{array}\right.
$$

Treat the divergent series $\mathcal{M}^{-1}(\Sigma)$ with Borel method:*

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k+1} \quad \text { Borel transform } \quad \hat{f}(w)=\sum_{k=0}^{\infty} \frac{a_{k}}{k!} w^{k}
$$

Borel prescription (1)

Generic resummed quantity (for example $\Sigma(\bar{\alpha} L)=\gamma_{\mathrm{LL}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)$)

$$
\Sigma(\bar{\alpha} L)=\sum_{k=0}^{\infty} h_{k}(\bar{\alpha} L)^{k}, \quad\left\{\begin{array}{l}
\bar{\alpha} \equiv 2 \beta_{0} \alpha_{s}\left(Q^{2}\right) \\
L \equiv \log \frac{1}{N}
\end{array}\right.
$$

Treat the divergent series $\mathcal{M}^{-1}(\Sigma)$ with Borel method:*

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k+1} \quad \text { Borel transform } \quad \hat{f}(w)=\sum_{k=0}^{\infty} \frac{a_{k}}{k!} w^{k}
$$

Borel method: get the inverse as

$$
f_{\mathrm{B}}(z)=\int_{0}^{+\infty} d w e^{-w / z} \hat{f}(w)
$$

Borel prescription (1)

Generic resummed quantity (for example $\Sigma(\bar{\alpha} L)=\gamma_{\mathrm{LL}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)$)

$$
\Sigma(\bar{\alpha} L)=\sum_{k=0}^{\infty} h_{k}(\bar{\alpha} L)^{k}, \quad\left\{\begin{array}{l}
\bar{\alpha} \equiv 2 \beta_{0} \alpha_{s}\left(Q^{2}\right) \\
L \equiv \log \frac{1}{N}
\end{array}\right.
$$

Treat the divergent series $\mathcal{M}^{-1}(\Sigma)$ with Borel method:*

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k+1} \quad \text { Borel transform } \quad \hat{f}(w)=\sum_{k=0}^{\infty} \frac{a_{k}}{k!} w^{k}
$$

Borel method: get the inverse as

$$
f_{\mathrm{B}}(z)=\int_{0}^{+\infty} d w e^{-w / z} \hat{f}(w)
$$

- If f_{B} exists, the series is Borel-summable

Borel prescription (1)

Generic resummed quantity (for example $\Sigma(\bar{\alpha} L)=\gamma_{\mathrm{LL}}\left(N, \alpha_{s}\left(Q^{2}\right)\right)$)

$$
\Sigma(\bar{\alpha} L)=\sum_{k=0}^{\infty} h_{k}(\bar{\alpha} L)^{k}, \quad\left\{\begin{array}{l}
\bar{\alpha} \equiv 2 \beta_{0} \alpha_{s}\left(Q^{2}\right) \\
L \equiv \log \frac{1}{N}
\end{array}\right.
$$

Treat the divergent series $\mathcal{M}^{-1}(\Sigma)$ with Borel method:*

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k+1} \quad \text { Borel transform } \quad \hat{f}(w)=\sum_{k=0}^{\infty} \frac{a_{k}}{k!} w^{k}
$$

Borel method: get the inverse as

$$
f_{\mathrm{B}}(z)=\int_{0}^{+\infty} d w e^{-w / z} \hat{f}(w)
$$

- If f_{B} exists, the series is Borel-summable
- If the original series converges $\Rightarrow f_{\mathrm{B}}(z)=f(z)$
* Proposed by R.Abbate, S.Forte, G.Ridolfi, J.Rojo, M.Ubiali

Borel prescription (2)

Applied to $\mathcal{M}^{-1}(\Sigma)$:

Borel prescription (2)

Applied to $\mathcal{M}^{-1}(\Sigma)$:

- the Borel transform converges

Borel prescription (2)

Applied to $\mathcal{M}^{-1}(\Sigma)$:

- the Borel transform converges
- the inversion integral diverges (the series isn't Borel-summable)

Borel prescription (2)

Applied to $\mathcal{M}^{-1}(\Sigma)$:

- the Borel transform converges
- the inversion integral diverges (the series isn't Borel-summable)
- proposed solution: cut-off C in the inversion integral

Borel prescription (2)

Applied to $\mathcal{M}^{-1}(\Sigma)$:

- the Borel transform converges
- the inversion integral diverges (the series isn't Borel-summable)
- proposed solution: cut-off C in the inversion integral

$$
\hat{\sigma}^{\mathrm{BP}}(z, C)=\left[\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{d \xi}{\xi \Gamma(\xi)}(1-z)^{\xi-1} \int_{0}^{C} d w e^{-\frac{w}{\bar{\alpha}}} \frac{d}{d w} \Sigma\left(\frac{w}{\xi}\right)\right]_{+}
$$

Borel prescription (2)

Applied to $\mathcal{M}^{-1}(\Sigma)$:

- the Borel transform converges
- the inversion integral diverges (the series isn't Borel-summable)
- proposed solution: cut-off C in the inversion integral

$$
\hat{\sigma}^{\mathrm{BP}}(z, C)=\left[\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{d \xi}{\xi \Gamma(\xi)}(1-z)^{\xi-1} \int_{0}^{C} d w e^{-\frac{w}{\bar{\alpha}}} \frac{d}{d w} \Sigma\left(\frac{w}{\xi}\right)\right]_{+}
$$

Remarks

- resummed expression at parton level \Rightarrow no convolution problems

Borel prescription (2)

Applied to $\mathcal{M}^{-1}(\Sigma)$:

- the Borel transform converges
- the inversion integral diverges (the series isn't Borel-summable)
- proposed solution: cut-off C in the inversion integral

$$
\hat{\sigma}^{\mathrm{BP}}(z, C)=\left[\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{d \xi}{\xi \Gamma(\xi)}(1-z)^{\xi-1} \int_{0}^{C} d w e^{-\frac{w}{\bar{\alpha}}} \frac{d}{d w} \Sigma\left(\frac{w}{\xi}\right)\right]_{+}
$$

Remarks

- resummed expression at parton level \Rightarrow no convolution problems
- asymptotic to the original divergent series

Borel prescription (2)

Applied to $\mathcal{M}^{-1}(\Sigma)$:

- the Borel transform converges
- the inversion integral diverges (the series isn't Borel-summable)
- proposed solution: cut-off C in the inversion integral

$$
\hat{\sigma}^{\mathrm{BP}}(z, C)=\left[\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{d \xi}{\xi \Gamma(\xi)}(1-z)^{\xi-1} \int_{0}^{C} d w e^{-\frac{w}{\bar{\alpha}}} \frac{d}{d w} \Sigma\left(\frac{w}{\xi}\right)\right]_{+}
$$

Remarks

- resummed expression at parton level \Rightarrow no convolution problems
- asymptotic to the original divergent series
- parameter C to estimate ambiguity

Borel prescription (2)

Applied to $\mathcal{M}^{-1}(\Sigma)$:

- the Borel transform converges
- the inversion integral diverges (the series isn't Borel-summable)
- proposed solution: cut-off C in the inversion integral

$$
\hat{\sigma}^{\mathrm{BP}}(z, C)=\left[\frac{1}{2 \pi i} \oint_{\mathcal{C}} \frac{d \xi}{\xi \Gamma(\xi)}(1-z)^{\xi-1} \int_{0}^{C} d w e^{-\frac{w}{\bar{\alpha}}} \frac{d}{d w} \Sigma\left(\frac{w}{\xi}\right)\right]_{+}
$$

Remarks

- resummed expression at parton level \Rightarrow no convolution problems
- asymptotic to the original divergent series
- parameter C to estimate ambiguity
- the cut-off is related to the inclusion of higher-twist terms

$$
\exp \left(-\frac{C}{\bar{\alpha}}\right) \simeq\left(\frac{\Lambda^{2}}{Q^{2}}\right)^{C / 2}
$$

Total cross-section (normalized to LO, cteq6.6 pdfs used)

$\frac{\mathrm{d} \sigma}{\mathrm{dQ}{ }^{2}}$

$$
Q=100 \mathrm{GeV}
$$

Rapidity distribution (cteq6.6 pdfs used)

Total cross-section (normalized to LO, mrst2001nlo pdfs used)

Rapidity distribution for E866/NuSea (mst2001nlo pdff used)

T.Becher, M.Neubert, G.Xu, JHEP 0807 (2008) 030

Rapidity distribution for E866/NuSea (mst2001nlo pdff used)

Rapidity distribution for E866/NuSea (mst2001nlo pdfs used)

Transverse momentum distribution

M.Bonvini, S.Forte, G.Ridolfi, Nucl. Phys. B 808 (2009) 347

Transverse momentum distribution

M.Bonvini, S.Forte, G.Ridolfi, Nucl. Phys. B 808 (2009) 347

Conclusions

Main concepts and results

Conclusions

Main concepts and results

- Perturbative expansions are divergent:

Conclusions

Main concepts and results

- Perturbative expansions are divergent:
- ambiguity in the extraction of a finite result

Conclusions

Main concepts and results

- Perturbative expansions are divergent:
- ambiguity in the extraction of a finite result
- some prescriptions to deal with divergence are available

Conclusions

Main concepts and results

- Perturbative expansions are divergent:
- ambiguity in the extraction of a finite result
- some prescriptions to deal with divergence are available
- estimate ambiguity using different prescriptions

Conclusions

Main concepts and results

- Perturbative expansions are divergent:
- ambiguity in the extraction of a finite result
- some prescriptions to deal with divergence are available
- estimate ambiguity using different prescriptions
- Is the ambiguity important?

Conclusions

Main concepts and results

- Perturbative expansions are divergent:
- ambiguity in the extraction of a finite result
- some prescriptions to deal with divergence are available
- estimate ambiguity using different prescriptions
- Is the ambiguity important?
- total cross-section (and rapidity distribution): non-negligible

Conclusions

Main concepts and results

- Perturbative expansions are divergent:
- ambiguity in the extraction of a finite result
- some prescriptions to deal with divergence are available
- estimate ambiguity using different prescriptions
- Is the ambiguity important?
- total cross-section (and rapidity distribution): non-negligible
- transverse momentum distribution: very small

Conclusions

Main concepts and results

- Perturbative expansions are divergent:
- ambiguity in the extraction of a finite result
- some prescriptions to deal with divergence are available
- estimate ambiguity using different prescriptions
- Is the ambiguity important?
- total cross-section (and rapidity distribution): non-negligible
- transverse momentum distribution: very small
- Do we need a non-perturbative function?

Conclusions

Main concepts and results

- Perturbative expansions are divergent:
- ambiguity in the extraction of a finite result
- some prescriptions to deal with divergence are available
- estimate ambiguity using different prescriptions
- Is the ambiguity important?
- total cross-section (and rapidity distribution): non-negligible
- transverse momentum distribution: very small
- Do we need a non-perturbative function?
- no, for total cross-section and rapidity distribution

Conclusions

Main concepts and results

- Perturbative expansions are divergent:
- ambiguity in the extraction of a finite result
- some prescriptions to deal with divergence are available
- estimate ambiguity using different prescriptions
- Is the ambiguity important?
- total cross-section (and rapidity distribution): non-negligible
- transverse momentum distribution: very small
- Do we need a non-perturbative function?
- no, for total cross-section and rapidity distribution
- for transverse momentum distribution only for very small q_{T}

Spare slides

Minimal prescription: non-physical contribution

$$
\begin{aligned}
\sigma^{\mathrm{MP}}\left(x, Q^{2}\right) & =\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d N x^{-N} \hat{\sigma}^{\mathrm{res}}\left(N, \alpha_{s}\left(Q^{2}\right)\right) \mathcal{L}\left(N, Q^{2}\right) \\
& =\frac{1}{2 \pi i} \int_{c-i \infty}^{c+i \infty} d N x^{-N} \hat{\sigma}^{\mathrm{res}}\left(N, \alpha_{s}\left(Q^{2}\right)\right) \int_{0}^{1} d z z^{N-1} \mathcal{L}\left(z, Q^{2}\right) \\
& =\int_{0}^{1} \frac{d z}{z} \mathcal{L}\left(z, Q^{2}\right) \hat{\sigma}^{\mathrm{res}}\left(\frac{x}{z}, \alpha_{s}\left(Q^{2}\right)\right)
\end{aligned}
$$

The integral extends from 0 to 1 , not from x to 1 !

MP vs BP for single logarithm

Using Minimal prescription we get the exact inversion

$$
\mathcal{M}^{-1}\left(\log \frac{1}{N}\right)_{\mathrm{MP}}=\left[\frac{1}{\log \frac{1}{z}}\right]_{+}
$$

Using Borel prescription we get the more physical result

$$
\mathcal{M}^{-1}\left(\log \frac{1}{N}\right)_{\mathrm{BP}}=\left[\frac{1}{1-z}\right]_{+}\left(1-e^{-\frac{C}{\bar{\alpha}}}\right)
$$

