

W mass workshop, University of Milano, March 2009

W mass precision due to EWK simulation

Ilija Bizjak University College London

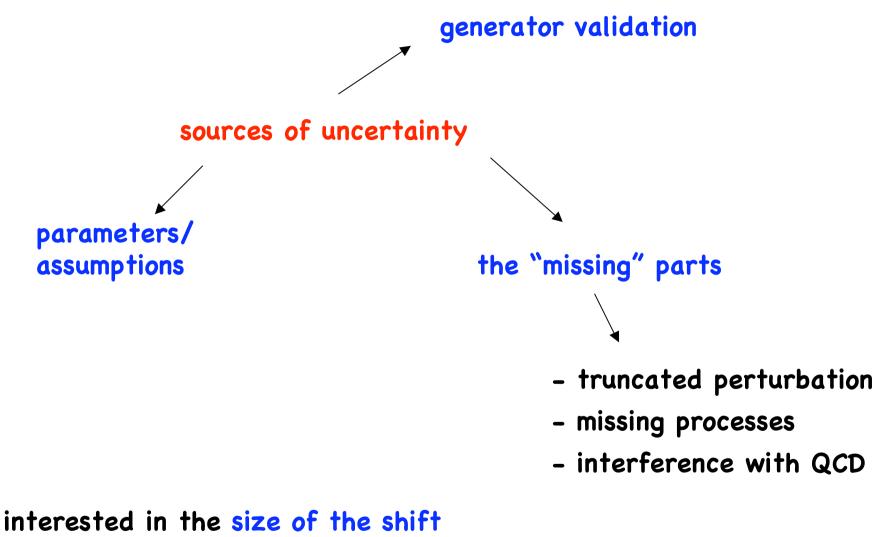
for the CDF W mass group

Overview and goals

Present some results and the issues we encountered

Starting point for a discussion

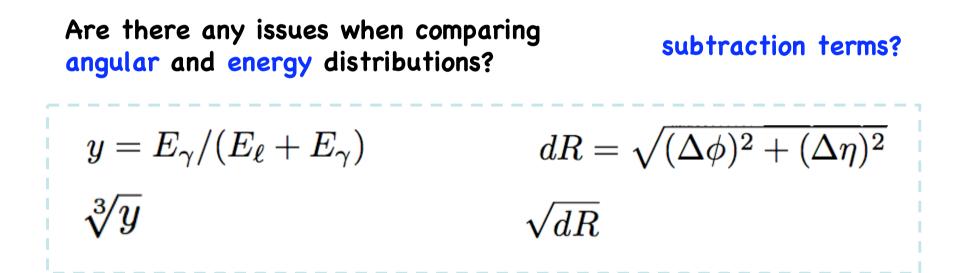
goal to agree on a prescription of how to get the EWK uncertainty (one which the theorists are willing to sign under...)


We need to propagate the leptons and the photons through a detailed and fine-tuned detector simulation

interface (weighted) generated events to our simulation code

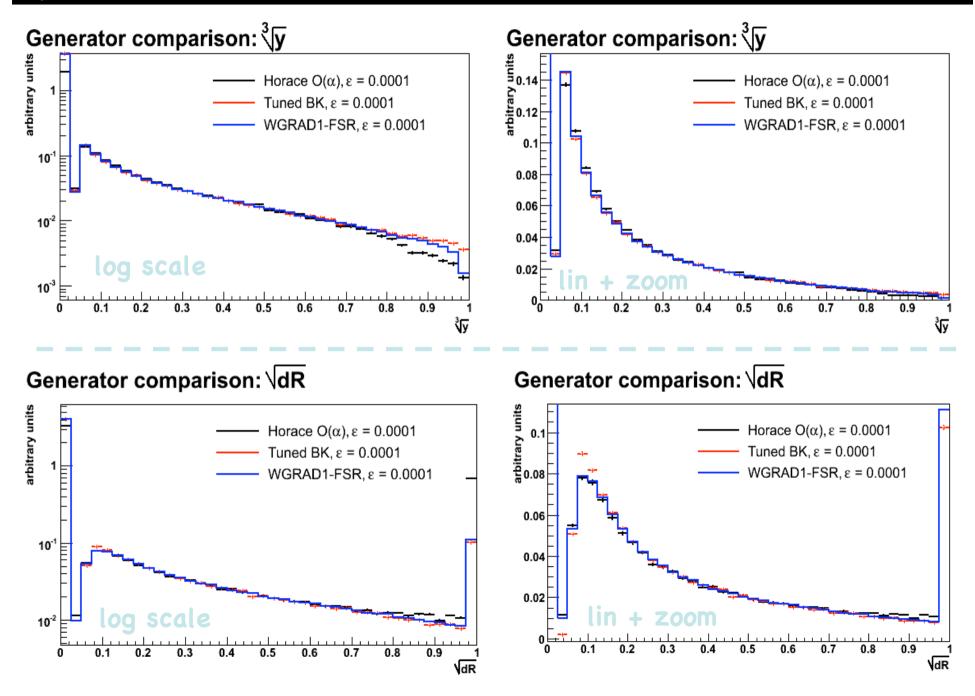
We have interfaced:

- a tuned Behrends&Kleiss (gives nearly exact WGRAD1 results)
- Photos (on top of Born)
- Horace 3.1
- (started working on WGRAD2, put on hold)
- Sampling a WGRAD(1) histogram (see Chris Hays's talk)

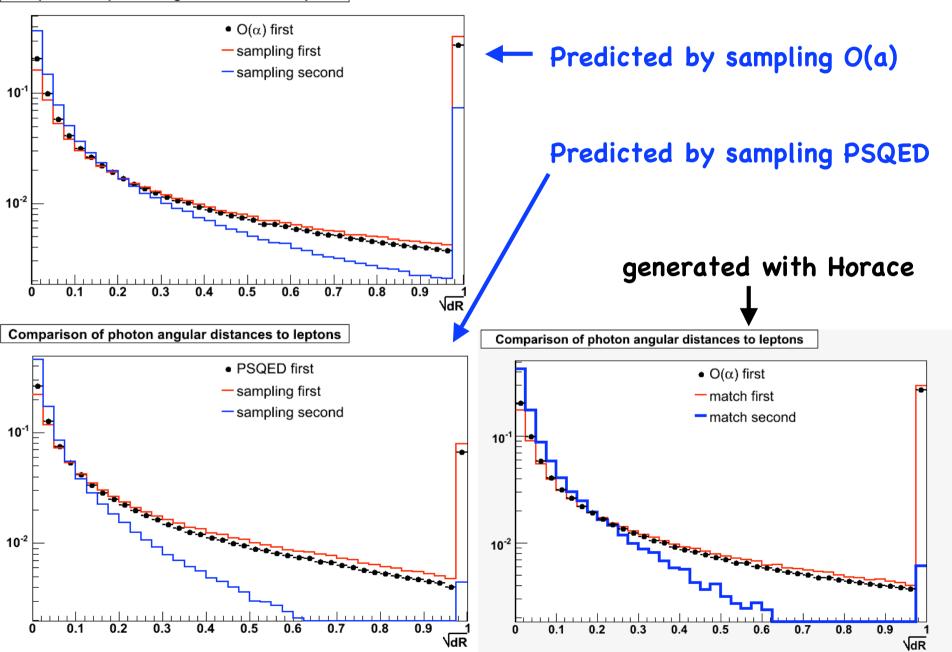

Sources of uncertainty

the effects introduce to the measured W mass

Does "O(a)" have the same definition for different generators?



(Ultimately fit one against another - if we had them all interfaced)


photon distributions (W $\rightarrow\mu\nu$)

Horace contains ISR

1st / 2nd photon

Comparison of photon angular distances to leptons

Observed shifts on W mass

	m _T		Ρ		Έ _T	
	e	μ	e	μ	e	μ
born - O(α)	147 ± 2.0	154 ± 1.8	174 ± 2.5	208 ± 2.5	105 ± 2.6	93 ± 2.0
born – match	137 ± 2.1	136 ± 2.4	163 ± 2.6	187 ± 2.4	96 ± 2.8	76 ± 1.9
O(α) – match	11 ± 2.4	19 ± 2.0	12 ± 2.9	22 ± 2.8	9 ± 3.1	18 ± 2.2
born – LL 1g	143 ± 2.2	148 ± 1.5	167 ± 2.6	198 ± 2.2	104 ± 2.8	89 ± 1.8
born – LL ng	138 ± 2.2	138 ± 1.5	162 ± 2.6	184 ± 2.2	104 ± 2.8	85 ± 1.8
LL1g – LL ng	5 ± 2.5	10 ± 1.6	5 ± 3.1	15 ± 2.3	1 ± 3.2	5 ± 1.8
LL1g - Ο(α)	1 ± 2.4	3 ± 1.8	3 ± 2.9	5 ± 2.6	1 ± 3.1	1 ± 2.1
LLng – match	4 ± 2.5	5 ± 1.7	4 ± 3.0	2 ± 2.5	10 ± 3.2	10 ± 2.0

Going to more photons reduces the EWK effect on the W mass The shift is -11 MeV and -19 MeV

The difference between O(a) and LL1g is small (a few MeV)

Uncertainty of the matched Leading Log QED PS

•
$$F_{\rm H} = 1 + \delta$$

• $F_{SV} = 1 + (C_{\alpha} - C_{\alpha,LL})$ $F_{H} = 1 + \frac{|\mathcal{M}_1|^2 - |\mathcal{M}_{1,LL}|^2}{|\mathcal{M}_{1,LL}|^2}$

• $d\sigma_{exact}^{\alpha} \stackrel{\text{at }\mathcal{O}(\alpha)}{=} F_{SV}(1+C_{\alpha,LL})|\mathcal{M}_0|^2 d\Phi_0 + F_H|\mathcal{M}_{1,LL}|^2 d\Phi_1$

$$d\sigma_{matched}^{\infty} = F_{SV} \Pi(Q^2, \varepsilon) \sum_{n=0}^{\infty} \frac{1}{n!} \left(\prod_{i=0}^{n} F_{H,i} \right) |\mathcal{M}_{n,LL}|^2 d\Phi_n$$

correction to all orders n-photon correction a product of 1-photon corrections fully differential calculation

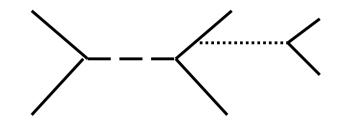
 $(1 + \delta_1) (1 + \delta_2) (1 + \delta_3) \dots$

1-photon corrections exact, n-photon corrections approximated as δ^n

As $\delta \approx 3/140 \approx 2\%$, the uncertainty of the procedure of the order of

140 MeV x δ^2 = 0.1 MeV ?

perturbation validation


Horace authors have implemented the calculation in 2 EWK schemes, G_{μ} and α , which truncate the perturbative series in a different way

The difference should give a sense of the size of the "second photon" error

The difference should fall from O(a) to match (next order)

	m _T		P⊤		E _T	
	e	μ	e	μ	e	μ
Gμ / α Ο(α)	9 ± 2.3	9 ± 2.1	10 ± 2.8	12 ± 2.9	5 ± 2.9	6 ± 2.3
G μ / $lpha$ match	0.3 ± 2.5	0.4 ± 1.9	0.1 ± 3.0	0.1 ± 2.6	0.5 ± 3.2	0.3 ± 2.1

Pair creation is not included in the current version of Horace

the two leptons can have low \boldsymbol{p}_{T} and do not reach the calorimeter

Same order as 2-photon emission \implies A potential 10MeV effect?

The effect might be reduced due to soft-virtual cancellations

We need to find a reliable way of estimating its effect

Assumptions and parameters

Input EWK parameters, the soft separator (ϵ/δ_c) , any others?

vary within their uncertainties and observe the M_w shift

are their uncertainties absorbed in the tunes to data?

 $\alpha\alpha_{s}$ effects – interference between EWK and QCD

see Mark's talk tomorrow What is the right way to combine p_{τ} boosts of ISR EWK and QCD

 $\alpha_{\rm s}$ > α , so gluon emission faster than ISR photon

boosting or not the ISR photons has ≈5±3MeV effect (can be better understood using WGRAD2)

Resbos-A? Playing around with the PDF scale?

Conclusions

We have studied the effects of using a matched LL QED PS generator (Horace 3.1) for simulating EWK effects

The uncertainty on the W mass =

 $\Delta M_w^{tot} = \Delta M_w^{matching} \oplus \Delta M_w^{missing p} \oplus \Delta M_w^{pars} \oplus \Delta M_w^{\alpha\alpha s}$

< 2MeV 10MeV? n/a ≈ 5MeV?

Are there other contributions?

How can we reliably estimate the effect of the missing process(es)?