Starlings in flight

understanding patterns of animal group movements from the complex system perspective

Irene Giardina

ISC Institute for Complex Systems, CNR Rome and INFM-CNR, Department of Physics, Rome La Sapienza

European STREP project STARFLAG

Pavia, November 2005

STARLING FLOCKS

Termini railway station, Rome Evening roosting time, November 2004

Collective phenomena often occur in biological systems

Bacteria colonies, blood cells, insects swarms, fish schools, birds flocks, quadrupets herds

What are the rules governing coordination and collective motion?

Collective phenomena have been widely studied in physics

- Cooperative behaviour in phase transitions and ordering
- Local interactions can generate long range order
- Universality, renormalization \rightarrow the details are not important
- Efficient simple models

The Physics Paradigm

the microscopic mechanisms determining flocking pattern formation and coordinated collective motion are local and simple and do not depend dramatically on the complex nature of the individuals

SIMPLE MODELS

Minimal Models of Flocking

Each individual bird determines its direction of motion on each time step by averaging the direction of its neighbours (allelomimesis) with some noise

- Nonequilibrium analog of the ferromagnetic XY model (in 2D) Rotational Symmetry
- Onset of collective motion for small noise, even in 2D (Mermin-Wagner does NOT hold)
 - $\phi = \frac{1}{N\nu} \left| \sum_{i} \vec{v}_{i}(t) \right| \qquad \qquad |\eta| = 2 \\ \phi = 0 \qquad \qquad |\eta| = 0.1 \\ \phi > 0$
- Navier-Stokes like equations for the coarse-grained velocity

Toner & Tu, PRL 1995

Convective relevant non-linear terms Non trivial RG fixed point Exact exponents in D=2 Effective long-range interactions

SPP with cohesion

Gregoire, Chate & Tu, PRL 2001 Gregoire & Chate, PRL 2004 Gregoire, Chate & Tu, PRE 2004

$$\theta_{i}(t+1) = \left[\alpha \sum_{i \sim j} \vec{v}_{i}(t) + \beta \sum_{i \sim j} f_{ij}\right] + \eta_{i}(t)$$
Hard-core repulsion +
Short-range attraction (r_{0})

• Non trivial infinite space limit *cohesive moving flocks in infinite space*

• Complex phase diagram

$$\phi = \frac{1}{Nv} \left| \sum_{i} \vec{v}_i(t) \right|$$

Moving/Non moving

 $\Delta^{diff}_{i\sim i}$ *n_{clust}*

Cohesive/Sparse Gas - Liquid - Solid

• Discontinuous first order transitions

Experiments

Stereoscopic 3D reconstruction of

Flock shape and movement Individual birds positions Individual birds trajectories

Stereoscopic Photography

2 D images J 3D coordinates

Stereometry

- image elaboration
- birds recognition
- stereoscopic matching
- epipolar post-calibration

$$s = x_B - x_A = f \frac{d}{Z}$$
Stereoscopic shift
$$B \xrightarrow{lens} ccD$$

$$A \xrightarrow{lens} d$$

$$f$$

• the larger the distance, the better the resolution

neighbouring birds

$$\delta s = f \, \frac{d}{Z^2} \, \delta Z$$

 $\int \alpha$

• <u>misalignements strongly affect</u> absolute distances

$$\frac{\delta Z}{Z} = \alpha \frac{Z}{d}$$

$$\alpha = 0.001 \text{ rad}$$

$$\delta Z/Z = 2.0 / 200$$

$$\delta Z/Z = 0.5 / 200$$

2 interlaced cameras \longrightarrow 10 fps 1.6 m

Matching and 3D reconstruction

• <u>Bird recognition</u>

Contrast filters, segmentation algorithms

• <u>Matching</u>

Matching between different set of points with measure F

Planar structure !

A more complex flock

Discoidal shape

Radial distribution function g(r)Liquid like !!!

r

$\Gamma(r)$

Conditional mass $\Gamma(r)$

Scale free (???)

very preliminary

Finite size effect (L< L^{*)} Errors in segmentation Errors in matching ?

Density = N/V

Synthetic flock with same V, N and overall shape as the bio one, but with a uniform distribution of points

Summary and Perspectives

- 3D reconstruction of starling flocks is demanding but possible
- Experimental efficiency related to Camera specifications (Canon Eos D Mark II, 8.2 Mp, 8.5 fps) alignement capabilities
- Static reconstruction of individual flocks

• Statistics — correlation functions, shape, heterogeneity

• Dynamics — trajectory reconstruction, diffusion, convection

Comparison with models

Alberto Orlandi

(INFM-CNR, **STARFLAG** postdoc) computer vision, epipolar geometry

Vladimir Zdravkovic

(INFM-CNR, **STARFLAG** postdoc) experimental setup, data taking

Andrea Procaccini

(La Sapienza, PhD student) experimental setup, data analysis

Massimiliano Viale

(Roma 3 & INFM-CNR, PhD student) epipolar geometry

The team

Michele Ballerini (INFM-CNR, STARFLAG graduate student) electronics, timer, data taking Evaristo Cisbani (ISS) electronics, timer

Nicola Cabibbo (La Sapienza) Andrea Cavagna (INFM & ISC-CNR) Irene Giardina (INFM & ISC-CNR) Giorgio Parisi (La Sapienza, INFM & ISC)