Higher orders and resummations for precision physics

giuseppe bozzi

Università degli Studi di Milano and INFN Sezione di Milano

2nd W Mass Workshop Fermilab, 04.10.2010

Hadronic cross sections in perturbative QCD

- h_1, h_2 = initial state hadrons (with momenta p_1, p_2)
- f_a, f_b = parton distribution functions
- C = coefficient functions (partonic splitting)
- H = perturbatively computed partonic event
- **F** = final state particle(s)
- S = resummation of soft radiation from incoming partons
- Precise predictions depend on good knowledge of f,C,H and S!

Inclusive QCD hard scattering

$h_1(p_1) + h_2(p_2) \rightarrow F(Q) + X$

F = final-state system of high invariant-mass Q (jets,vector bosons, heavy quarks, Higgs), X = unobserved

- QCD approach is based on *factorization theorems*:
 - long distance (hadronic, *M*_{had}) physics
 - short distance (partonic, $Q \gg M_{had}$) physics
 - Factorization is not exact but corrections are $\mathcal{O}(M_{had}/Q)$
- $\sigma_{had}(p_1, p_2) \sim \int \int dx_1 dx_2 f_{a/h_1}(x_1, \mu_F) f_{b/h_2}(x_2, \mu_F) \sigma_{ab}^{part}(x_1 p_1, x_2 p_2, \mu_R, \mu_F)$ • QCD predictions require:
 - Specific (process-dependent) theoretical calculations (σ_{ab}^{part}) computable as a perturbative series in the QCD coupling $\alpha_S(\mu_R)$: LO (just order of magnitude), NLO (non trivial, today's standard), NNLO (today's frontier), ...
 - Universal (process-independent) inputs, primarily the coupling and the parton distribution functions (pdf) $f_a(x_1, \mu_F)$
- Main features of perturbative QCD:
 - Asymptotic freedom (α_S large/small at low/high Q)
 - Pdf scale evolution (f(x, Q)) predictable/computable, once initial conditions (f(x, Q₀)) extracted from experiments

giuseppe bozzi (milano u.)

2nd W Mass Workshop

Fermilab, 04.10.2010 3 / 34

- LO cross sections suffer from large scale uncertainties: σ^{part} does not depend on μ_R, μ_F → pdfs and α_S dependence are not balanced
- Reliable results start at NLO

$$K = rac{\sigma_{HO}(pp
ightarrow H + X)}{\sigma_{LO}(pp
ightarrow H + X)}$$

- α_S and pdfs have to be consistently evaluated at HO and LO as well (otherwise K could be larger,since α_S(NLO) < α_S(LO))
- Partonic cross sections known up to NNLO AP functions recently computed to 3-loops →compute *full NNLO K-factors*

Scale dependence

- Usually one fixes a "natural" scale μ_0 (typically the one that allows to absorb large logarithms...)
- Then μ_R, μ_F are independently or collectively varied within

 $\frac{\mu_0}{a} \le \mu_F, \mu_R \le \mu_0 a$

- Dependence on $\mu_R, \mu_F \rightarrow$ evaluation of theoretical uncertainty ?
 - → The narrower the uncertainty band is, the smaller the HO corrections are expected to be (not always true!)
 - → In principle the scale uncertainty should be reduced when going to higher orders (not always true!)
 - → BUT remember that all this is unphysical and there is no rigorous way to estimate the theoretical uncertainty other than performing the higher-order calculation!

- Differences between pdfs arise from
 - \rightarrow choice of data points
 - $\rightarrow\,$ theoretical assumptions made for the fit
 - → choice of tolerance used to define the error in the fit
- Low-x (x<10⁻³) and high-x (x>0.7) regions are critical: uncertainties of a few tens of %
- Intermediate-x region more reliable: uncertainties of a few %
- No clear separation between regions in the gluon case

Next challenges at colliders

Precision QCD

- H,W,Z and heavy quark hadroproduction
 - \rightarrow measured with high experimental accuracy
- Multiparton final states
 - \rightarrow background to SUSY, UED, ...
 - \rightarrow measurement of couplings

LO is not enough

- Large renormalization scale uncertainty (α_S scale not defined)
- Large factorization scale uncertainty
- Large corrections from higher orders
- Jet structure appears only beyond LO
- → Reliable predictions only at NLO
- → Reliable estimate of errors only at NNLO
- \rightarrow Resummation necessary in some region of the phase space

State of the Art - at a glance

Relative Order	$2 \rightarrow 1$	$2 \rightarrow 2$	$2 \rightarrow 3$	$2 \rightarrow 4$	$2 \rightarrow 5$	$2 \rightarrow 6$
$\begin{array}{c} 1\\ \alpha_s\\ \alpha_s^2\\ \alpha_s^3\\ \alpha_s^4\\ \alpha_s^5\\ \alpha_s^5\end{array}$	LO NLO NNLO NNNLO	LO NLO NNLO	LO NLO	LO NLO	LO NLO	LO

- LO Automated and under control, even for multiparticle final states
- NLO Well understood for $2 \rightarrow 1$ and $2 \rightarrow 2$ in SM and beyond
- NLO Many new $2 \rightarrow 3$ calculations from Les Houches wish list since 2007
- NLO Very first $2 \rightarrow 4$ LHC cross section in 2008 $q\bar{q} \rightarrow t\bar{t}b\bar{b}$
- **NLO** Important developments in automation, W + 3 jets (2009)
- NNLO Inclusive and exclusive Drell-Yan and Higgs cross sections
- NNLO $e^+e^- \rightarrow 3$ jets, but still waiting for $pp \rightarrow \text{jets}, W + \text{jet}, t\bar{t}, VV$
- NNNLO F_2 , F_3 and form-factors

QCD at the LHC - p. 5

< ロ > < 同 > < 回 > < 回 >

NLO Automation

 Combination of infrared divergent parts (dipole subtraction) has become standard and automated

```
[Gleisberg,Krauss(SHERPA);Frederix,Gehrmann,Greiner(MadGraph)
Seymour,Tevlin(TevJet)Hasegawa,Moch,Uwer]
```

One-loop matrix elements: major breakthroughs

Unitarity Methods

Use unitarity cuts on loop diagrams to compute tensor coefficients as products of tree amplitudes

- [Bern, Dixon, Dunbar, Kosower(94);
 - Britto, Cachazo, Feng(04);
- Berger, Bern, Dixon, Forde, Kosower(06);
 - Giele, Kunzst, Melnikov(08)]

OPP Method

New reduction formalism for tensor integrals: reduce 1-loop amplitudes to scalar integrals at the integrand level

[Ossola, Papadopoulos, Pittau(06)]

implemented in BlackHat, Helac/CutTools, Rucola

2nd W Mass Workshop

giuseppe bozzi (milano u.)

Available codes

• Rocket [Giele, Zanderighi (08)]

- up to 1-loop 20 gluon amplitudes! [Giele, Zanderighi (08)]
- NLO W+3j cross section [Ellis, Melnikov, Zanderighi (08)]
- NLO WW+2j cross section [Melia, Melnikov, Rontsch, Zanderighi (10)]
- NLO e+e- ->5j cross section [Frederix, Frixione, Melnikov, Zanderighi (10)]

BlackHat [Berger et al.]

- 1-loop 8 gluon amplitudes
- 1-loop W+5j amplitudes (08)
- NLO W+3j and Z+3j cross section (09,10)
- NLO W+4j cross section (10)

• Helac/CutTools [Cafarella et al.(09)]

- 1-loop amplitudes for
 - $q\bar{q}, gg \rightarrow t\bar{t}b\bar{b}, b\bar{b}b\bar{b}, W^+W^-b\bar{b}, t\bar{t}gg, Wggg, Zggg$
- NLO $pp \rightarrow t\bar{t}b\bar{b}$ cross section

```
[Bevilacqua,Czakon,Papadopoulos,Pittau,Worek(09)]
[see also Bredenstein,Denner,Dittmaier,Pozzorini(09)]
```

\bullet Goal at NLO: all 2 \rightarrow 4(5,6) processes with Unitarity/OPP methods

Parton Shower Generator	Matrix Element Generator		
Resums leading logs to all orders	Only go up to NLO		
High multiplicity hadrons in final state	Low multiplicity partons in final state		
Good for regions of low relative p_T	Good for regions of high relative p_T		
Total rate accurate to LO	Total rate accurate to NLO		

The perfect matching

- generates total rates accurate at NLO
- treats hard emission as in Matrix Element Generators
- treats soft/collinear emission as in Parton Shower Generators
- generates a set of fully exclusive events which can be interfaced with a hadronization model

giuseppe bozzi (milano u.)

• MC@NLO [Frixione, Webber(02)]

- add difference between exact(ME) NLO and approx.(PS) NLO
- automatization (aMC@NLO) based on FKS subtraction @ NLO

[Frederix, Frixione, Maltoni, Stelzer(09)]

- → dependent on the shower details
- \rightarrow difference may be negative

POWHEG [Nason(04)]

- Generate the hardest emission at NLO accuracy (mod. Sudakov)
- Angular-ordered showers: add truncated shower from hard scale
- always positive weights
- → discrepancies with respect to MC@NLO thoroughly explained in several publications

- For a general $2 \rightarrow n$ process we need
 - Two-loop amplitude for $2 \rightarrow n$
 - One-loop amplitude for $2 \rightarrow n+1$
 - Tree-level amplitude for $2 \rightarrow n+2$
- Each term has its own singularities
 - Ultraviolet (removed by renormalization)
 - Infrared (have to cancel among each other)
- → Much more difficult than NLO cancellation!

Cancellation of singularities

Fully inclusive quantities

- analytical computation of contributions is possible
- explicit cancellation of singularities
- → DIS [Zijlstra,van Neerven(92)]
- → Single Hadron [Rijken, vanNeerven(97); Mitov, Moch(06)]
- → DY [Hamberg, van Neerven, Matsuura(91)]
- → H [Harlander,Kilgore(02);Anastasiou,Melnikov(02);Ravindran,Smith,van Neerven(03)]

Fully exclusive quantities (real world!)

• IR singularity structure at NNLO understood

[Catani,Grazzini;Campbell,Glover;Bern,DelDuca,Kilgore,Schmidt; Kosower,Uwer;Sterman,Tejeda-Yeomans]

- numerical integration still very difficult
- → Sector Decomposition
- → Subtraction Method

< ロ > < 同 > < 回 > < 回 >

Sector Decomposition

"Split the integration region into sectors, each containing a single singularity, and explicit the pole by expanding it into distributions"

Binoth, Heinrich [00,04]; Anastasiou, Melnikov, Petriello [04]

AMP developed a fully automated procedure to compute pole coefficients and finite terms and applied it to

H/W/Z(04), QED μ -decay(05), $b \rightarrow c l \bar{\nu}_l(08)$

Subtraction Method

"Add and subtract a local counterterm with the same singularity structure of the real contribution that can be integrated analytically over the phase space of the unresolved parton"

> NLO:Ellis,Ross,Terrano[81];Frixione,Kunzst,Signer[95];Catani,Seymour[96] (NNLO):Kosower[03,05];Weinzier1[03];Frixione,Grazzini[04]

> > Gehrmann, Glover [05]; Somogyi, Trocsanyi, DelDuca [05, 07]

$$d\sigma = \int_{n+1} r d\Phi_{n+1} + \int_n v d\Phi_n$$

$$d\sigma = \int_{n+1} (r d\Phi_{n+1} - \tilde{r} d\tilde{\Phi}_{n+1}) + \int_{n+1} \tilde{r} d\tilde{\Phi}_{n+1} + \int_n v d\Phi_n$$

The Antenna Subtraction Method developed by A and T. Gehrmann and Glover has been used for the NNLO QCD calculation of

$$e^+e^-
ightarrow$$
 3 jets

A.Gehrmann, T.Gehrmann, Glover, Heinrich[07]

Subtraction Method

NNLO subtraction has been applied also to Higgs and Vector Boson production at the LHC $\,$

H:Catani, Grazzini [07]; W, Z:Catani, Cieri, DeFlorian, Ferrera, Grazzini [09]

- Z: result changes with different sets of pdfs
- W: large NNLO effects at low m_T , instabilities at $m_T \sim 50$ GeV

17/34

Partonic cross section as a perturbative series

$$\sigma_{ab}^{part}(p_1, p_2, Q, Q_i, \mu_R, \mu_F) = \alpha_s^k(\mu_R)[\sigma_{LO}(p_1, p_2, Q, Q_i) \\ + \alpha_s(\mu_R)\sigma_{NLO}(p_1, p_2, Q, Q_i, \mu_R, \mu_F) \\ + \alpha_s^2(\mu_R)\sigma_{NNLO}(p_1, p_2, Q, Q_i, \mu_R, \mu_F) + \dots]$$

- The fixed-order result gives reliable result only when all the scales are of the same order of magnitude
- If Q_i ≫ Q or Q_i ≪ Q, the appearance of α_slog(Qi/Q) terms could spoil the perturbative result: they need to be resummed!

Resummation: well-known examples

• $\log(Q/Q_0)$

- evolution of pdfs from input scale Q₀ to hard scale Q
- collinear radiation from colliding partons: single logs
- systematically resummed by DGLAP equation
- $\log(Q/\sqrt{S})$
 - hadronic c.m. energy \sqrt{S} much larger than hard scale Q
 - multiple radiation over wide rapidity range: single logs
 - systematically resummed by BFKL equation
- $\log(Q^2/q_T^2)$
 - systems with invariant-mass $Q \gg q_T$
 - soft and collinear gluon emission: single and double logs
 - treated by means of soft-gluon resummation

• $\log(1 - Q^2/S)$

- hadronic c.m. energy \sqrt{S} comparable to hard scale Q
- soft and collinear gluon emission: single and double logs
- treated by means of soft-gluon resummation

Resummation: the main idea

$\alpha_s L^2$	$\alpha_{s}L$			$\mathcal{O}(\alpha_s)$	(<i>LO</i>)
$\alpha_s^2 L^4$	$\alpha_s^2 L^3$	$\alpha_s^2 L^2$	$\alpha_s^2 L$	$\mathcal{O}(\alpha_s^2)$	(NLO)
$\alpha_s^n L^{2n}$	$\alpha_s^n L^{2n-1}$	$\alpha_s^n L^{2n-2}$		$\mathcal{O}(\alpha_s^n)$	(N^nLO)
LL	NLL	NNLL			

- Ratio of two successive rows: $\mathcal{O}(\alpha_s L^2)$
- improved expansion
 - reorganization of the terms into towers of logs
 - all-order summation of the terms in each class
- key-point: exponentiation

 $\sigma^{res} \sim \exp\left[Lg_1(\alpha_s L) + g_2(\alpha_s L) + \alpha_s g_3(\alpha_s L) + \dots\right]$

• Ratio of two successive columns: O(1/L)

Exponentiation

The observable must fulfill factorization properties both for

- dynamics (matrix element)
 - → in the soft limit, multigluon amplitudes fulfill generalized factorization formulae given in terms of single gluon emission probability

• kinematics (phase space)

→ usually factorizable working in *conjugate space*

$$egin{array}{rl} \delta^{(2)}(q_T-q_{T1}-\cdots-q_{Tn})&=&\int d^2b\;e^{ib\cdot q_T}\;\Pi_i\;e^{ib\cdot q_T}\ \log(Q^2/q_T^2)& o&\log(Q^2b^2) \end{array}$$

ightarrow generalized exponentiation of single gluon emission

[Collins, Soper, Sterman 1985]

The resummed result has to be properly matched with the fixed-order calculation to avoid double counting

$$\sigma = \sigma^{\textit{res}} + \sigma^{\textit{fix}} - \sigma^{\textit{asym}}$$

where σ^{asym} = expansion of resummed result to same order

- $q_T \ll Q$: $\sigma^{\textit{fix}} \sim \sigma^{\textit{asym}} \rightarrow \sigma = \sigma^{\textit{res}}$
- $q_T > Q$: $\sigma^{res} \sim \sigma^{asym} \rightarrow \sigma = \sigma^{fix}$
- intermediate q_T : matching $\rightarrow \sigma$

Drell-Yan at NNLL+NLO (BOZZI, Catani, deFlorian, Ferrera, Grazzini (10))

- Normalized q_T distribution
- Scales fixed to Z mass
- Uncertainty dominated by Q variation \rightarrow
- → Good agreement with Run II D0 data
- Experimental errors are smaller than theoretical uncertainty
- most accurate QCD perturbative prediction for W and Z

giuseppe bozzi (milano u.)

And now some plots...

æ

W production - Lepton Transverse Momentum

giuseppe bozzi (milano u.)

2nd W Mass Workshop

Fermilab, 04,10,2010

W production - Lepton Transverse Momentum

W production - Lepton Rapidity

giuseppe bozzi (milano u.)

2nd W Mass Workshop

Fermilab, 04.10.2010 27 / 34

W production - Lepton Rapidity

Fermilab, 04.10.2010 28 / 34

A D N A P N A D N A D

W production - Missing Transverse Momentum

giuseppe bozzi (milano u.)

2nd W Mass Workshop

Fermilab, 04.10.2010 29 / 34

W production - Transverse Mass

giuseppe bozzi (milano u.)

2nd W Mass Workshop

W production - Transverse Mass

Fermilab, 04.10.2010 31 / 34

W production - W Transverse Momentum

Ratio $p_{T,W}/p_{T,Z}$

giuseppe bozzi (milano u.)

Fermilab, 04.10.2010

33/34

イロト イヨト イヨト イヨト

• you for listening

- authors of the different codes for providing numerical results
- Milano PC Farm for providing enough CPU-power
- Naperville Starbucks for providing
 - → free wi-fi
 - \rightarrow comfortable sofa
 - → relaxing music
 - \rightarrow crazy amount of caffeine

for the preparation of these slides

- you for listening
- authors of the different codes for providing numerical results
- Milano PC Farm for providing enough CPU-power
- Naperville Starbucks for providing
 - → free wi-fi
 - \rightarrow comfortable sofa
 - → relaxing music
 - \rightarrow crazy amount of caffeine

for the preparation of these slides

.

- you for listening
- authors of the different codes for providing numerical results
- Milano PC Farm for providing enough CPU-power
- Naperville Starbucks for providing
 - → free wi-fi
 - \rightarrow comfortable sofa
 - → relaxing music
 - \rightarrow crazy amount of caffeine

for the preparation of these slides

- you for listening
- authors of the different codes for providing numerical results
- Milano PC Farm for providing enough CPU-power
- Naperville Starbucks for providing
 - \rightarrow free wi-fi
 - → comfortable sofa
 - → relaxing music
 - \rightarrow crazy amount of caffeine

for the preparation of these slides