
08/03/18

1

Computational Physics Laboratory���
Python scripting

LECTURE 1

BASIC CONCEPTS

CONTROL STRUCURES

Outline

•  What is Python ?

•  Running Python

•  Simple operations

•  Strings, integers, floats & type conversions

•  Input/Output

•  Variables

•  Booleans

•  Comparison

•  If, else & elif statements

•  While

08/03/18

2

print(“Hello, world!”)

from sympy import *
from sympy.abc import x
import numpy as np
import matplotlib.pyplot as plt

from scipy.integrate import ode # Standing on the shoulders of giants!
m = 1
g = 9.8

L = 1
V = m*g*L*(1-cos(x)) # potential energy
F = -diff(V,x) # force via symbolic differentiation!
a = F/m # acceleration

def f(t,position): # function: [x,v]->[v,a]
 return [position[1], a.evalf(subs={x: position[0]})]
solver = ode(f).set_integrator('dopri5') # 4th order Runge-Kutta solver

instants = 200
t = np.linspace(0.01, 7, instants)
plt.figure(1)
plt.grid()

plt.xlabel('Position [m]')
plt.ylabel('Velocity [m/s]')
for j in range(6):
 start = [(j+1)/2, 0.] # initial value

 solver.set_initial_value(start)
 r = np.zeros(instants)
 v = np.zeros(instants)

 for i in range(instants):
 r[i] = solver.integrate(t[i])[0]
 v[i] = solver.integrate(t[i])[1]
 plt.plot(r,v)

plt.show()

Example: Ordinary Differential Equation numerical integrator

with symbolic calculus

and plot of trajectories in the phase space

08/03/18

3

What is Python ?

•  Python is a high-level programming language, with

applications in numerous areas, including scientific
computing, machine learning, artificial intelligence,
scripting , quantum computing, and web programming.

•  It is very popular and used by organizations such as
Google, NASA, etc.

•  Python is processed at runtime by the interpreter, which is
is a program that runs scripts. There is no need to compile
your program before executing it.

What is Python ?

•  Python is an easy to learn. It has efficient high-level data

structures and a simple but effective approach to object-
oriented programming.

•  Python’s elegant syntax and dynamic typing, together with
its interpreted nature, make it an ideal language for
scripting and rapid application development in many areas
on most platforms.

•  Python is also suitable as an extension language for
customizable applications.

08/03/18

4

Welcome to Python!

•  The three major versions of Python are 1.*, 2.* and 3.*.

These are subdivided into minor versions, such as 2.7 and
3.6.

•  Code written for Python 3.* is guaranteed to work in all
future versions.

•  Both Python Version 2.* and 3.* are used currently.

•  This course covers Python 3.*, but it isn't hard to change

from one version to another.

•  Python has several different implementations … we will use

the Intel Python 3

Running Python

•  Interactive mode in a Python shell:

•  Interactive mode with IPython:

08/03/18

5

Running Python

•  Jupiter notebook (Ipython in a browser):

Running Python

•  Turn your python script into a unix script:

•  Use of a script:

08/03/18

6

Your First Program

•  Let's start off by creating a short program that displays

"Hello world!".

•  In Python, we use the print statement to output text:
>>> print('Hello world!')
Hello world!
•  Congratulations! You have written your first program …

•  Note the >>> in the code above. They are the prompt

symbol of the Python console/shell. Python is an
interpreted language, which means that each line is
executed as it is entered.

•  To exit from the Python console type:

>>> exit()

Simple operations

•  Python has the capability of carrying out calculations.

•  Enter a calculation directly into the Python console, and it

will output the answer.
>>> 5 + 4 - 3
6
•  Python also carries out multiplication and division, using an

asterisk to indicate multiplication and a forward slash to
indicate division.

•  Use parentheses to determine which operations are
performed first.

>>> 2 * (3 + 4)
14
>>> 10 / 2
5.0

08/03/18

7

Simple operations

•  The minus sign indicates a negative number.

>>> (-7 + 2) * (-4)
20
•  Dividing by zero in Python produces an error, as no answer

can be calculated.

>>> 11/0
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
•  In Python, the last line of an error message indicates the

error's type.

•  Read error messages carefully, as they often tell you how

to fix a program/script!

Floats

•  Floats are used in Python to represent numbers that aren't

integers. Some examples of numbers that are represented
as floats are 0.5 and -7.8237591.

•  They can be created directly by entering a number with a
decimal point, or by using operations such as division on
integers. Extra zeros at the number's end are ignored.

>>> 3/4
0.75
>>> 9.8765000
9.8765
•  Computers can't store floats perfectly accurately, in the

same way that we can't write down the complete decimal
expansion of 1/3 (0.3333333333333333...). Keep this in
mind, because it often leads to infuriating bugs!

08/03/18

8

Floats

•  A float is also produced by running an operation on two

floats, or on a float and an integer.

>>> 6 * 7.0
42.0
>>> 4 + 1.65
5.65

•  A float can be added to an integer, because Python silently
converts the integer to a float.

•  However, this implicit conversion is the exception rather
the rule in Python - usually you have to convert values
manually if you want to operate on them.

Exponentiation

•  Besides addition, subtraction, multiplication, and division,

Python also supports exponentiation, which is the raising of
one number to the power of another. This operation is
performed using two asterisks.

>>> 2**5
32
>>> 9 ** (1/2)
3.0

08/03/18

9

Quotient & Remainder

•  To determine the quotient and remainder of a division, use

the floor division and modulo operators, respectively

•  Floor division is done using two forward slashes

•  The modulo operator is carried out with a percent symbol

(%)

>>> 20 // 6
3
>>> 1.25 % 0.5
0.25

•  These operators can be used with both floats and integers

Strings

•  If you want to use text in Python, you have to use a

string. A string is created by entering text between two
single or double quotation marks.

•  When the Python console displays a string, it generally
uses single quotes. The delimiter used for a string doesn't
affect how it behaves in any way

>>> "Python is fun!"
'Python is fun!'
>>> 'Always look on the bright side of life'
'Always look on the bright side of life'
•  Some characters can't be directly included in a string. For

instance, double quotes can't be directly included in a
double quote string; this would cause it to end
prematurely.

08/03/18

10

Strings

•  Characters like these must be escaped by placing a

backslash before them.

•  Other common characters that must be escaped are

newlines and backslashes.

•  Double quotes only need to be escaped in double quote

strings, and the same is true for single quote strings.

>>> 'Brian\'s mother: He\'s a naughty boy!'
'Brian's mother: He's a naughty boy!’

•  Backslashes can also be used to escape tabs (\t), arbitrary
Unicode characters, and various other things that can't be
reliably printed. These characters are known as escape
characters.

Strings

•  \n represents a new line

•  Python provides an easy way to avoid manually writing \n

to escape newlines in a string. Create a string with three
sets of quotes, and newlines that are created by pressing
Enter are automatically escaped for you.

>>> """Customer: Good morning.
Owner: Good morning, Sir. Welcome to the
National Cheese Emporium."""
'Customer: Good morning.\nOwner: Good morning,
Sir. Welcome to the National Cheese Emporium.'

•  As you can see, the \n was automatically put in the
output, where we pressed Enter.

08/03/18

11

Output

•  Usually, programs take input and process it to produce

output.

•  In Python, you can use the print function to produce

output. This displays a textual representation of something
to the screen.

>>> print(1 + 1)
2
>>> print("Hello\nWorld!")
Hello
World!

•  When a string is printed, the quotes around it are not
displayed.

Input

•  To get input from the user in Python, you can use the

intuitively named input function.

•  The function prompts the user for input, and returns what

they enter as a string (with the contents automatically
escaped).

>>> input("Enter something please: ")
Enter something please: This is what\nthe user
enters!
'This is what\\nthe user enters!’

•  The print and input functions aren't very useful at the
Python console, which automatically does input and output.
However, they are very useful in actual programs and
scripts.

08/03/18

12

Concatenation

•  As with integers and floats, strings in Python can be added,

using a process called concatenation, which can be done on
any two strings.

•  When concatenating strings, it doesn't matter whether
they've been created with single or double quotes.

>>> "Spam" + 'eggs'
'Spameggs'

>>> print("First string" + ", " + "second string")
First string, second string

Concatenation

•  Even if your strings contain numbers, they are still added

as strings rather than integers. Adding a string to a
number produces an error, as even though they might look
similar, they are two different entities.

>>> "2" + "2"
'22'
>>> 1 + '2' + 3 + '4'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str’

•  In future slides, only the final line of error messages will
be displayed, as it is the only one that gives details about
the type of error that has occurred.

08/03/18

13

String Operations

•  Strings can also be multiplied by integers. This produces a

repeated version of the original string. The order of the
string and the integer doesn't matter, but the string
usually comes first.

>>> print("spam" * 3)
spamspamspam
>>> 4 * '2'
'2222'

•  Strings can't be multiplied by other strings. Strings also
can't be multiplied by floats, even if the floats are whole
numbers.

>>> '17' * '87'
TypeError: can't multiply sequence by non-int of type 'str’
>>> 'pythonisfun' * 7.0
TypeError: can't multiply sequence by non-int of type 'float'

Type Conversion

•  In Python, it's impossible to complete certain operations

due to the types involved. For instance, you can't add two
strings containing the numbers 2 and 3 together to produce
the integer 5, as the operation will be performed on
strings, making the result '23'.

•  The solution to this is type conversion.

•  In the following example, you would use the int function.

>>> "2" + "3"
'23'
>>> int("2") + int("3")
5
•  In Python, the types we have used so far have been

integers, floats, and strings. The functions used to convert
to these are int, float and str, respectively.

08/03/18

14

Type Conversion

•  Another example of type conversion is turning user input

(which is a string) to numbers (integers or floats), to allow
for the performance of calculations.

>>> float(input("Enter a number: ")) +
float(input("Enter another number: "))

Enter a number: 40
Enter another number: 2
42.0

•  What is the output of this code?

>>> float("210" * int(input("Enter a number:")))
Enter a number: 2

•  Answer: 210210.0

Variables

•  Variables play a very important role in most programming

languages, and Python is no exception. A variable allows
you to store a value by assigning it to a name, which can
be used to refer to the value later in the program.

•  To assign a variable, use one equals sign. Unlike most lines
of code we've looked at so far, it doesn't produce any
output at the Python console.

>>> x = 7
>>> print(x)
7
>>> print(x + 3)
10

•  You can use variables to perform corresponding operations,
just as you did with numbers and strings. As you can see,
the variable stores its value throughout the program.

08/03/18

15

Variables

•  Variables can be reassigned as many times as you want, in

order to change their value.

•  In Python, variables don't have specific types, so you can

assign a string to a variable, and later assign an integer to
the same variable.

>>> x = 123.456
>>> print(x)
123.456
>>> x = "This is a string"
>>> print(x + "!")
This is a string!

Variable names

•  Certain restrictions apply in regard to the characters that

may be used in Python variable names. The only characters
that are allowed are letters, numbers, and underscores.
Also, they can't start with numbers.

•  Not following these rules results in errors.

>>> this_is_a_normal_name = 7

>>> 123abc = 7
SyntaxError: invalid syntax

>>> spaces are not allowed
SyntaxError: invalid syntax

•  Python is a case sensitive programming language. Thus,
Lastname and lastname are two different variable names
in Python.

08/03/18

16

Variables

•  Trying to reference a variable you haven't assigned to

causes an error.

>>> foo = "a string"
>>> foo
'a string'
>>> bar
NameError: name 'bar' is not defined

•  You can use the del statement to remove a variable, which

means the reference from the name to the value is deleted,
and trying to use the variable causes an error. Deleted
variables can be reassigned to later as normal.

>>> del foo
>>> foo
NameError: name 'foo' is not defined

Variables

•  You can also take the value of the variable from the user

input.

>>> foo = input("Enter a number: ")
Enter a number: 7
>>> print(foo)
7
•  … but, of course, no check is done on the input type:
>>> foo = input("Enter a number: ")
Enter a number: dog
>>> print(foo)
dog

08/03/18

17

In-place operators

•  In-place operators allow you to write code like x = x + 3

more concisely, as x += 3

•  The same thing is possible with other operators such as -,

*, / and % as well.

>>> x = 2
>>> x += 3
>>> print(x)
5

These operators can be used on types other than numbers, as
well, such as strings.
>>> x = "spam”
>>> x += "eggs"
>>> print(x)
spameggs

•  Many other languages have special operators such as ++ as
a shortcut for x += 1 . Python does not have these.

Using an editor

•  So far, we've only used Python with the console, entering

and running one line of code at a time.

•  Actual programs/scripts are created differently; many lines
of code are written in a file, and then executed with the
Python interpreter.

•  Python source files have an extension of .py

•  As seen in the first examples, Python programs/scripts can
be executed at the shell prompt by entering:

python script.py

08/03/18

18

Booleans

•  Another type in Python is the Boolean type. There are two

Boolean values: True and False.

•  They can be created by comparing values, for instance by

using the equal operator ==

>>> my_boolean = True
>>> my_boolean
True
>>> 2 == 3
False
>>> "hello" == "hello"
True

•  Be careful not to confuse assignment (one equals sign) with
comparison (two equals signs).

Comparison

•  Another comparison operator, the not-equal operator != ,

evaluates to True if the items being compared aren't
equal, and False if they are

>>> 1 != 1
False
>>> "eleven" != "seven"
True
>>> 2 != 10
True

•  Python also has operators that determine whether one
number (float or integer) is greater-than or smaller-than
another. These operators are > and < respectively.

>>> 7 > 5
True
>>> 10 < 10
False

08/03/18

19

Comparison

•  The greater-than-or-equal-to, and smaller-than-or-equal-

to operators are >= and <=

•  They return True when comparing equal numbers.

>>> 7 <= 8
True
>>> 9 >= 9.0
True

•  Greater-than and smaller-than operators can also be used
to compare strings lexicographically (the alphabetical order
of words is based on the alphabetical order of their
component letters).

>>> 'a' < 'b'
True
>>> 'professor' > 'student'
False

if statements & indentation

•  You can use if statements to run code if a certain

condition holds.

•  If an expression evaluates to True, some statements are

carried out. Otherwise, they aren't carried out.

•  An if statement looks like this:

if expression:
 statements

•  Python uses indentation (white space at the beginning of a
line) to delimit blocks of code.

•  Other languages, such as C, use curly braces to accomplish
this, but in Python indentation is mandatory; programs
won't work without it. As you can see, the statements in
the if should be indented

08/03/18

20

if statements

•  Here is an example if statement:

if 10 > 5:
 print("10 greater than 5”)
print("Program ended")

The expression determines whether 10 is greater than five.
Since it is, the indented statement runs, and "10 greater than
5" is output. Then, the unindented statement, which is not
part of the if statement, is run, and "Program ended" is
displayed. Result:

>>>
10 greater than 5
Program ended
>>>

Notice the colon at the end of the expression in the if
statement.

if statements

•  To perform more complex checks, if statements can be

nested, one inside the other.

•  This means that the inner if statement is the statement

part of the outer one. This is one way to see whether
multiple conditions are satisfied. For example:

num = 12
if num > 5:
 print("Bigger than 5")
 if num <= 47:
 print("Between 5 and 47”)

Result:

>>>
Bigger than 5
Between 5 and 47
>>>

08/03/18

21

else statements

•  An else statement follows an if statement, and contains

code that is called when the if statement evaluates to
False.

•  As with if statements, the code inside the block should be
indented.

x = 4
if x == 5:
 print("Yes")
else:
 print("No”)

Result:

>>>
No
>>>

else statements

•  You can chain if and else statements to determine which

option in a series of possibilities is true. For example:

num = 7
if num == 5:
 print("Number is 5")
else:
 if num == 11:
 print("Number is 11")
 else:
 if num == 7:
 print("Number is 7")
 else:
 print("Number isn't 5, 11 or 7”)

Result:

>>>
Number is 7
>>>

08/03/18

22

elif statements

•  The elif (short for else if) statement is a shortcut to use

when chaining if and else statements. A series of if
elif statements can have a final else block, which is
called if none of the if or elif expressions is True .

num = 7
if num == 5:
 print("Number is 5")
elif num == 11:
 print("Number is 11")
elif num == 7:
 print("Number is 7")
else:
 print("Number isn't 5, 11 or 7”)

Result:

>>>
Number is 7
>>>

Boolean logic

•  Boolean logic is used to make more complicated conditions

for if statements that rely on more than one condition.

•  Python's Boolean operators are and, or, and not.

•  The and operator takes two arguments, and evaluates as
True if, and only if, both of its arguments are True.
Otherwise, it evaluates to False.

>>> 1 == 1 and 2 == 2
True
>>> 1 == 1 and 2 == 3
False
>>> 1 != 1 and 2 == 2
False
>>> 2 < 1 and 3 > 6
False

•  Python uses words for its Boolean operators, whereas most
other languages use symbols such as &&, || and !

08/03/18

23

Operator Precedence

•  Operator precedence is a very important concept in

programming. It is an extension of the mathematical idea
of order of operations (multiplication being performed
before addition, etc.) to include other operators, such as
those in Boolean logic.

•  The below code shows that == has a higher precedence
than or:

>>> False == False or True
True
>>> False == (False or True)
False
>>> (False == False) or True
True

•  Python's order of operations is the same as that of normal
mathematics: parentheses first, then exponentiation, then
multiplication/division, and then addition/subtraction.

•  The following table lists all of Python's operators, from
highest precedence to lowest.

08/03/18

24

while loops

•  The statements inside a while statement are repeatedly

executed, as long as the condition holds. Once it evaluates
to False, the next section of code is executed. The code in
the body of a while loop is executed repeatedly. This is
called iteration

•  Below is a while loop containing a variable that counts up
from 1 to 5, at which point the loop terminates.

i = 1
while i <=5:
 print(i)
 i = i + 1

print("Finished!”)

Result:

>>>
1
2
3
4
5
Finished!
>>>

while loops

•  The infinite loop is a special kind of while loop; it never

stops running. Its condition always remains True.

•  An example of an infinite loop:

while 1==1:
 print("In the loop")

•  This program would indefinitely print "In the loop”

•  You can stop the program's execution by using the Ctrl-C
shortcut or by closing the program.

08/03/18

25

break

•  To end a while loop prematurely, the break statement can

be used.

•  When encountered inside a loop, the break statement

causes the loop to finish immediately.

i = 0
while 1==1:
 print(i)
 i = i + 1
 if i >= 5:
 print("Breaking")
 break

print("Finished")

•  Using the break statement outside of a loop causes an
error.

Result:

>>>
0
1
2
3
4
Breaking
Finished
>>>

continue

•  Another statement that can be used within loops is
continue. Unlike break, continue jumps back to the
top of the loop, rather than stopping it

•  Basically, the continue statement stops the current
iteration and continues with the next one.

i = 0
while True:
 i = i +1
 if i == 2:
 print("Skipping 2")
 continue
 if i == 5:
 print("Breaking")
 break
 print(i)
print("Finished”)

Result:

>>>
1
Skipping 2
3
4
Breaking
Finished
>>>

•  Using the continue statement
outside of a loop causes an error.

08/03/18

26

Suggested books & material

Hans Petter Langtangen:

–  A Primer on Scientific Programming with Python

–  Python Scripting for Computational Science

51

