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Abstract
This note describes the use of VEGAS - a new program for
multi-dimensional integration. The theoretical considerations
Teading tb VEGAS are briefly described. A Fortran listing of
the program is included together with detailed directions on

its use.
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I. Understanding VEGAS

VEGAS estimates the integral (9 = rectangular integration volume)
I= [ d"x £(x) | (1)
2

. . _ N
by computing the integrand at N random points, {?i}l, in £ and forming the

~
~.

weighted average

| N f(X.)
1=s=%[ e (2)
i=] p(xi)
The random points are chosen in @ with density p(X), which will be discussed

' m
below (denx p(X) = 1). VEGAS makes m estimates of the integral, {Sa}a=1’

each using N evaluations of the integrand Eq. (2)}). These m estimates are

combined to give a cumulative estimate S:
- L,
1=8=0"] 35 (3)
o Oy

where o, is the approximate uncertainty in Sa as an estimate of I:

2,>
2.1 18 T
o N-i

1

and where ¢ is the approximate uncertainty in S:

| 1
= g (—IE . (5)
o

al,|—

VEGAS also determines whether or not the various estimates are consistent,

one with the other, by computing the XZ per degree of freedom (Xz/dof):._

i
Xjdof = o p (6)

When the algorithm is working properly, one expects a XZ/dof not much.
greater than one, since (Su-§)2 u 0(05 ). Otherwise, the various Sa do

not agree "within errors".
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If N is made sufficiently large and if f(?) is square integrable, the
Central Limit Theorem implies that the distribution of S 'S about I becomes

Gaussian. Then Egs. (3) and (5) are vaiid, and S is a reliable estimate of

I--i.e.
[S-1| < & ‘with 68% confidence
<2 with 95% confidence )
etc;

" The ¥ /dof (Eq. (6)) tests to some extent whether the distribution 15‘
-Gauss1an-—x Jdof >> 1 1mp11es a dec1ded1y non-Gaussian d1str1but10n of S 's,
in which case |S-1| may be substant1a11y larger than o. The minimum number

NN

of po1nts (N) required per iteration is h1gh1y dependent upon the lntegrand
and is usually determined emp1r1ca1]y Smooth 1ntegrands require fen‘601nts,
- integrands with high, narrow peaks or with many fluctuatuions in sign
require more. . |

When f(?) is integrable, but not square integrable, S may still converge
to I. However the error estimates are completely unreliable, in general
being tooc small.

In the simp]ese form of Monte Carlo integration, the random integra- .
tion points are uniformly distributed--i.e., p(;) = constant. In VEGAS,
the density p(x) is modified so as to minimize o {Eq. (4)). Uniform}y‘
distributed random points are employed in the first iteration of the inpe—
gration a]gorithm (i.e., in determining S]). The information gained about

£(X) in this first sampling is used to define a new density p'(X) which

reducesuoi in the next iteration (for Sé). After each subsequent iteration,"'

p(X) is again refined for use in the next. In this fashion,'di'is

gradUa11y reduced over several iterations {even though N = constant), and the
i IR
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estimates S of the integral are progressively improved.

Theoretically, qf is minimized when

> f ; | :
- IU-—U— (8)
P d"x| £(%)| |

--that is when sample points {ﬁ}}\are concentrated where the integrand is
largest in magnitude. In VEGAS, this ideal is approximated by dividing

the integration volume into hypercubes using a rectangular grid:

w T

“—— HYPERCURES
O : - ot

(-4}

- 2%

.Random points are distributgd so that the average number of pointélfailing

in any given hypercube is the same as in any other. {In high dimensions
this.average is much less one, since the numbef of hypercubes,fbsoﬁ).is much
greater than N). From iteration to iteration, the increment sizes.on each
axis are adjusted so as to concentrate hypercubes {and therefore sampie points)
in the regions where ]f(?)[ is Targest. For example, if f{x,y) has a high

peak in x and y at the origin, the optimal grid might be:

v T

A0 PRI VI N MR R




while if the integrand peaks in x at x = 1/2 but is smooth in y, the most
efficient grid might resemble:

¥

- %
Thus ovér several iterations, VEGAS adjugts the density of pofntﬁ, fo suit
the integrand, by varying the increment sizes along each axis. This
readjustment continues until the optimal grid is obtained (i.e., the one most
similar to (8)), beyond which point g, ceases to decrease with each iteration

_(though'g continues to decrease, now falling like ~1//Nm as better statistics
accumulate).

A more detailed description of the a]gérithm used in VEGAS and the
theory behind it is given in G. P. Lepage, J. Comp. Phys. 27, 192 (1978).
Note that the modification discussed in the Appendix of this reference has
been incorporated into VEGAS, thereby substantially impréving its efficiency

3

in low dimensions (n=1,...,4).
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II. Using VEGAS
A. Input
Subroutine VEGAS is written in standard Fortran (see Appendix).  VEGAS
is called by the statements: .

EXTERNAL FXN

CALL VEGAS{NDIM,FXN,AVGI,SD,CHIZA)

where the input variables are

NDIM - n, the number of dimensions (5_10);

FXN - Fortran name of the function subprogfam which computes the

integrand f(X).

The output variables are {double precision) }

AVGI - S, the cumulative estimate of the integral Gq.'(3));

SD - o, the standard deviation of S from I (Eq. (5));

CHI2A - XZ per degree of freedom (Eq. (6)).

Several other_parameters can be set before éa]?ing VEGAS. These are

contained in common block BVEGI:

COMMON/BVEGT/NCALL,ITMX,NPRN,NDEV,XL(10),XU(]O),ACC
Each of these variables has a default value (set in the BLOCK DATA sub-

program). If any of these defaults is to be overridden, this COMMON card

<

must be included in the calling program. The paramenters are defined as. -

follows (defaults are in []):
NCALL - N, the approximate number of integrand evaluations per
iteration [5000];

ITMX - m, the maximum number of iterations [5];
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NPRN > 0 integral, standard deviation, xzand grid information are
printed (on unit NDEV) for each iteration; ‘)

=0 integral, standard deviation and x2 are printed for each
iterafion; '

< 0 nothing is printed;by VEGAS;
(see Section II.B) [51;

NDEV - Fortran device number for output from VEGAS.[6];

XL(I) - lower integration 1imit on I;th'axis [0.];

XU(I}) - upper integration 1imit on I—th axis [1;]-

ACC - aTgorlthm stops when the relative accuracy, |SD/AVGI|, is less

than ACC; accuracy is not checked when ACC < 0; [-1.71;
The integrand is encoded as a function subprogram:
FUNCTIGN FXN(X,WGT)
DOUBLE PRECISION X(10), WGT, FXN

FXN = ... Integrand value at point (X(I); I=1, NDIM)
RETURN |

END

Note that integration over regions 2 which are not rectangular is made
possible by embedding  in a rectangular region (sSpecified by XL,XU) and
setting FXN to zero for points X(I) lying outside . ]

The user must a?sd provide a random number generator:

SUBROUTINE RANDA(N,RAND)

where (RAND(I),I=1,N) are random numbers (single precision) between 0 and 1.
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B. Output
An estimate of the integral averaged over all ‘iterdtions (AVGI), its
standard deviation {SD) from the exact value, and-ﬁﬁé*xaiﬂﬁéﬁ(CﬂTZA) are
always returned to the calling program. In addition, if NPRN > 0, ‘the
fo110w{ng information is printed out for each iteraction’(on the' Fortran
unit specified by NDEV): |
INTEGRAL - the integral as estimated fr0m~thét:ite?a£ion alone
| (Sy» Eq. {2)), and the estimate averaged over all
iterations up to that point (S, Eq. (3)):
STD DEV - the standard deviations for these-eStimates of the
integral (ca, EEIEqs. (4), (5));
CHI**2 PER IT'N - the x?/dof for all iterations up to that point
(Eq. (6)).
The input parameters are also listed, at the beginning. When NPRN > 1,
information about the grid used is also printed for each iteratibn. The
following details are tabulated for each axis:
X - locations along the axis of axis divisions defining the grid;
these are normalized to 1ie between 0 and 1;

‘DELT I - contribution AI to the total integral coming from the increment
to the left of X; thus ) AI = I when the sum is over all
increments on any single axis.

This information is printed for every NPRN-th increment on an axis;

NPRN=1 implies information is printed for all increments.

In




Finally, note that integration information from the 1ast rtEr;tion.of
VEGAS is always contained in common block BVEGS: |
. COMMON/BVEG4/CALLS,T1, TSI . o | - |
where
CALLS = the number of integratjon'pbﬁn%s‘uSed'in that iteratfon;
TI ’ \

the integral as estimated from that iteration alone;

TSI

the standard deviation of this estimate from the exact value.

=
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C. Multiple Entry Points

The integration algdrithm can be called in four whys, eaéﬁ dffferfng
from the other in the grid used for the first iteratjon (i.e., in the
distribution of random points) and/or in the initial va]ugs?of the cumulativé_
variables (i.e., iteration number, cumulative estimate of thg integral, etc.).
Each is called in the same fashion:
CALL  VEGAS (NDIM;?XN,AVGI,SD,CHIZA)

VEGAS?

VEGAS?2

VEGAS3
The function of each is as follows:
VEGAS - sets all cumulative variables to zero before bégidning‘the first -
iteration, and uses a uniform grid for that iteration. This is the boutihé.ﬂﬁ 
normally called (see Section II.A).
VEGAS1 - sets all cumulative variables to zero before fhé'first'itbratiqﬁ,:
but does not initialize the grid. The grid last used by VEGAS is employed in,i
the first iteration. For example, consider: B l_.{ 

COMMON/BVEGT /NCALL,ITMX,...
EXTERNAL F1, F2

ITMX = 5
CALL VEGAS (NDIM,F1,ANST,ERRI,CHIST)

ITMX = 2

CALL VEGAST(NDIM,F2,ANS2,ERR2,CHIS2) :
Here the integral of F1 is evaluated in the usual fashion; the grid.ﬁgapiﬁl
to the integrand over five iterafions. The grid generated:for ?1 1nfthé;i'
iteration (i.e., the fifth) of VEGAS is used in the first iteration‘ofiﬂﬁﬁf

VEGAST, which estimates the integral of F2. If F2 is similar in‘strﬁctuf{ﬁ




[

to Fl, far fewer iterations are requ1red for VEGAS1 s1nce the- start1ng grid

is close to opt1ma1 As another example, consider:

ITMX = 10

NCALL = 2000

CALL VEGAS (NDIM,FXN,AVGI,SD,CHIZA)

ITMX =

NCALL = 100000

CALL VEGAST(NDIM,FXN,AVGI,SD,CHI2A)}
Here the integral of FXN is estimated in fifteen iterations--the first ten
useéOQO integratiqn points per itera;jon; the last Five use 1:00,000 points
per iteration. Since errors tend to be large until the optimal: grid is found,
it is desirable to use as few integration poimts.aérpoSsibTe ianihﬁﬁng it.
In this example, the hope is that the optimal grid can-be determined in
the first ten iterations, using a total,of only 20,000, integrand evaluat1ons
Then NCALL is increased to obtain thé desired precision in the Tast f1ve
iterations. The final estimate of the integral (AVGI) from VEGAST depends
only upon the last five iterations (in this example); aside from tﬁe grid,
all information generated in the first ten itérations of VEGAS is discarded{

Fina]]y, note that any of the parameters discussed in Section'II.A can

be modified before calling VEGAS].

VEGASZ - Initializes neither the grid nor the cumulative var1abTes 'Ih :f:ﬁ;'

the following example
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- COMMON/BVEGT/NCALL ,ITMX,NPRN,. ..

EXTERNAL F
NPRN = -1

ITMX = 5 |
NCALL = 1000

CALL VEGAS{NDIM,F,AVGI,SD,CHI2A)

NPRN = 1 RS

It

ITMX = 3 R
NCALL = 10**6 Y
CALL VEGAS2({NDIM,F,AVGI,SD,CHI2A) |
‘the integral of F is determined in eight iterations--five with 1000 points,
three with 1,000,000 points. As in the examples above, the final grid from
VEGAS is used as a starting point in VEGAS2. The difference here is that
the final estimate of the integral (AVGI from VEGAS2) is an average over all
eight iterations; estimates from the f]PSt five iterations are not d1scarded
as they would be were VEGAS] used in p]ace of VEGASZ2. In VEGASZ, the
integration algorithm picks up where VEGAS left off and continues as if

there had been no interruption. Finally, any of the parameters discussed

in Section II.A can again be modified before calling VEGASZ.

VEGAS3 - No initialization; main integration loop only. VEGAS3 can be
used if the calling program is to examine results of each single iteration,

as they are generated. For example, the following code

R e Tt DA O YV AT TP T Y AT
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ITMX = 1
CALL VEGAS (NDIM,F,AVGI,SD,CHIZ2A)
po1I=1,9

-

-

CALL VEGAS3(NDIM,F,AVGI,DS,CHIZA)

1 CONTINUE
is equivalent to a single call to VEGAS with ITMX = 10, except that control

is returned to the calling program after each iteraction. Control

parameters (Section II.A) should not be modified after VEGAS {and before

VEGAS3) is called.
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D. Saving Grid Information

)

Complete information about the grid and about cumulative variables

is contained in common block BVEGZ:

COMMON/BVEGZ/IT,NDO,SI,SWGT,SCHI,XI(SO,]O)

where
iT - number of iterations éomp!eted; ;
NDO - number of subdivisions on an axis;
iT Sa
SI - 1=
1 oq4
IT 1
SWGT - Z >
1 oy
IT 52
SCHI - z—ﬁ‘iz
i O,
XI(I,Jd) -~ 1location of the I-th division on the J-th axis, normalized -

to lie between 0 and 1.

This information can be stored for later use. For example, if the contents
of BVEG2 have been stored on Fortran unit 9, VEGAS can be restarted as
follows:

READ{9)IT,NDO,SI,SWGT,SCHI,XI

ITMX = IT + 5

NCALL = 50000

CALL VEGASZ2{NDIM,FXN,AVGI,SD,CHIZA)}

Here five additional iterations are combined with the earlier results to pro-

vide a new and hopefully improved estimate of the integral. If only the grid

is needed in future, NDO and XI(I,J) should be saved. The grid is then used )

as thé starting point for the first iteration in VEGAS as follows (for exampIe):

READ(9)NDO,XI
ITMX = 5
NCALL = 1000

CALL VEGAS1(NDIM,FXN,AVGI,SD,CHI2A)

I8 1IN 1R 1N RN T AR T Y RTINS T O
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E. Computing Distributions; Integrating Vectors

' VEGAS can be employed to simultaneously compute any number of arbitrary

distributions of the sort

9}1. = [ d"x £(X)8{y-g(X))
Q

.

where :
I
I=deg—y

These are computed in the subprogram which generates the integrand (function
FXN in Section II.A; supplied by the user). With each integration point
supplied to FXN, the probabilistic weight W, = WGT assigned that point is also

supplied. These weights are defined so that the total integral is

-
Wy f(xi) .

-
14
it~ 2=

i=1
"o éStimate“dI/dy'for different values y, the range of y = g{x) (X in''Q) is
divided nto M increments by; with centers y,. Then the contribution to I

toming-from increment ij is just

+
My = 1wy flx;)

g(x)edy,
J

where the sum is over all points ?% such that g(?&) 11é$'within the incre-

ment. Then dI/dy at y = yj is approximated by

di{y. Al
(yJ) 3

dy x ij j=1,...,M

'As an example, consider the integral.
/172 172 .
I = [ dx J dy cos(x2+y)

0

0
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for which the distribution dI/dr with r2 = x2-+y2 is de§ﬁred.; VariébIe r.
ranges from 0 to 1,:_Dividing this range into 20 equal binsw(Arj = 1/20), ah.
appropriate code for the integrand is

FUNCTION FXN(X,WGT)

DOUBLE éRECISION X(Z),WGT,FKN,DI

COMMON DI(20) |

FXN = DCOS(X(1)*%2 + X(2))

R = DSQRT(X(T)**2 + X(2)**2)

Jd = R*20 + ]

#l

DI{J) = DI(J) + WGT*FXN
RETURN
END.

Upen completion of IT iterations, dI/dr at r = (J - 1/2)/20 is approximately

dl 1 DI(Y) ' .
‘r'— IT R 5 J—.l,-..,zo
VEGAS can also be used to simultaneously integrate any number of

functions in addition to f(X). The integral of any ?(?) is estimated by

{2dnx %(i)_:
1'

This sum can be accumulated in subprogram FXN in:much the same manner

-

1=

P 2
] W, f(xi).

distributions are accumiulated.
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-1 “F. -Modifyihg'Internal Parameters

Some add1tﬂona1 parameters controlling VEGAS are conta1ned 1n common

block BVEG3, | | N
COMMON/BVEG3/ALPH , NDMX , MDS

where (default values are in [ 1):

controls the rate at which the grid is modified from

. ALPH -
iteration to iteration; decreas1ng ALPH slows mod1f1cat1on of
. the grid (ALPH 0 1mp1les no mod1f1cat1on) [1.5];
i NDMX ~ determines the maximum number of increments along each axis;
the actual number used varies between NDMX/Z and NDMX [501;
MDS =0 VEGAS uses 1mportance sampling only;

# 0 VEGAS uses importance sampling + stratified samp]1ng,
A "1ncrements are concentrated either where the 1ntegrand is
largest in magnitude (MDS=1), or where the contribution to the
error is 1argest (MDS=—T). The program chooses between these

two strategies--the latter being used only when

T/NDIM
{NCQLL] NDMX . [1]

The array sizes used in VEGAS éan'be modified, if desired. The pfogram;
as presented TU the Appendix, will_iptegrate over as many as ten variables.
Td iﬁcrease (or decrease) this maximum dimension, change every 10 to- the new .
maximum in each of the COMMON, DIMENSION and REAL statements. Similarly thg
maximum number of increments (NDMX) can be increased beyond 50 by replacing
50 in the COMMON/BVEG2/ and DIMENSION statements. Note however that

increasing NDMX beyond 50 rarely results in significant gains in accuracy.
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ITI. Interpreting VEGAS

When the algorithm is working well, S £ ¢ (i.e., AVGI+SD) :is a reliable

estimate of the integral (Eq. (7)). However in certain circumstances care

is required in interpreting output from VEGAS. Among the more common situa-

tions calling for extra care are the following:

a) |Sal grows steadily from iteration to iteration with the XZ/Hof increasing

b) .

_overcorrects the grid for a sharp narrow peak in the integrand. TTHQn,ig_C}:'.'

and much larger than one - If S, grows by orders of magnitudé and faf]s

to level off, the integral is probably divergent. When the.Sa.tend;.to

a finite number, the integral may be finite but not squa?e'ihtegrab]e; :

In thié.]ast case, the Sa may tend to the exact answer, but mhe.error.
estimates will be unreliable. |
ledof (i.e., CHI2A, or 'CHI**2 PER IT'N') much larger than one -

Different iterations are inconsistent, one with the other. : Gemerally =~ "
either NCALL must be increased or the integration variables transformed.

0] as'tq smooth the integrand before VEGAS can be trﬁsted._ However, when_'
the integrand has high narrow peaks, Sa and o, are sometimes badly qnqer4"

estimated in the eartiest iterations, before the algorithm hasﬁadapteaﬁi

If Xz/dof ié small when these iterations are omitted, then the estimate

S + 0 as determined from the later iterations alone is reliable. VEGASI . |

can be employed to omit the early iterations when determining S, o and lf -:' i
X2 (see Section II.C).
Large oscillations in the grid spacings from iteration to 1teration}g   ,gf5 ' -

frequently accompanied by large xzfdof - Upon occasion, VEGASlbadiyfifﬁfft'

if it continues to overcorrect for the overcorrections, the grid can - .

oscillate back and forth for several iterations, This prob]em'can79g3?l
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. by VEGAS, accuracy improves as the square root of the number of integration

may help when f(x) has a large peak at x = 1.
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alleviated by reducing ALPH (Section I1.F), thereby requiring VEGAS to
be'less precipitous in chang1ng the grid, and further damp1ng any osc111a—
tions which do occur. ’

d) . The estimates' S_ repeatedly oscillate in sign - This u‘su'any
indicates that the integrand has two or more large cance111ng peaks
(i.e., fd X lf(x)l >> ‘[d X f(x)) The situation is 1mproved-by increasin
NCALL, -or sometimes by -transforming variables so that large cancé]ling :
peaks become small cancé11ing peaks (e.g., integration region can be
folded over on itsg]f so that much of the cancellation Between peaks is i

- local or point-wise). Needless to say, VEGAS cannot compute .[dnx £(X) 'i

when jdnx [f(z)l =« (e.g., principal value integrations, ...). ' !
Aside from these specific problems, there is the general problem of f

| . o
improving the estimate of the integral. Once the optimal grid has been found

!
points.. So increasing NCALL or ITMX will increase the accuracy of the estlmate.
As mentioned above, another procedure which frequently helps is to change inte-
gration variables so as to smooth out the integrand. The grid informatfon'
printed after each iteration can be used to Tocate peaks in the 1ntegrand

and - s1mple transformations 1ntroduced to reduce them. For examp]e,-the

replacement

1 1 '
[ dx:f(x) -*[ fx) g > 1

8 B-1
0 0 y=x8

LIRS L UL S LR LD L LT TN R D Rt DR el g g ol T M
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ELOCK DATA

FES DEFAULT PARAMETER AIEZIGHNMEMTS FOR VEGAS
IMPLICIT DOUEBLE PRECIZIDOMCA-HsO-20
COMMOM-BYEGL ~HCALL » ITMXs NPENsMDEYs XL <100 » XU (10 s ACC

‘“DNMGHffvErE/ITsHDD’quSMETaSCHIsKI(50:1UJ

£ LN -

fSU

COMMONABYEGZ-ALFHs NDMXs MDS
PATA HEHLL/SGGU/pITNEKSHsHPRN/stHCCK—I.xs
AL 00Ty 0.x0.50, 90, 00,50.50.50. 7
MUrlos1l.21.01.l.0f.s1001 2191, 7y
ALPHAL .5y HMIME-50-+ MDE- 1/ s NDEY <6~y
MDA~ XI-S00¢1 .2 IT-0 - sSIsSWET SCHIA-3#N, ~
END
ZUBRDUTINE WEGHAS CNDIMsFXMsAYGI» EDe CHIZA)

BEROUTINE PERFORME NDIM-DIMENSIOMAL MONTE CRARLD INTEG-N
- BY G.P. LEFAGE TEPT 1976~ (REV>AUG 1979
— ALGORITHM DESERIBED IN O COMP PHYZ 27,192 01978)

IMPLICIT DOUEBLE PRECISION (AH-H»D-2>

COMMON-BEVEGL ~NCALL s ITHY s HPRNsNDEV XL (102 » XU (10> y RCC

COMMON-BYEGE-IT«NIOs 31+ EWGTs SCHI» X1 (S0 102

COMMOM~BEVYEGZ-ALPHs NDMX .« MDS

COMMOMN-BYEGA-CALLESTISTEI

DIMENZION DCS0s 100 »DICSO 102 2 XINCDO0 s RSOV s DE 102 » IACI 0D »
G100 DT (100 2 =100

REAL REAMD 103

IATA OME-L. -

ZERT CAY=DSORT (A

ALOG ¢ =DLOG cA

AE= CRY=DAB% (A2

HOO=1
00 1 J=1>NDIM

%I €1y J2=0ONE ' o "

ENTRY VEGAS1 (NDIM»FXN+AVGIs SDs CHIZAD |
- INITIALIZES CUMMULATIVE YARIAELESs EUT NOT GRID
IT=0
SI=0.
SWET=51
SCHI=SI .

ENMTEY YEBASZ (HDIMs FXMs AYGEI s S0 CHIZAD
- MO IMITIALIZATION

HD=MTIM>

MHiE=1

IFMDE ER, 02 0O TU P

M= (HERLLA2. oo (1. ~HOIMD

MDE=
IF C(2#NG-NDMX> .LT. 0> &0 TO &

MDE=-1
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MHPB=MNEMHDMX+1

MI=M>NFE

MNE=MHFPG+ND

¥=MNEeeNNIM

HPG=NCRLL K

IFHPE.LT. 2> NFG=Z

CRLLE=NFG*K

DEG=0ONE NG

DueruuFHLL?*DVh¢+HDIM)**EfNPGfHPEffHPu-GNE)

#“MI=ND

NItM=MD-—1

DEG=DXG+XMI

X RC=0ONE-CALLS

ng 2 J=1+MDIM _
DEClr=XU < y—X¥L 1 o ‘ _ o o
X IRC=xJRCeDx . D o - '

REEINs PRESERVING EIN DENSITY

IF{HD.EQ.NDOY GO TO 2
EC=HED-»MD

Dp ¥ Jd=1.HT1IM

K=0

k=1,

DR=¥M

I=K

k=k+1

DE=TIR+ONE

HO=%H

HM=HT K. d)
IFIRC.GT.DRY S0 TO 49
I=I+1

hE=hr-RC

AIN LI =MN— (5N-x) «0IF
IFCI.LT.MDMY 200 TO 5
IO s I=1.NDM
HKICIn D =xINI2

HI GG I =0NE

HIMJ=HD

IF cNPRN.GE. 00 WRITE (NDEY«200) NDIMs CALLSs ITs ITMXsACTs NPRN s
1 ALPHs MDS s NDs CAL (1> 5 XU €Y » J=15 NDIM

ENTRY VEGHSZ MI'IMsFXN» H?pr&ﬁsCHIEH}
— MAIN INTEGRATION LOOP

IT=1IT+1

Ti=1. ' P oo

T=I=TI : ‘ s

DO 10 J=1HDIM S

EGcdi=1

D0 10 I=1.ND

Bels d2=T1

DICIsdr=T1
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11 FE=0.

 F2e=FB

K=0

12 K=K+1
CALL RANDACHDIM: RAND>
WET=XJAC
PO 15 J=1,HDIM |
KM= (KE (D —RAND {12 > «DXE+ONE
IR (1Y =%XHN
IFCIALS .6T. 1> B0 TO 12
AD=XILIACI s 0> _ o
RC=CXN~TR (D 2> #X00 - S
50 TO 14 ey
2O0=XI(IACI s J2 =KICIACD —1s 02 B
RC=XICIA{Js—1+ J2+ (XN-IA <D > oxD - o
LAy =HL G +RCSDX 2 _ R TR
WET=WET+XOeXND : SRS S

[
o}

[
L

F=WGT

F=F#FXN (X3 WGTY

Fe=FeF

FE=FEB+F

FRRE=F&E+F2

D0 16 J=1sHDIM L

DICIACD s 2 =DICIACI s J2+F oL
16 IF (MDE.GE. 0) DOIRCIY » D =DCIACH » D +FE s '

IF¢K.LT.NPE> 50 TO 12

o)

FRE=SQET (FEE+NPG) s
F2E=(FEE-FE) + (FEE+FE) g e T
TI=TI+FE i e e
T3I=TSI+FZE S ‘
IF <MDS.GE. 0 6O TO 18 R e
0 17 J=1sNDIM S
17 DCIRCSY » Sy =DCIA (DY s Y +F2F | T B
12 K=NDIM B
19 K6 (K2 =MOD (KE (K2 s NED +1 . a8
IF (KE (KD ME. 1> GO TO 11 T P e
PN L | n L o
IF(K.GT. 0 B0 TO 19 |
COMPUTE FIMAL RESULTS FOR THIS ITERATION & .0 .0 .
TEI=TII+IVEE o T
TIZ=TIeTI SR
WET=0NE-TE]
SI=SI+TIeUET
SHET=SWET+WET i
SCHI=SCHI4TIZ#WET . B
AYGI=ST/SWET : \ _
CHIZA=(ECHI-SIAYRI) / (IT-. 99995
| ZD=ZORT (ONE-SWETY

o e

o

[

1
b
K . : : P
Hf:: : v o
[
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IF(NPRN.LT. 0} GO TO =t
TSI=SQRT (TSI

WRITECMDEY»2013 IT+TIsTSIsAYGIsSN,CHIZAH

IF(HPPH E@.0» G0 1O 21
DO 20 J=1,HMDIM

WRITE (NDEV: 202> JstI(I J}sDI(IsJ};I 1+HPPH!E;ND:NPEN)

REFINE GRID

DO 22 J=1sNDIM
KO0=D{1s. 13

SH=D 2 1)

Dl =0K0+XNY ~2,
DT (Jx=D 1502

D 22 I=2.MNDM

Dols dd=K0+4N

xO=xH

AH=D{I+1s 42

Dila D=CBIs J248MY -3,
ITCD=DT (I +DCIs t
DeMIly 1 = (XN+X02 2.
DT (=0T {2 +DCNDs 12

DO 28 Jd=1.HDIM

RC=0.

0 24 I=1:HD

Eilx=0.

IFDCI= D LE. O &G0 TO 24
AO=DT D A0 1o

R{Iy =0 CEO-OMEY ~X0-ALOG (X022 ++ALPH
RC=RC+ECID

" RC=RC/EMNT

1

k=0

sM=0.

DE=%M

I=k

k=K+1

DRE=DR+R {K)

wl0=%HN

HM=XT (K J
IF<RC.E6T.DFRY GO TO 25
I=1+1 -

LRE=DRE-RLC

AINCID =KN—- (XN— ?U)#DPxF{F
IFCI.LT.NDIM} &0 TO 26
g 2¥ I=1:NDM
AICIs S0 =XINCI

(sl (M J3 =0ME

IFCIT.LT.ITMM. AND, ACCeRES (AYGIY LT SD) 60 TO @
. FORMAT (~33H INFUT PARAMETERS FOR VEGAS:
<28X:5H  IT=IS:7H ITM¥=IS5/28xs&H RACC=G2,.2

24

R

MDIM=IZs8H NCRALL= FS.D J

qqqqqqq
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12 /22¥s7H  NPRN=IZs7H ALFH=F5.2-28X,EH MOS=I12,6H . Mo=I4
C 3 28X 10H MLy MUI=<T40:2H< G12.653H s G12.652H > ) , ‘
201 : FORMAT(sr/-21H INTEGRATION BY VEGAS-~14H ITERATION NO. I3, -

i1 14H: INTEGRAL =G614.8-21%s10HSTD TEY =610.4. o |
12 34H ACCUMULATED RESULTS: INTEGRAL =514.8- - ‘ _
;2 24Xy 10HSTD DEY  =G10.4-24Xs 17HCHI e+2 PER IT'N =G10.4>
=02 ¢ FORMAT (~15H DATA; FOR AXIS: 12-85H . . . DELTR I ’
‘1 P4H ¥ DELTA I 218H DELTA 1
'2 s (1H P B 15 511,45 53 F7. 62 1X:611.455%sF7. 65 1%y 511, 43 )
| RETURN
END . |
SUBROUTINE RAMNDA cN» RANID : -
c .

T SUBROUTINE GENERATES UNIFORMLY DISTRIBUTED RANDOM NO-S X{IYsI=1sN
- DIMEMTION RAND N> L
.- DO 1 I=1sN
1 - RRND (I =RAN (1234567
RETURN
END

AT S RN B

b s
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Appendix B. An Example =
In this Appendix, the use of VEGAS is illustrated in the computation of

1 i 2 2

il
0 1
The integrand's subprogram is

o |

FUNCTION F(X,WGT)

DOUBLE PRECISION X{2),WeT,F R
F = DEXP(-100.*(X(1)}**2 + (X(2) - 1)**2))*100./3.141592654 DO
RETURN

END

The calling program is

DOUBLE PRECISION XL,XU,ACC,F,AVGI,SD,CHI2A
COMMON/BVEG]/NCALL,ITMX,NPRN,NDEV,XL(]0),XU(TU),ACC
EXTERNAL F

XL(2) = -1

CALL VEGAS(2,F,AVGI,SD,CHI2A)

RETURN

END

Most of the cgntro] parameters have their default values in this example.
Thus VEGAS will estimate the integral in five iterations using approximately
5000 evaluations of the integrand per iteration (in fact 4802 are used per .
iteration). The output from VEGAS is presented in the succeeding pages.
Since NPRN=5, information for only one out of every five axis subdivisiqns

is printed - i.e., for only ten increments on each axis {while in fact VEGAS

used ND=43 increments per axis). The results returned to the calling program'

were
AVGI = ,249984
50 = .000059
CHIZA = 1.116

T 1

» i Ui LUURLL GG e | Lol iUy
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and thus the integral is estimated to be

-24998 £ .00006 . with 68% confidence

00012 - with 95% confidence

+

... etc.

As the leiteration is 1.1, the various iterations are consistent with
each other and thus the error estimates are probably statistically

meaningful.
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(K]
]
na

INPUT PRRAMETERS FOR VEGAS: NDIM= 2 HCALL=
: 1T= 0 ITH¥=

L ' ACC=—. 1000+01 :

o MPRM= S ALPH= 1.50

- MDZ= —1  HD= 43

i CALsHUR= ¢ L 0000000400 &, 100000D+01

) ¢ —. 1000000401 + . 100000D0+01"

N fa

L

b

| INTESRATION EBY WEGRS

CITERATION MO. 1f  IMTEGRAL = .
{ EThH DEY = .
ACCUMULATED RESULTS:  INTEGRAL

o=
DR

= T

Ju 01 T 1
LG WE I v B R A
| m

o O

Nt Ja

Lo

+.

fan)

1}

. gooEmdD4an
TR DEYW = (48150-08 T
CHIes> PER IT-N = . 20000+50
DATA FOR AXIS 1 |
| - IELTR I = DELTH 1 = DELTH 1
. < OE 0.S5800-01 122449 0L 1FE2D-01 LEEGEEn 0, 5239003
. = i, 23570-0% S4E25T7L 0. 1479002 LS30812 0 0, 117101
' =5 0, 95730~13 L3894 0Ll dpsl—22 LSREFVRS D.EE2D-z0
a i O, Gonoli-on
TETAR FOR RRIS 2
: o PELTH I e DELTR I = DELTH I
id i (. Oonah+an JiBEg4s 0, oooGOn+on .z2dd4an 0, G00aD+0anN
O, Ooano+nn e i | 0. Ba00n+00 JeansleE 0, 0l (EERREE Y i
1. 152370-29% Leaded O, 1428012 LEIETIS L1111 D-05
0. 13990-01 ‘
THYEGRRTION BY VEGF
i ] -3 -
5 ELTH T
Rl R e % L
TS R ITg -0
L IEEIES T oul-0g

& DELTH I
1 R LT P S

e B - PP YR TSI 1 IEOOIFTH PR A4 LTI b s r - T IF{pEH gt 0T T D F—IM"Wﬂ'ﬂwﬁ‘mrﬂw’m""'wm“'””"'“\"“""””'""“"'!!"'!“"r'mm““w"m"'"“”m“ .




AT 0.23244D-02 .
»FEAITE 0, DEBID-02 .
. FR3264 0. 1232D-01

o

IHTEGPHTIUH BY VEBGAZ

ITERRTION MO, 3
3

RECUMLATED REZULTE

n

-y

TRTA FOR fAxIs 1
g DELTH I
R,QJT7E-DE

nu;H4“

e
o
.ﬂ
.

|
':."
.

ik ﬂ.3935ﬂ~ae .

Ii 0, &= T'E:I!— {i 3
DATA FOR AXIZ &

(o DELTH 1
CBESE95 0. 19490-04 .
CEAS0SS 0. 4348 T-00
CEFSIET 0L EETYD-nZ
CPISTET L TLOSD-02

_ 'Efr-w-..-; -..r-_';m:*).;

o

| Eapets

INTERRAL .
ZTD DEY = [}
IHTEGFAL =
=TI
CHI#e>

=4
=

9453
=

s,

li

ey

FER

.
-

-

L)

foe

]:_IJ :'.-] ¥+
o

T T
v P )

(oY
B =g 3y
i

e R e T

QU LU RLI TR NUR R IRT TR R T T U RO Ty L T A ML T T "
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0. 4511 D-02
0. 1098D~01

0.3144D0-02
G.71160~02

L)
W

¥ €N
¥ |
o [

0r M
=~}

SO1227in+00
S I T B
.ESGBQB?¢E+HH
.8561B—ﬂ4
-~

LTHR I

SoT- 02 .
Za -2 .
16002 .

LELTH I x IELTH 1

L 1728D-02 LBEEO20 0 0.3212D-02
E.:Ig D= 0 CARTEADZ 0, 5491 D02
0. ¥25a - 08 SASE4TE 0. VEILD-02

= DELTH I
0. 2eazh-02
gL e12 -0
.oz h=-02
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INTEGRATION BY YEGAS

ITERATION MO. St INTEGRAL = .2S5000366D+00

1 STD DEY = .11250-03

ACCUMULATED RESULTS:  INTESRAL = . 24998239204 00
STD DEY = .5927D-04
CHI+*2 PER IT'N = .1116I+61

|
bﬁrﬂ FOR AXIZ _
X DELTH I H DELTA I

1
X DELTA I »
03114 0.28726D-02 « 015250 d. 4585 0-02 « RS EE G.21910-02
\P4’111 .25 D-062 LOEOORS O, ERE3RD-02 LOTFVIE 0,54 03D-02
L U987 0, 47V230-02 123348 0L E4SFD-02 1341355 D, 1342002
\Dﬂfiﬁﬂ 0. 77PevD-n3

0ATH FOR AxIz &
: DELTA I w DELTH I H DELTA I
. DLOORGon+0n &893 FOFE 0. 2844003 LFEE040 0 0, 12130-02
Q. 2292 Ti-02 q= 2180 O.S0i8R-00 LSPGO e32E 002
=bat=rs S[EOGIE 0. PSe00D-02 LY L as16en-02
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