

June 2007

Parallel Mersenne
Twister

Victor Podlozhnyuk
vpodlozhnyuk@nvidia.com

June 2007

Document Change History

Version Date Responsible Reason for Change
1.0 03/20/2007 vpodlozhnyuk Initial release

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

 Abstract
The problem of random number generation is important for many different tasks,
particularly the simulation of physical and mathematical systems using Monte-Carlo
methods. The iterative nature of most random number generators doesn’t map very well
onto the traditional graphics GPGPU paradigm because of its limitations on the number and
position of memory outputs. This sample demonstrates how the Mersenne Twister, one of
the best available random number generators, can be implemented in parallel using the
CUDA programming model.

June 2007

Introduction
The Mersenne Twister (MT) is a pseudorandom number generator algorithm developed by
Makoto Matsumoto and Takuji Nishimura [1]. It has many important properties:

 Long period.
 Efficient use of memory
 Good distribution properties.
 High performance.

MT generates the bit vectors of fixed word size by the recurrence:

Axxxx lower
k

upper
kmknk •+= +++)|(1 (1)

mn > - fixed positive integers

...,1,0, =kxk - sequence of bit vectors with fixed width w (which is 32 in our
implementation)

lower
k

upper
k xx 1| + - concatenation of r most significant bits of kX and rw− least significant

bits of 1−kX

Axx lower
k

upper
k •+)|(1 - multiplication of the concatenated bit vector by bit matrix A

Matrix A (ww×) is chosen for simplicity of computations in the form of

0121

021

1

1
1000
0100
0010

},...,,{

aaaa

xxxAx

ww

ww

−−

−− •=•
OL

M

}...,,,{ 021 xxxx ww −−= , }...,,,{ 021 aaaa ww −−=

Bit values are added modulo 2, (i.e. using XOR operation).

For the special form of matrix A , assuming w is less than or equal to machine word size,

Ax • multiplication can be efficiently implemented on existing hardware:

(C-style pseudo code) x = (x >> 1) ^ ((x & 1) ? a : 0);

June 2007

In order to improve the distribution properties, each generated word is multiplied by a
special ww× invertible transformation matrix from the right: Txzx •→ : . A tempering
matrix T is chosen so that Tx • multiplication, similarly to Ax • , can be efficiently
implemented with bitwise operations:

 z = x;
 z ^= (z >> u);
 z ^= (z << s) & b;
 z ^= (z << t) & c;
 z ^= (z >> l);

u, s, t, l are integer numbers, b and c - suitable bit masks of word size w .

As it follows from the formula, at some position nk >= kx is the function of three

preceding sequence elements:);,,(1 mnknknkk xxxfx +−+−−= The function

),,(1 mnknknk xxxf +−+−− was defined earlier, and first n elements 110 ,...,, −nxxx are given as
seeds.

Speaking in terms of algorithms, it’s enough to store the generator state, n-word array
(state[0], state[1], …, state[n – 1]), initialized with some initial values 110 ,...,, −nxxx (seeds),
and cyclically update the state (C-style pseudo code):

 for(i = 0; i < randN; i++){
 k = i % n;
 state[k] = f(state[k], state[(k + 1)%n], state[(k + m)%n]);
 result[i] = tempering_transformation(state[k]);

}

To sum it up, Mersenne twister has the following parameters:

w -word size

n , m - degree of recursion and middle term

r - separation point in lower
k

upper
k xx 1| +

a - bit vector, lower row of matrix A

tsul ,,, - tempering shift parameters

cb, - tempering masks, bit vectors

Note: In its canonical form, Mersenne twister is not intended for cryptographic
application, since n outputs of the generator is enough to predict all future values.
One of the possible solutions is to apply hash function on every output.

June 2007

Implementation details
The algorithm maps well onto the CUDA programming model since it can use bitwise
arithmetic and an arbitrary amount of memory writes. On one hand, the Mersenne twister,
as most of pseudorandom generators, is iterative, so it’s hard to parallelize a single twister
state update step among several execution threads. On the other hand the GPU has to have
thousands of threads in the launch grid in order to be fully utilized. The short and simple
solution is to have many simultaneous Mersenne twisters processed in parallel. But even
“very different” (by any definition) initial state values do not prevent the emission of
correlated sequences by each generator sharing identical parameters. To solve this problem
and to enable efficient implementation of Mersenne twister on parallel architectures, dcmt, a
special offline library for the dynamic creation of Mersenne Twisters parameters, was
developed by Makoto Matsumoto and Takuji Nishimura [2].

The library accepts the 16-bit “thread id” as one of the inputs, and encodes this value into
the Mersenne Twister parameters on a per-“thread” basis, so that every thread can update
the twister independently, while still retaining good randomness of the final output.

Note: Though the procedure of the Dynamic Creation is normally carried out only once
for chosen thread count and twisters period, it can be very time-consuming.

In the supplied source, an offline utility spawnTwisters.c, using the dcmt0.3 library, is
executed first, precomputing configurations for each thread index of CUDA computation
grid, which are loaded by the parallel implementation of Mersenne Twisters in runtime.
Though a Mersenne twister is completely defined by 11 parameters, only the bit-vector
parameters vary on a per-thread basis for the same period and dcmt seed (which is the case):
a - the lower row of matrix A ; cb, - tempering masks of Tx • transformation. The rest of
the (integer) parameters are shared among all the threads, and can be simply inlined into the
source. In runtime each CUDA thread stores the state in a local memory array, and since n
and m are the same for all threads, each thread within a warp accesses the same state index,
and state arrays reads/writes are always coalesced.

Uniformly distributed random number sequences, produced by Mersenne twisters or any
other random number generators, can be transformed into normal distribution)1,0(N with
the Box-Muller transformation [3], which is implemented as a separate kernel.

June 2007

Bibliography

1. Makoto Matsumoto, Keio University/Max-Planck_Institut fur Mathematik; Takuji
Nishimura, Keio University.
Mersenne Twister. A 623-dimensionally equidistributed uniform pseudorandom number generator.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/mt.pdf

2. Makoto Matsumoto and Takaji Nishimura.
Dynamic Creation of Pseudorandom Number Generators.
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/DC/dgene.pdf

3. Box-Muller Transformation
http://mathworld.wolfram.com/Box-MullerTransformation.html

June 2007

Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

