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Abstract

One of the most interesting generalizations of the notion of direct product
of two manifolds is the notion of twisted product and its subclass of warped
product. In particular, if the spacetime (M, g) is the twisted or the warped
product between a time interval and a spatial submanifold, M is named respec-
tively twisted spacetime or generalized Robertson-Walker spacetime (GRW).
From a physical point of view, the importance of these spaces lies in the fact
that they are a straightforward generalization of Robertson-Walker spacetimes
(RW). RW metrics are the exact solutions of Einstein’s field equations that de-
scribe a spatially homogeneous, isotropic, expanding or contracting universe.
When the hypothesis of homogeneity and isotropy are relaxed they can give
rise to GRW spacetimes or to twisted spacetimes, if the scale function also
depends on the spatial coordinates.

The aim of this work is to describe and investigate the broad classes of
twisted and GRW spacetimes through a covariant approach. We adopt the
characterization given by C. A. Mantica and L. G. Molinari through the ex-
istence of a timelike unit torse-forming vector field, i.e., a velocity field u
(giju'u? = —1) such that its components satisfy Viu; = ¢(gij + uju;). Im-
portant results concerning twisted and GRW spacetimes have already been
published in [28]]29][30] [31].

The first chapter provides a covariant description of fluids in General Rel-
ativity [15]. In particular, we show how the covariant derivative of a velocity
vector field and the stress-energy tensor can be decomposed in a natural way.
We also report the Einstein’s field equations and the propagation and con-
straint equations given by the integrability conditions and by the Bianchi
identities.

In the second chapter we characterize a twisted spacetime through the
existence of a timelike unit torse-forming vector. In this way, the spacetime
admits a totally umbilical foliation orthogonal to a totally geodesic one, so

that the metric takes the local form
ds® = —dt® + f(t,f)2g;l,dx“dx”,

without restrictions for the spatial submanifold (M*, g*). With the additional
condition that the torse-forming vector is eigenvector of the Ricci tensor, the
scalar function f depends only on time and the metric describes a GRW space-
time. The general expression of the Ricci tensor is obtained in both cases and

the properties for the Weyl tensor are listed. In particular, we discuss perfect



fluid GRW spacetimes, i.e., GRW spacetimes such that the Ricci tensor has a
perfect fluid form. Finally, RW spacetimes are characterized as GRW space-
times such that the Weyl tensor is zero. This additional condition is equivalent
to the requirement that the spatial submanifold is a space of constant curva-
ture.

In the last chapter the possible existence of a second timelike unit torse-
forming vector is investigated, excluding the trivial antiparallel vector. On
a twisted spacetime there can exist at most two distinct timelike unit torse-
forming vectors connected by a hyperbolic rotation. Moreover, since the Ricci
tensor assumes two equivalent expressions, we obtain a restriction for the Weyl
tensor. The existence of a second torse-forming vector provides restrictions
for the spatial submanifold, in fact it can be expressed as a doubly twisted
manifold. The 4-dimensional twisted spacetime is a very particular case since
if it admits two distinct torse-forming vectors, then the complete tensorial
structure of the Weyl tensor is determined. In particular, using the Finstein’s
field equation the associated stress-energy tensor can be expressed as a mixture
of two perfect fluids. Finally, we discuss the unicity on GRW spacetimes.
In the most cases, the additional condition on the first torse-forming vector
prevents the existence of a second one. However, if the eigenvalue of the
Ricci tensor associated to the torse-forming vector is a constant, a second
torse-forming vector can exist and the submanifold takes the form of a doubly

warped manifold.

Notation

For the totally symmetric and totally antisymmetric parts of tensors of

type (0,¢), we use the notation

1
T(leg) = E Zﬂﬂ'(l)"'iﬂ'(é)’
1
T[’Llw} - E Z 5777’7:77(1)“'7:7%5)’
™

where the sum is taken over all permutations, m, of 1,...,n and d, is +1 for
even permutations and —1 for odd permutations. Symmetric or antisymmetric
tensors for a group of indices are defined in a similar way.

Given a tensor of type (k, /), the symbol ‘;’ indicates the components of

the covariant derivative as

R — i1k
T jrejem = VI J1--de s



while the symbol ‘,” indicates the ordinary derivative as
T““.ijlmjéym = amT“mijlmjz :

We adopt the sign convention (— 4+ +...+) for the metric because it is
generally much more convenient than the alternative choice (+ — —...—). In
fact, the first one induces a positive definite metric (rather than a negative
definite one) on spacelike hypersurfaces. We use latin indices for space or
time components of a tensor (i = 0,1,...,n— 1), 0 or ¢ for time components
and greek indices for purely spatial components (1 = 1,2,...,n — 1). In the
last chapter, the indices A, B, ... are used for the spatial components of the
(n-2)-dimensional spatial submanifold (A =2,3,...,n—1).

Finally, we use the Planck units, such that the gravitational constant G

and the speed of light ¢ are set equal to one.



Chapter 1
Fluids in General Relativity

In General Relativity the relation between the spacetime geometry and the

matter distribution is described by Einstein’s field equations (EFE)
1
Rij — 5Rgij = rTij. (1.0.1)

where R;; is the Ricci tensor, R = R'; is the scalar curvature, gij is the metric
tensor and T;; is the stress-energy tensor describing the matter distribution
such that it satisfies the conservation law V'T;; = 0. For large scales the
hypothesis of homogeneity and isotropy hold and, on considering a perfect
fluid stress-energy tensor, an expanding or contracting universe is found. In
general, if the scale is not sufficiently large, the previous hypothesis are no
longer satisfied and a new description is necessary. Following G. Ellis and H.

van Elst [I5] we provide a covariant description of fluids in General Relativity.

1.1 Velocity vector fields

Given a manifold M with dimension n, we define a congruence as a family
of curves, not necessarily geodesics, such that through each point there passes
precisely one curve in this family. The tangents to a congruence yield a vector
field, and, conversely, every continuous vector field generates a congruence of
curves. Without loss of generality, we may assume that the congruences are
parametrized by the proper time 7, i.e., u’ = da'/dr, so that the vector field
u' is normalized to unit length, u’u; = —1. In General Relativity, particle
motion is represented by one of these curves, i.e., through the tangent vectors
to the curve. Then, a congruence can be interpreted as a collection of particles

having timelike velocity field wu.



CHAPTER 1. FLUIDS IN GENERAL RELATIVITY

The components u’ define unique projection tensors

S
U = —u'uy,

hij = gij + wiu;.

The first one projects along the velocity vector !, while h;j projects on the
perpendicular direction to u’. Then, two derivatives are defined: the derivative

along the curves of the congruence, denoted by a dot
Jrivin e = umvail...ikjlmje
and the fully orthogonally projected covariant derivative V such that
@mTilmikjl...jg = By hy, VT

In this way, the derivative of the vector field u can be decomposed into its

irreducible parts, defined by their symmetry properties,

Viuj = @iuj — U;aj
(1.1.1)
= 711 — 19hij + Oij + Wi — U;aj

where § = VjuF = uk;k, named expansion scalar, represents the rate of change
of space volume for unit volume, dV/ dV. The term a; = u; = ujVj u; is the

acceleration, with uga®

= 0. The tensor o;; is the symmetric traceless shear
tensor such that Jijui = 0, related to the distortion in shape of the fluid

without change of its volume (by the property o%; = 0):

1 i K 2 1
Oij = 5 (hl Vkuj + hj Viu; — n_lﬁh”> = U(ji) — m@hw + U(;Aj)-
Finally, the antisymmetric tensor w;; represents the vorticity tensor, describing

the rotation of the matter relative to a non-rotating frame
Lok k
Wij = 5 (hl' Vkuj — hj Vkuz> = U[jy) + U0

Note that, since any second rank tensor could be written in terms of its sym-
metric and antisymmetric parts and hence the terms involving h;; and a;
cancel out in ((1.1.1)). They are however required for the definitions of shear

and vorticity tensors in view of their being orthogonal to u; and traceless.



CHAPTER 1. FLUIDS IN GENERAL RELATIVITY

1.2 The stress-energy tensor

Physically, a velocity vector field can be associated to a continuous matter
distribution. In General Relativity, the energy density, the flux of energy and
the momentum of a matter distribution are described by a symmetric tensor
Ti; called the stress-energy-momentum tensor, (often abbreviated as stress-

energy tensor), that satisfies the equations of motion
V. T"; =0. (1.2.1)

Using the EFE, the previous equations corresponds to the twice-contracted
Bianchi identities (A.6.2]). To classify stress-energy tensors we use the fol-
lowing theorem concerning the natural decomposition of a general symmetric

tensor:

Theorem 1.2.1. Let S;; be a symmetric tensor and u; a timelike unit vector,

uwlu; = —1, then Sij can be written as follows:
Sij = (A+ B)uiu; + Bgij — (Siuj + Sjui) + o35,

where A and B are scalar fields, S; is a spacelike vector (S'u; = 0), and 0ij
1§ a symmetric tensor such that Uijuj =0 and o*, = 0. If u; is also an

etgenvector of S;;, then S; = 0.
Proof. Let us expand the identity S;; = S™" (hmi — Umt;)(hnj — unu;):
Sij = (Sm"umun)uluj — (Sm”unhmz)u] — (Sm”umhnj)ui + Smnhmihnj =
= Auiuj — Siu]' — Sjui + Bhij + (Smn — man)hmihnj,
with S%u; = 0 and Uijuj = (0. The scalar field B is chosen such that the
last tensor oy; is traceless, i.e., Sk, = —A 4 B(n —1). The identity Sijuj =

—(A+ B)u; + Bu; + S; shows that if u; is an eigenvector of S;;, then S; must

be equal to zero. O

Remark 1.2.1. Note that S'S; = S™S®h,qunup = (S?)mpu™u™ + A%, The
orthogonality S'u; = 0 implies that S° = 0 in the rest frame, i.e. S; is a
spacelike vector, S*S; > 0.

1.2.1 Perfect fluid

A perfect fluid is defined to be a continuous distribution of matter with

stress-energy tensor
Tij = (n + p)uiu; + pgij, (1.2.2)

6



CHAPTER 1. FLUIDS IN GENERAL RELATIVITY

where ! is a unit timelike vector field representing the velocity of the fluid,
the functions p and p are respectively the mass-energy density and pressure
of the fluid as measured in its rest frame, with a suitable equation of state
relating p and p. In simple case the energy density and the pressure are related
by a barotropic relation p = p(u). For example, baryons satisfy p, = 0, while
radiation p, = u,/3.

The fluid is called perfect because of the absence of heat conduction terms
and stress terms, corresponding to viscosity. The equation for a perfect
fluid yields

fr+ (p+p)d =0,

(p+ pa; + h@'jvjp =0.
For a flat spacetime, i.e., g;; = (—1,1,...,1), in the non-relativistic limits
(p < p, u' = (1,7) and vdP/dt < |Vp|), the previous equations correspond

respectively to the conservation of mass and Euler’s equations, i.e., the Navier-

Stokes equations with zero viscosity and zero heat flux,

o
ot

n (gj + (7 - 6)77) = —Vp.

1.2.2 Imperfect fluids

If the viscosity terms are non-zero, the fluid is named imperfect fluid and

the stress-energy tensor has the general form:
Tij = (1 + p)usuj + pgij + (qivg + qjui) + mij. (1.2.3)

The quantities u, p, ¢; and m;; are given by:

1

n— 1hijTij’

g = — hd Ty,
1

The viscosity terms drastically increase the complexity of the equations of
motion (|1.2.1) and play an important role in the dispersion of energy of a

system. On a 4-dimensional spacetime
fr+ Vig' = =0(p +p) — 2aiq" — oy,

S L 4 . » . » »
hi'q’ +V'p + V¥ = —20q' = aYqj — (u+p)a’ — agm" — 0 wjqr,
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where 7, = T}ez‘jkué is the volume element for the rest-spaces (1;jre = Mijkl]

is the 4-dimensional volume element, 79123 = +/— det g) and w® = %nijkwjk is

the wvorticity vector.
There exist two more important set of equations: the Ricci and the Bianchi
identities. In the following we consider a 4-dimensional spacetime and the

physical quantities u, p, ¢; and m;; as in [I5] such that the EFE are
1
Rij — 5Rgij = Tyj-

Ricci identities
The second set of equations is given by the integrability conditions. The

definition of the Riemann tensor gives
Rjpemu™ = V;jViue — ViV uy. (1.2.4)

Using the EFE and the decomposition of V;u;, separating out the parallel
and orthogonally projected parts into a trace, symmetric trace-free and anti-
symmetric part, we obtain three propagation equations and three constraint
equations.

The propagation equation are:

i. the Raychauduri equation
o1 o
0+ 592 =2(w? — %) + V" — Rijula,
where 202 = O‘ijO'ij and 2w? = wijwij;
ii. the vorticity propagation equation
X 1ijk@ _ 291 i
jw—gn jak——gw—{—ajw

shows that the vorticity vanishes if and only if w = 0 and the fluid flow

is hypersurface orthogonal;

iii. the shear propagation equation
i) _ ligd) — _gggij 4 aligh — gla, gik _ (Ez'j a ;Wm) 7

where E;; = Cjrjsu"u® corresponds to the electric part relative to u® of
the Weyl tensor and the angle brackets denote the orthogonally projected

symmetric trace-free part of tensors, e.g.,
A6 <h(ikhj)z _ 1hijhkg> na
3

8



CHAPTER 1. FLUIDS IN GENERAL RELATIVITY

Moreover, eq. (1.2.4) also gives the three constraint equations:
i. the (0a)-equation

9 - :
Vol = 3Vi0+ 175 (Vjwr + 2a0k) + ¢' = 0,

that shows how the momentum flux g; relates to the spatial inhomogene-

ity of the expansion;
ii. the vorticity divergence identity
@iwi — aiwi = 0;
iii. the H;j-equation
HY 420"’ + Vi) — (curl o) =0,
that gives the magnetic part of the Weyl tensor H;; = %mkngfjmum
from the covariant derivative of the vorticity and the curl of the shear,
(curl o) = i ol .
Bianchi identities
The last important set of equations arise from the Bianchi identities
ViR™ =0,

using the EFE and the definition of the Weyl tensor in terms of the Riemann
and the Ricci tensors. The once-contracted Bianchi identities give two further
propagation equations and two further constraint equations.

The propagation equations are

i. the E-equation
B9 4 %Hm =(curl H)"Y — %@“qﬁ — ~(p+p)a? -0 (Eij + 7Tij>
, , 1 . o
+ 3001, (Ea>k _ 67TJ>k> — aligh

. . . 1 .
+ HM<Z |:2akHJ>g + Wi (E”g + 27Tj>g>:| ;

ii. the H—equation
HY) = — (curl B)Y + E(curlw)” — OHY 4 30U HI* 4 §w<’q])
. . , 1 .
— e [QGkE’>e — wHYy — 20]>er} ;

9



CHAPTER 1. FLUIDS IN GENERAL RELATIVITY

where (curl H), (curl E) and (curln) are defined in the obvious way (see the
expression of (curl 0)). In analogy to the electromagnetic case, these equations
yield to the gravitational radiation.

Finally, the constraint equations are
i. the (div E)-equation

o 1 o 1. 1. 1. g
V;E" + §Vj7r” :§Vz,u — §9q’ + §J’jq7 + 3w; HY
y 3
+ " (UjZHZk - 2%‘%) ;

ii. the (div H)-equation
V,HY = — (n+ p)w' — 3w; <Eij - éﬂ'i‘])
gk (e 1g Loy
-1 <<WE K+ 5%% + 503t™ k) :
1.2.3 Perfect fluid mixture

Several times in General Relativity, the matter is represented by a mixture
of two or more fluids. In particular, some astrophysical and cosmological
situations need to be described by a stress-energy tensor, made up of the sum
of two or more perfect fluids. Let us consider two perfect fluids with energy
densities p1, p2, pressures p1, p2 and velocity vector fields u;, 2;:

1
Ti(j) = (1 + p1)uivj + P19z,
2
Ti(j) = (2 + p2)zizj + p2gij-
The total stress-energy tensor is
1 2
T;; = Tl(]) + Tl(j ) = (1 + p1)uwiu; + (p1 + p2)gi; + (2 + p2)zizj,  (1.2.5)

where z; is such that z; # w;, else it would formally be that of a single fluid

with energy density pj + po and pressure p; + pe. The expression ((1.2.5)) is
equivalent to a stress-energy tensor of a single fluid with a non-zero heat flux
and a non-zero anisotropic stress tensor ([1.2.3)). Using the decomposition

z; = u; cosh ) + b; sinh ¢ ¥ # 0,

where 1 is called the tilt angle and b‘u; = 0, we can deduce the equivalent

pressure and energy density of the mixture as

p=Tyu'v = py + (p2 + p2) cosh® ¢ — py, (1.2.6)

3 1
h"Ti; = p1 + p2 + ——(p2 + p2) sinh? . (1.2.7)

p= n—1

n—1

10



CHAPTER 1. FLUIDS IN GENERAL RELATIVITY

The heat flux g and the anisotropic stress tensor 7 are given respectively by

gi = —h? Tjpu® = qb;,
1

Tij = himh]‘nTmn — P

1
(W™ Lnn)hij = 7 | ¢iqj — quhz‘j ;

with the scalar quantities ¢ and 7 given by

q = (p2 + p2) cosh i sinh ¢, (1.2.8)

1
T = 5 ) (1.2.9)
cosh” (2 + p2)

The two perfect fluids mixture is widely studied in literature. In [23], Letelier
examined the case in which the stress-energy tensor consists of a mixture of
two perfect fluids or a mixture of one perfect fluid and a null fluid. He studied
the two perfect fluids model in the instance in which both the velocities were
irrotational. The algebraic properties of the stress-energy tensor are studied
by J. J. Ferrando et al. in [16]. A. A. Coley and D. J. McManus in [13] and [12]
studied the special case in which the first fluid forms a shear-free, irrotational
and geodesic timelike congruence and the second is taken to be pure radiation
or a perfect fluid with a general velocity vector field non-collinear with the
first one. Moreover, they investigated the case of a single perfect fluid tilting

with respect to a shear-free, irrotational and geodesic timelike congruence.

1.3 Energy conditions

For any observer with velocity v, the quantity TZ-jUin is interpreted as
the energy density, i.e., the mass-energy per unit volume, as measured by this

observer. For normal matter, the energy density must be non-negative, i.e.,
T, 07 > 0. (1.3.1)

Such property is also named weak energy condition. Writing the stress-energy

tensor in the diagonal form

n—1

T;j = ptit; + ZpAa::LA:Uf, (1.3.2)
A=1

where (ti,xf‘) is an orthonormal basis with a timelike vector t; and p4 are

called principal pressures, the weak energy condition is satisfied if and only if
>0 and p+pa>0, with A=1,...n—1

11



CHAPTER 1. FLUIDS IN GENERAL RELATIVITY

If &' is orthogonal to v*, the component —Tijviazj is interpreted as the
momentum density of the matter in the a’-direction. The dominant energy
condition stipulates that, in addition to the weak energy condition, for any ob-
server with velocity field v?, the vector field —T";vJ must be a future-pointing
causal vector, i.e., a timelike or at most a null vector field. Such condition cor-
responds to the request that the matter can never be observed with a velocity
higher than light. For the stress-energy tensor the dominant energy

condition takes the form
w>lpal with A=1,...n—1.

Using the EFE, we can write an energy condition involving the Ricci tensor,

named strong energy condition
i, j 1 i j
Rijv'! = k| Tij — §Tgij vl > 0. (1.3.3)

Such condition does not imply the weak energy condition, in fact, we refer
to it as strong only because it is more difficult to satisfy the strong energy
condition. In terms of the energy density and the principal pressures,
becomes

n—1

p+> pa>0 and p+pa>0, with A=1..n—1

A=1
The strong energy condition can be physically interpreted as a manifestation
of the attractiveness of gravity. Using the Raychaudhuri equation, eq.
reduce to a condition about the expansion parameter 6. Since aijvj = 0,

we have o2

> 0 and if the congruence is hypersurface orthogonal, then the
vorticity tensor w;; is null. Under these assumptions, if the strong condition

is satisfied, we obtain (in a 4-dimentional spacetime)

do 1 d 1
4292 < i.e. ~ (6 H > =
d7'+3 =0 e dT( )_3’
then
1 1, 1
0= (1) > 6, + §7', (1.3.4)

where 6 is the initial value of 6. If the congruence is initially contracting with
0o < 0, 6~ will pass through zero, then # will diverge (6 — —oo) in a finite
proper time 7 < 3/|6p|. In general, the divergence of the expansion parameter
does not imply a singularity of spacetime, but represents only a singularity in

the congruence.

12
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Finally, the null energy condition requires that for any future-pointing null
vector field &'
T;;k'k >0 (1.3.5)

or equivalently
uw+pa>0, with A=1,...n—1.

13



Chapter 2

The hierarchy of twisted

spacetimes

In this chapter we shall discuss the hierarchy of the large class of twisted
spacetimes, which comes to life starting from the Robertson-Walker (RW)
spacetimes with a gradual relaxation of the constrains. RW metric is an ex-
act solution of the EFE of General Relativity that describes a homogeneous,
isotropic, expanding (or contracting) universe. The general form of the metric
follows from the geometric properties of homogeneity and isotropy and the
EFE are only needed to derive the scale factor of the universe as a function of
time.

Small deformations of the metric on the fiber of classical RW spacetimes fit
into the class of generalized Robertson-Walker (GRW) spacetimes, introduced
by L. J. Alias, A. Romero and M. Sénchez in 1995 [I]. GRW spacetimes are the
first wide generalization of the classical RW spacetime obtained by relaxing the
spatial homogeneity, that is reasonable as a first approximation of the large
scale structure of the universe, but it is not appropriate when we consider
a more accurate scale. GRW spacetimes include many interesting spaces,
e.g., the Einstein-de Sitter spacetime, the Friedmann cosmological models,
the static Einstein spacetime and the de Sitter spacetime. Over the years,
several characterizations of GRW spacetimes have been obtained in terms of
vectors satisfying peculiar properties. In particular, B.-Y. Chen in 2014 [§]
established a simple characterization in terms of a timelike concircular vector
field. Recently, C. A. Mantica and L. G. Molinari in 2016 [2§] introduced
a new covariant formalism to describe GRW spacetimes, with the help of a
timelike unit torse-forming vector field.

A further generalization is given by twisted spacetimes, such that the scale

14
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factor depends on both time and position. They were introduced by B.-Y.
Chen in 1979 [7] as the natural generalization of warped manifolds that avoids
the constancy of mean curvature of slices. In [10] B.-Y. Chen gave a simple
characterization in terms of a timelike torqued vector and C. A. Mantica and
L. G. Molinari in 2017 [30] extended the characterization through the exis-
tence of a timelike unit torse-forming vector from GRW spacetimes to twisted
spacetimes.

We start the discussion from the broader class of twisted spacetimes through
the torse-forming vector characterization. A first result is the equivalence be-
tween Chen’s and our characterization. The tensorial structure of the Ricci
tensor is completely determined in terms of the torse-forming vector, the met-
ric, the covariant derivative of the mean curvature and the electric components
of the Weyl tensor. Using the EFE, we will show how a twisted spacetime can
be associated to an imperfect fluid. We also describe GRW spacetimes with the
additional condition that the torse-forming vector is an eigenvector of the Ricci
tensor. The Ricci tensor is simpler than the previous case and some new prop-
erties are obtained. In particular, we discuss GRW perfect fluid spacetimes
using results of literature. Finally, we characterize RW spacetimes through
the covariant description in terms of the torse-forming vector as conformally
flat GRW spacetimes.

2.1 Twisted spacetimes

Let B and F' be two pseudo-Riemannian manifolds equipped with pseudo-
Riemannian metrics gp and gr, respectively, and let f be a positive smooth

function on M, named twisting function:

Definition 2.1.1. The twisted product M = B X ¢ F' is the manifold B x F' with
the pseudo-Riemannian metric g = gg+f2gr and dimension dim(B)+dim(F).

When f depends only on B the twisted product is reduced to a warped
product. B is called the base and F the fiber of the twisted product B x; F'.
Both the leaves B x {¢q} (¢ € F) and the fibers {p} x F' (p € B) are pseudo-
Riemannian submanifolds of B x F.

An interesting case of twisted spacetime is the Lorentzian manifold %,
written as a twisted product between a temporal one-dimensional interval I
and a spatial Riemannian submanifold (M*, ¢*). In privileged coordinates the

manifold M gains the metric structure:
ds® = —dt* + f(t,%)*g},, (Z)datda”, (2.1.1)

15



CHAPTER 2. THE HIERARCHY OF TWISTED SPACETIMES

where f represents the scale factor and gj,,, is the metric tensor of the subman-
ifold M* with dimension n — 1. The scale factor depends on time, otherwise
the manifold is a product of disjoint manifolds.

Twisted spacetimes were introduced by B.-Y. Chen in 1979 [7] as the gen-
eralization of warped manifolds that avoid the constancy of mean curvature
of fibers {t} x M*. In [10] B.-Y. Chen gave a simple characterization:

Theorem 2.1.1. A Lorentzian manifold &, admits a timelike torqued vector
field T, i.e.,

7T <0, Vit =pgy+aimy,  ar =0 (2.1.2)

and p is a function on £, if and only if it is locally a twisted product I x y M*,

where I is an open interval, M* is a Riemannian (n-1)-manifold.

Remark 2.1.1. Given a timelike torqued vector T on a Lorentzian manifold
%, for each scalar function X such that T'V;\ = 0, AT is a timelike torqued
vector. In fact (A1) < 0 and

Vi()\Tj) = iji)\ + )\(pgij + OéiTj) = ’(ﬁgi]’ + ,BZ'Tj, (2.1.3)

where 1 = \p and B; = (Ao +V;\). Since the condition 7°V;\ = 0 is verified,

Bit =0 and Mt is a timelike torqued vector.

2.1.1 Distributions and foliations

Let M and T'M denote respectively an n-dimensional smooth manifold and
its tangent bundle defined as TM = |J T,M. We introduce the notion of
peEM
distribution as:
Definition 2.1.2. A m-dimensional (tangent) distribution on M is a assign-
ment of a linear subspace D, C T,M at each point p € M. We will denote

this by D, where

D=||JD,|cTM.
peEM
Locally, one can say that a m-distribution is generated by a set of m linearly
independent vector fields if and only if in every point p their values span the

m-dimensional subspace D,, , i.e., D, = Span{Xi(p),..., Xm(p)}.

Definition 2.1.3. An immersed submanifold ¥ is an integral manifold of the
distribution D if T,% = D, for any p € 3.
The distribution D is integrable if each point of M is contained in an

integral manifold of D.
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There are distributions for which no integral manifolds exist. The reason

relies on the following definition:

Definition 2.1.4. The Lie bracket of the vector fields u and v is
[u, v] = uv — vu.

The espression [u, v] gives a new vector field. Let be up, v, € Dp, if [up, vp] €
D,, holds for any p the distribution D is called involutive. It’s easy to show
that

Lemma 2.1.1. If D is an integrable distribution, then D is necessarily invo-

lutive.

Obviously, every smooth 1-dimensional distribution is integrable. The inte-
grability of a distribution is closely related to the notion of foliation, defined

as:

Definition 2.1.5. A m-dimensional L foliation of an n-dimensional manifold
M is a decomposition of M into a union of disjoint connected submanifolds

L, called the leaves of the foliation, with the following property: ¥p € M exists

a neighborhood U and a system of local coordinates x = (x',... 2") : U — R"
such that for each leaf Ly, the components of U N L, are described by the
k

equations " = const fork=m+1,...,n.

We have the following theorem by Frobenius [4]:

Theorem 2.1.2. If D is an involutive distribution on M, then the collection

of all mazimal connected integral manifolds of D forms a foliation of M.

Lemma 2.1.2. If L is a m-dimensional foliation of M, then the collection of

tangent spaces to the leaves of L forms an involutive distribution.

In physics, with a m-dimensional foliation we mean that the manifold is de-
composed into hypersurfaces of dimension m and there exists a smooth scalar
field such that each hypersurface is a level surface. The case of our interest is
a n — 1 dimensional spatial foliation of the Lorentzian manifold M. Thus, let
us consider the spacelike hypersurface ¥ € M that is a smooth immersion of a
domain of dimension 7 — 1 in M, with a Riemannian induced metric. At any
point p € X, there is a timelike unit normal vector N, gijN;Ng = —1, called
the future pointing Gauss map of the hypersurface, with the orientation of d|,

(hereafter we omit to specify p). The normal vector and the tangent space

17
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of ¥ at p provide the natural decomposition 9, = aN + Y, where o > 0 and
gijN'Y7 = 0. From —1 = g(8,0;) = —a? + ¢;; Y'Y/ it follows that o > 1; the
value & = —g(N, 0;) = cosh # defines the normal hyperbolic angle 6 of the hy-
persurface at p. The tangential component Y of the decomposition introduces
the height function, h(p), of the hypersurface through the relation Y = Vh.
It is [Vh|? = sinh? 4.

The hypersurface ¥ is rapresented parametrically by z° = 2°(g). Let us
suppose be maximal the rank of the matrix of first derivatives B’ w= 0z"/O0q*,
i.e., n — 1. Relative to the coordinate trasformation 2’/ = 2'(¢'), the B,
behave as components of a type (1,0) tensor, while relative to the param-
eter trasformantion ¢* = ¢'*(¢") the Bi# behave as components of a type
(0,1). The n — 1 1-forms dq',...,dq" " at a point p € ¥ determine n 1-forms
dz', ... dz", given by dz' = B',dq®, which are interpreted as the compo-
nents of a displacement in M, tangential to ¥ at P. More generally, given the
components Q% of an element of the tangent space 7,,%, the associate tangent
vector in T, M has components v/ = BI Q.

The induced metric, defined by

9w = 95B°uB, (2.1.4)

is also named first fundamental form. The quantities B*; = g*“”giij » satisfy
B*;BJ,, = §*,,, but B“iBj“ # §7;. Moreover, the normal vector N is such that

9i;N'B?,, = 0. (2.1.5)
The mized covariant derivative ([24] Section 5.7) of a field X?, is defined as

0X?t,
vile = “pgn

)

- P*A“VXi)\ + FithkVBh'w

where the I' and I'* are the Christoffel symbols of the connections respectively
on M and .. Xiullu

(1,0) relative to the coordinate trasformation and of type (0,2) relative to the

represents the components of a tensor field wich is of type

parameter trasformation. For B*,

OB! N . ‘
Y _T* B\ +T%B*,B",,

By = o0

Because of the symmetry of I' and I'™*, BiVHu = BiHHV holds. The relation

B —N'Q

i —
pllv = By

defines the second fundamental form of the immersion with components €2,,,,.

The eigenvalues A1,...,\,_1 of the symmetric matrix €, are the principal
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curvatures of ¥ at p. The fundamental invariants of 3, named mean curvature,

second mean curvature, etc., are defined to be the n — 1 elementary symmetric

function of A{,..., Ap_1:
1 n—1 1 n—1
H: ; H e —— i,
a1 2N e gy
7j=1 1<
1
H, 1= A A1
1 =1 1 1

In particular, for the mean curvature

1
H=——g"Q

n—1 v

while
(—1)nt det(Qu)
(n —1)! det(g;;,)

A further property for the coefficients of the second fundamental form is given

_1\n—1
Hn,1 = ((nl_)l)!det(guy) =

by the expression of the covariant derivative of the unit normal vector N7 in

terms of them. Using

0gij kot ke
9ij)18 = 76;; = gk "B g — gril™ je B
_ (99 _ Tk o Tk, ) Bl = Y-
=\ ozt gkil ie — gkil 4o B8 = (VZQU) 8= 0,

and the definition of €2,,,,, the covariant derivative of respect to ¢° gives
Qu = —gij BN\, (2.1.6)
while the differentiation of g;; N INJ = —1 yields
9iN'N 15 = 0,

which implies that N/ || 1s tangential to 3. Thus, there exist coefficients C%4
such that V. |]| 5= B, C® 5. Replacing this decomposition in , we obtain
the expression of the coefficient C?, as Quu = _gZBCB”’ where we used eq.
(2.1.4). Then, the covariant derivative of the (timelike) unit normal vector N7
is given by

NI =—B,Q%. (2.1.7)

where we put Q%g = g**# Q3.
Let’s introduce the important notion of totally geodesic and umbilical fo-

liation that will be useful in view of the following results:
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Definition 2.1.6. Let X € M be a spacelike hypersurface. A point p € ¥ is
called umbilical if Q| is proportional to the metric tensor g*|,. The hypersur-

face is totally umbilical if every point of ¥ is umbilical.

Definition 2.1.7. A submanifold (M*, g*) of a manifold (M,g) is called to-
tally geodesic if any geodesic on M™* is also a geodesic on M, i.e., for any

vector field v on M* such that tan V,w = 0, where w|y+ = v is an extension

of v to M, Vyw =0 holds.

The notions of foliations or hypersurfaces of a Lorentzian manifold hold
for Riemannian manifolds as well, with the appropriate sign changes: at any
point p € 3, the vector N, is such that gijN;Ng = 1 and the decomposition
of a general vector follows. Moreover, the second fundamental form of the

immersion is defined by V,,BZ =N iQW.

2.1.2 The torse-forming characterization

We are ready to characterize twisted spacetimes through the existence of

a torse-forming timelike unit vector field u, i.e., a vector such that
Viuj = (p(gij + uiuj) = ph;;, uiui =—1. (2.1.8)

By comparing ([2.1.8) with (|1.1.1)), the vector field u can be viewed as a shear-
free, vorticity-free and acceleration-free velocity field. This characterization is

shown by C. A. Mantica and L. G. Molinari in [30] and relies on the following
theorem by R. Ponge and H. Reckziegel in [33].

Theorem 2.1.3. Let (M, g) be a pseudo-Riemannian space with M = B X F
and assume that the canonical foliations Lp and Lg intersect perpendicularly
everywhere. Then g is the metric tensor of a twisted product B x ; F' if and

only if Lp is a totally geodesic foliation and Lr is a totally umbilic foliation.

Theorem 2.1.4. A Lorentzian manifold £, is twisted if and only if it admits

a torse-forming timelike unit vector field.

Proof. Let £, be a Lorentzian twisted manifold, then there is a frame where
the metric has the form . The timelike unit vector field with components
up = —1, u, = 0 identically solves the equation V;u; = ¢(gi; + usu;), which
gives the non-trivial equation —I’?wuo = f2g;,j, sop=f /f.

Conversely, suppose that a Lorentzian manifold is endowed with a torse-

forming timelike unit vector field u = Jy, with components u’ = §%y: Viuj =
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@hijv gijuiuj =-—1.Itis

Vuu = Vaoao :uk(Vkuj)ﬁg =0

=T" 000k,

then
tan Vyu = 0,

i.e., u is geodesic on M and its restriction on the one-dimensional subman-
ifold. If we put D = Span{dp}, D is a totally geodesic foliation, i.e., D is
an integrable distribution whose leaves are totally geodesic in .%,,. Moreover,
Viuj = Vju; (u is closed), then, being u' = V0, it is the unit normal vector
field for the surfaces 6 = const.

Any vector v, € T),.%, is decomposable into a normal and a tangent com-

kup)u + 0, where the components @ are

ponent to the hypersurface: v* = —(
given by ¥¢ = Biuv“, where BOM = 0 and B¥, = ", are the components of
the immersion matrix (abuse of notation, but we use the natural parametriza-
tion 29 = ¢ and 2¥ = §,2"). Since v° = 0 and v” = BY,v", we can write
ot = hijvj. The induced metric is given by and for the second fun-
damental of the hypersurface eq. holds, where the normal vector N

corresponds to u (except for the sign). The expression of u/ || is evaluated as
W = g+ Bl gu’ =l 5 + Ty = Vgu! = phg?,

then
(phﬁj = BjaQaﬁ.

For j =V, hlgy = (5[3” and Banaﬁ = QVIB, then
Qv = ©3,,- (2.1.9)

The previous equation implies that D+ = Span{d;,...,0,_1} is an integrable
distribution whose leaves are totally umbilical hypersurfaces of .%,.

Since the manifold decomposes into a totally geodesic foliation orthogonal
to a totally umbilical foliation, according to the theorem the metric has
the twisted form.

O

Equation (2.1.9)) implies that the function ¢ is equal to the mean scalar
curvature, H = f /f, where the dot represents the total derivative respect to
the proper time: f = j—{ = %Vi f =u'V;f. The covariant expression for the

scalar function is ¢ = u'V; log f.
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The property that the space .%,, admits a timelike unit torse-forming vector
u is strongly related to the existence of the torqued vector 7 by the following

theorem:

Theorem 2.1.5. A Lorentzian manifold £, admits a timelike torqued vector
7 if and only if u; = 7,/ —72 is a torse-forming timelike unit vector field.
Proof. Let 7 be a timelike torqued-vector on .%,: 77% < 0, Vitj = p gij + .y,
a;7" = 0. The derivative of u; = 7;/v/—72 gives

77t

1
Vit = ——; (pgij + citj) + 7(_;2)3/2 (p gt + cite) = »(gij + wiuy),

where ¢ = p/v/—72, and u? = —1.
Conversely, given a vector u; such that u> = —1 and Vur = o(gjk +ujur),

we can define X; = e~ %u;, where o is a scalar function. This allows to evaluate
Virj = Vi(e™%u;) = €77 [—u;Vio + p(gij + uiuy)]
= pgij + (uip — Vio)7j = pgij + i,
with p = e % and a; = (u;p — V;0). The vector 7; satisfies 72 < 0 and

the condition a;7¢ = 0 provides ¢ = —¢&. In the frame (2.1.1]) the solution is
o = — [dtp + ¢, where c is such that ¢ = 0. O

Remark 2.1.2. The spatial function ¢ can be chosen arbitrarily: by (2.1.3))

giwen a timelike torqued vector T;, the vector e°t; with ¢ = 0 s torqued too.

Let us introduce the orthogonal decomposition V;p = v; —u;u*V ¢, where
v; = h; ¥V . In the frame (2.1.1)) v is a spacelike vector: vy = 0 and v, = Ouep.

The expression of the Ricci tensor in terms of u; and v; is given by:

Proposition 2.1.1. The Ricci tensor on a twisted Lorentzian spacetime has
the form:

R— R—

_qgukue + - fgké + (n — 2)(ukv4 + upvp — uTuSC,MS), (2.1.10)
where R is the scalar curvature, Cjrem is the Weyl tensor, vy, = h" Vi and
£=(n—1)(¢*+¢).

Proof. The Weyl tensor contracted with u,, leads to:

Ry =

Cit" Um = Rjpe™ tm + f(uije —upRje + greRjmu™ — gjoeRpmu™)

-2
Ujgke — gj0Uk

- Dm-2

(2.1.11)
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The evaluation of V;(Viu,) = V(phye) and the subtraction of the expression
with jk exchanged give the expression of Rjis" u.,, that contracted with gkt

provides R;™ uy,:
Rjkgmum = hkgngo — hjzvk(p + <p2(ukgjg — Ujgkg). (2.1.12)
R up, = —(n — 2)v; + &u;.

Another contraction with u; of (2.1.11)), using the two previous expressions
found for Rji¢"uy, and R;™uy,, verifies (2.1.10)). O

The multiplication of (2.1.11f) and (2.1.12)) by u; and the summation on

cyclic permutation of indices 7jk, after some algebra, show that the symmetric

tensor w;u,, is Weyl-compatible [27][25], i.e.,
uiuijum + ujukaigm + ukumcijgm = 0. (2.1.13)

As shown in [20], the property (2.1.13)) classifies the Weyl tensor as purely

electric with respect to u;. The contraction with u? gives
u" Clpem = urCie — u;Cpy, (2.1.14)

where Ciy = v'u™Cippm. It follows that Cyy = 0 if and only if ©v™Cirem = 0.
In [32] C. A. Mantica and L. G. Molinari obtain important results concerning

the Weyl tensor, in particular:
Proposition 2.1.2. On a twisted spacetime, if V" Cijpem = 0 then
V"Cpr =0 and uPV,Cy = 0. (2.1.15)
Thanks to , the main theorem is easily demonstrated:
Theorem 2.1.6. On a twisted spacetime of dimension n > 3:
i. U"Cijpgm =0 = V"Cippm =0,
ii.  V"Cirem =0 = wPVp(u"Cipm) = —p(n — 1)u"Cligpm.

Thus, on a twisted spacetime the divergence free of Weyl tensor is weaker than

the property u™Cjppm = 0.
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Using the expression (2.1.10)) for the Ricci tensor and the EFE we obtain
an imperfect fluid stress-energy tensor (|1.2.3)) with

M:—%"F%, (2.1.16)
p= fnilgf 2(7;__31)1:, (2.1.17)
qj = HTJU]-, (2.1.18)
- f”T”cij. (2.1.19)

The weak, dominant and strong energy conditions respect to u’ imply respec-

tively
R/2—€>0, 40— (R/2—€)%*<0 and £<0.

The vector u’ is a velocity field perpendicular to the energy flux ¢;, the
anisotropic stress tensor m;; is given by the Weyl tensor (that satisfies the
properties 7T7;j’u,j =0, j =0), p and p are respectively the effective pressure
and the energy density. Spacetimes admitting a torse-forming timelike vector
field u; are largely studied in literature, in particular by A. A. Coley and D.
J. McManus in [13], [12].

2.2 Generalized Robertson-Walker spacetimes

A subclass of twisted spacetimes are warped spacetimes, defined by R. L.
Bishop and B. O’Neill in 1964 [2], but introduced before by Kruchkovich in
1957 [22] as semi-reducible spaces.

Let B and F be two pseudo-Riemannian manifolds equipped with pseudo-
Riemannian metrics gp and gr, respectively, and let f be a positive smooth

function on B, named warping function:

Definition 2.2.1. The warped product M = B x; F' is the manifold B x F'

equipped with the pseudo-Riemannian metric g = g + f2gr.

If B is a temporal interval I and (F, gr) a Riemannian manifold (M*, g*),
the warped product B x ;I defines the interesting class of generalized Robertson-
Walker (GRW) spacetimes, obtained from the twisted product with metric
structure given by and the function f depends only on the time,
f(t, @) = f(t). Then, the GRW metric has the local shape

ds® = —dt* + f(t)QgZV(:f)d:L‘”dx”. (2.2.1)
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If g;,,, has dimension 3 and M* has constant curvature, the manifold M cor-

responds to the ordinary Robertson-Walker spacetime.

Remark 2.2.1. The mean curvature H = ¢ = f/f corresponds to the Hubble

parameter in standard cosmology.

GRW spacetimes were characterized in 2014 by B.-Y Chen through the

existence of a vector that satisfies concircularity property [8]:

Theorem 2.2.1. A Lorentzian manifold £, of dimension n > 3 is a GRW
spacetime if and only if it admits a timelike concircular vector field X, named
Chen’s vector, i.e.,

X'X; <0, V;X;=pgij, (2.2.2)

where p is a function on %,.

Remark 2.2.2. In view of expression , a concircular vector corresponds
to the special torqued vector with o; = 0. Moreover, given a vector X that
satisfies , if the scalar X\ is a constant, A\X is a timelike concircular
vector field:

(AX2 <0, ViAX;) = (A)gis. (2.23)

As shown in [9], up to constants, there exists at most one concircular vector

field associated with a warped product I <y M*.

In [28] C. A. Mantica and L. G. Molinari obtained important results for
the Ricci tensor of a GRW spacetime using the Chen’s vector X;. Given the
Chen’s vector X;, the vector u; = X;/v/—X2 is clearly torse-forming, but the
opposite way it’s not necessarily true. The torse-forming property is weaker
than concircularity, but we can give a characterization of GRW spacetimes

through the existence of u; with an additional condition:

Theorem 2.2.2. A Lorentzian manifold %, of dimension n > 3 admits a
timelike concircular vector X; if and only if u; = X;/v/—X? is a torse-forming
timelike unit vector, i.e., Viuj = o(gij+uiu;), and ¢ is such that Vip = —pu;.

Proof. If £, admits a timelike concircular vector X;, then u; = X;/ V=X2is
such that u? = —1 and V;u; = ¢(gij + wu;), where ¢ = p/v/—X2, and u? =
—1. The integrability condition of V. X; = pgji gives Rj, X™ = —(n—1)V;p,
then (n — 1)Vjp = —£X;. Replacing X and p in terms of u and ¢ we get
Vip = —pu;.

Conversely, given a vector u! such that u?> = —1 and Viur = ¢(gjr +

ujuy), we can define X; = e”%u;, where o is a scalar function. This allows
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to evaluate V;X; as in theorem but for X* being a concircular vector
a; = (ujp — V;o) has to vanish, then pu; = V;o. From V;p = —¢u; follows
that V;(¢u;) — V;(pu;) = 0 and ¢u; is locally a gradient.

O

The following results hold for the Ricci tensor:

Proposition 2.2.1. On a GRW spacetime the torse-forming vector u; is an

eigenvector of the Ricci tensor:
ijum = £uj (2.2.4)
and the eigenvalue satifies
E=mn—-1D(g+¢%), Vil =—tu, (2.2.5)
Proof. The integrability condition of Viu; = ¢(gjr + ujuy) is
Rjne™um = [V, Vilue = Vj(0hre) — Vi(ohje)
= wpueV o — ujug Ve + 0 (urgse — wigne) + greVie — 950V
= ©*(urgje — Wigke) — Gretij P + Gjeured,

where we have used the property V;po = —¢u;. The contraction with g*¢

shows that u’ is an eigenvector of the Ricci tensor with eigenvalue & given by

(2.2.5)). Moreover
Rjre™ um = —%(ujgke — UkGije), (2.2.6)

whose covariant derivative is

< (hjsgre — Prsgje)

\Y%
umvstkfm + @Rjkﬂmhms = - & %

7 (i gke — urgje) -

The sum on cyclic permutations of indices sjk and the Bianchi identities give

0 = gre(uj V€ — usV;€) + gjo(us Vi€ — upVs€) + gse(ur Vi€ — u; Vi€).

The contraction with ¢% finally provides u; Vi€ — u,pV;§ = 0, with solution
(12.2.5)). O

Theorem 2.2.3. On a GRW spacetime the Ricci tensor can be expressed in
terms of the Weyl tensor, the curvature scalar R, the eigenvalue & and the

torse-forming vector u' as

R —n¢ R—-¢
UkUp +
n—1 n—1

Ry = Gre — (n — 2)Clipmul u™. (2.2.7)
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Proof. The expression of the Ricci tensor is given by the contraction of Weyl
tensor with 4w/ and using the eigenvalue equations and ([2.2.6)), i.e.,

4 E—R 1 )
Ciremuu? = |:(nl)(ng)(uj9k€ — uggje) + m(Uije —urRje) | v
1 ¢E—R
= - he + Eurue + Ry | -
n—2|n—-1
O
Remark 2.2.3. From the integrability condition of Vjiu;,
Rjpu™ = =V —ujp — ©*(n — L)u; +nV,p — Ve,
the condition Vi = —pu; is equivalent to requiring that u; is an eigenvector of
the Ricci tensor. In the comoving frame, the property Vo = —pu; corresponds

to o(Z,t) = (t), i.e., f(Z,t) = f(t) or alternately, for geometers, the spatial

submanifold M* is a spherical foliation.

The multiplication of (2.2.6)) by u; and the summation on cyclic permuta-

tions of ijl show that u;u,,, is Riemann-compatible [26]:
Wt Rjggem + wiu™ Regon, + wet™ Rijgm = 0,
that implies Weyl compatibility:

uiuijgkm + ujungikm + ugumCijkm = 0. (2.2.8)

2.2.1 Perfect fluid GRW spacetimes

In this subsection we discuss necessary and sufficient conditions for GRW
spacetimes to be perfect fluid spacetimes, more often named quasi-Einstein
manifolds [7], and for a perfect fluid to be a GRW spacetime. Let’s start on

defining a perfect fluid spacetime as:

Definition 2.2.2. A Lorentzian manifold %, is named perfect fluid spacetime

if the Ricci tensor has the form
Rij = Qgi;j + 51}1'1)]', (2.2.9)
where a and 3 are scalar fields and v* = —1.

As v; is an eigenvector of the Ricci tensor, the latter can be parameterized

in terms of the scalar curvature R and the eigenvalue n as

— nvkvg + — ngkg. (2.2.10)

R —
ke n—1 n—1
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Remark 2.2.4. Suppose that the GRW spacetime is also perfect fluid. Thus
there exists a vector v; such that the Ricci tensor has the form (2.2.10) and a

torse-forming timelike unit vector u; such that Rijuj = Eu;. Then

<§ _Eonm 77) up = - nn(uzw)vk

n—1 n—1

Since both wy, and vy are timelike vectors, it cannot be uFv, = 0. Unless
R = nn, it must be v, = tug and £ = 7. Instead, if R = nn the spacetime is

Einstein, i.e., R;j = ng;j, and u; is not necessarily equal to v;.

M. Sanchez in [34] and A. Gebarowski in [19], [I8] respectively proved the

following theorems:

Theorem 2.2.4. A GRW spacetime M is perfect fluid if and only if the sub-
manifold M* is an Einstein manifold, i.e., R}, = — G-

Theorem 2.2.5. On a GRW spacetime M the submanifold M* is Finstein if
and only if V" Cjppm = 0.

Theorem can be nimbly demonstrated as follows:

On a GRW spacetime the spatial components of the Ricci tensor are listed in

appendix but are also given by (2.2.7):

R_g *
n— 1g;wf2 - (n - Q)CO;WO-

R, =

Using the expression of £ in terms of f and the expression of scalar curvature

listed in appendix |E|, the comparison of the two equations for R, gives

S: fg;qu - g;y[(n - 2)f2 + ff] - (n - 2)COMV0
. (2.2.11)
= mgzy — (n - 2)00;w07

*
R, =

that shows the condition R}, = %gfw is equivalent to require that M is a
perfect fluid spacetime.

The two theorems together imply that a GRW spacetime is perfect fluid if
and only if V"Cjrey, = 0. It’s easily to check also:

Proposition 2.2.2. On a GRW spacetime with torse-forming timelike unit
vector u;, Ciremu™ = 0 if and only if R, = agji + Bujuy, for suitable scalars
o and .
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Proof. If Cjpgmu™ = 0, eq. (2.2.7)) gives to Rj;, the perfect fluid form.

Conversely, the Weyl tensor contracted with u™ is

— R 1
Cikemu™ = < )(ujgke — ukgje) + nf(“jRM —upRje).

(n—1)(n—2 2

If Rjr = agji + Bujug, the trace and the eigenvalue equations respectively
give R = na —  and § = o — 3, then Cjpppnu™ = 0. O

Therefore, by the previous propositions there exists an algebraic equiva-
lence between the condition of harmonic Weyl tensor and Cjigpu™ = 0. Such

equivalence was found by C. A Mantica and L. G. Molinari in [2§]:

Theorem 2.2.6. On a GRW spacetime with torse-forming timelike unit vector
ui, Cigemu™ = 0 if and only if V" Cjppm = 0.

Thanks to this important theorem, we can prove theorem[2.2.5]in a straight-
forward way. Since V™ Cjisp, = 0 corresponds to Cjxemu™ = 0, Cjieo = 0 and
equation shows that the submanifold M* is Einstein. Conversely, if
R, = %g;w we have Cjuymujum = C,,, = 0 that, with the use of ,
corresponds to Cj umu™ = 0. Then Cjpppu™ = 0 and V" Cjppy, = 0.

We can summarize all the equivalent conditions:

Theorem 2.2.7. A GRW spacetime M 1is perfect fluid if and only if one of

the following statements is satisfied:
. « _ R *
i. R/w = 7 G
1. Vijkgm =0,
119, uijkZm =0.

Conversely, C. A. Mantica, L. G. Molinari et al. in [3I] found sufficient

conditions for a perfect fluid spacetime to be a GRW spacetime:

Theorem 2.2.8. A perfect fluid spacetime with Ricci tensor

Ry =

is GRW if the vector field u' is geodesic and such that uijCjkgm =0.
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Einstein’s equation in perfect fluid GRW spacetimes

Let us consider a GRW spacetime such that the Ricci tensor has the perfect
fluid form. Friedmann equations can be recovered in a straightforward way,
using the characterization of the space through the torse-forming vector. The
covariant divergence of the eigenvalue equations gives the important
scalar relation

1. )
Sh=neg— R+,

where we used the torse-forming property, the relation VkRkj = %VJR and

eq. (2.2.5). The solution is

*
P
where R* is the scalar curvature of the spacelike submanifold.

The perfect fluid form of the Ricci tensor (2.2.9) makes these spaces solu-
tions of the EFE for perfect fluids: Gy = Ty where Ty, has the form (1.2.2).

The trace and the eigenvalue equations respectively give

R 264 (n—1)(n - 2)¢?,

(n—2)R=—2kp(n—1)+2kp
26 — R = —2ku

and the substitution of the expression of R and of £ in terms of the scalar

function f and its derivatives provides

f<a<p+u2:?) ——(n—2)§

R 1 2
Kt = 27 + Q(n— 1)(n— 2);2

If n =4, R* = const and defining f(t) = a(t), the scale factor of the universe,

the previous equations correspond to the usual Friedmann equations, i.e.,

ﬁ K

=——(3
3a? R*
= KU — .
a? H 2a?

2.2.2 Conformal trasformations

Given a GRW spacetime (M, g), if o is a smooth function we can replace the

metric tensor with a locally rescaled one through a conformal transformation
9ij(x) = €27 gij(x).
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A timelike, null or spacelike vector v* with respect to the metric gij has the
same property with respect to g;;. Conversely, if the light cones of two Lorentz
metrics g;; and g;; coincide at a point p € M, then g;; must be a multiple of
9ij at p.

Under conformal transformation the Weyl tensor is invariant, i.e., Cjkg m=
Cjre™, while C_'jkgm = eQUCjkgm. The Christoffel symbols, the Ricci tensor and

the divergence of the Weyl tensor transform as [35]
l:‘fj = Pki]‘ + 25k[jvl-]0 — gijvka,
Rij = Rij — (n = 2)[ViVjo — (Vi0)(V;0) + 9i(V*0) (V)] — g5 V70,
?méjkgm =VCjpe™ + (n —3)Cire" Vo (2.2.12)

=

In [5], S. Capozziello et al. show that any conformal transformation
i =€ g;;  Vio = —u0, (2.2.13)

maps a GRW spacetime (M, g) to a GRW spacetime (M, g). In particular,

u' = e~7u’ is a torse-forming vector in (M, g) with
Vit = e (¢ + ) (gij + Ustiy)
and the Ricci tensor Rij reduces to
Rij = Rij — (n —2)[pc — 62 — &lusu; + [(2n — 3)pd + (n — 2)62 + 5]gi;-

Since u' is an eigenvector of I;;, the rescaled vector 4' is an eigenvector of R;;

with eigenvalue & and scalar curvature R given by

£=e e+ (n—1)(po +5)],

R=e¢"%[R+2(n—1)%05 + (n — 1)(n — 2)6* + 2(n — 1)5].

On a GRW spacetime with harmonic Weyl tensor, the conformal transfor-
mation (2.2.13]) guarantees ?méjkgm = 0. In fact, from theorem m
UmCjre™ = 0 holds and eq. ([2.2.12) gives the result. Then, under the con-

formal map (2.2.13)) a perfect fluid spacetime GRW (M, g) provides another
perfect fluid spacetime GRW (M, g), with Ricci tensor given by

31



CHAPTER 2. THE HIERARCHY OF TWISTED SPACETIMES

2.2.3 A recent result for f(R) gravity in GRW

General Relativity can be formulated in a very useful way through the

Lagrangian formalism. The Einstein-Hilbert action is defined as
1
Spn = 5~ /dnfﬂv —9R,
K

where g = det(gi;). The full action of the theory is given by Sgx and a matter

term
S = Sgxg + Sm, where S, = /d"x\/—gﬁm.

The principle of least action provides 6S = 0, i.e. the variation of S with
respect to the inverse metric is zero, yielding the usual EFE with stress-energy

tensor given by

T, = 2 0=9Lm)
Y9 agY

When the cosmological constant A is included in the total action as
S = /d”x\/TQ [;ﬁ(R— 20) + L |,
the field equations take the well-known form
Rij — %QUR + Agij = KTy

These are the EFE used in the current standard model of cosmology known
as the ACDM model. The cosmological constant has the same effect as an
intrinsic energy density of the vacuum and represents the simplest possible
explanation for dark energy, that satisfies the equation of state uy = —pa.

A generalization of Einstein’s theory are the so called f(R) theories of
gravitation. They were introduced by H. S. Buchdahl in 1970 and gained
popularity with the works by A. Starobinsky on cosmic inflation. The task of
these theories would be to explain the problem of dark side (dark energy +
dark matter) in a purely geometric way. Instead of searching for new material
ingredients in the universe, the dark side problem could be formally solved by
replacing the scalar curvature in the Einstein-Hilbert action with a smooth

function of it, so that the total action becomes
1
5= o /d":c«ﬁ—gf(R) + S
Thanks to the principle of least action the field equations are

1f(R)gij +19;;V? = ViV]f'(R) = kT3 (2.2.14)
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where a prime denotes derivative with respect to R. It is easy to check that
the property V;T%; = 0 is preserved for any differentiable f(R). If R;; has the
perfect fluid form, the presence of the terms V;V ;R and (V;R)(V;R), prevents
T;; to describe a perfect fluid, but if in addition there exists a timelike torse-
forming vector field u* such that Rijui = &u; (i.e., if the spacetime is a GRW
spacetime) and if V;R = —u;R, the lhs of has the perfect fluid form,
so that the field equations for f(R) gravity give a perfect fluid stress-tensor.
In [28] L. G. Molinari and C. A. Mantica show that V;R = —u;R holds on a
GRW spacetime with harmonic Weyl tensor. Then, S. Capozziello et al. in
[5] show that:

Theorem 2.2.9. On a GRW spacetime with V,,,Cjre™ = 0, the stress-energy
tensor is a perfect fluid in any f(R) theory of gravity.

Another important result is proved considering quadratic gravity, that cor-
responds to Einstein-Hilbert action corrected with quadratic combinations of

curvature invariants

S:/J%VjﬁR—2A

. + OéR2 + BRURU + ’Y(Rjkngjkem — 4Rinij + RQ)
+ Sm,

where the term G = RijkgRij kt _ 4R¢jRij + R? is the Gauss-Bonnet topological
invariant. On a GRW spacetime such that the Weyl tensor is zero (i.e., on
a Robertson-Walker spacetime) the stress-energy tensor has a perfect fluid in
any quadratic theory of gravity, i.e., the quadratic gravity contributions have
the perfect fluid form. Very recently the same authors in [6] show that, with
the same hypothesis, a general smooth function f(R,G) gives again a perfect

fluid stress-energy tensor.

2.3 Robertson-Walker spacetimes

Robertson-Walker (RW) spacetimes are an important subclass of GRW
spacetimes that share the property of being conformally flat, i.e., Cjism = 0.
The Ricci tensor assumes the perfect fluid form
R —né& R—-¢

UpUp +

Ry, =
ke —1 n—1

9ke
and the stress-energy tensor is determined by the EFE,
The = (p + p)ukue + PYres
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with p and p respectively given by (2.1.17)) and (2.1.16]).

RW spacetimes are usually characterized by the properties of the spatial
submanifold M*. By the homogeneity and isotropy hypothesis, the Riemann

tensor on M* must be (see [35])

R;Vpa = k‘i(g;ﬁo‘g;’;p - g;ozg;p>1 (231)

, Y . .
where k is a constant: k = CESCEEE A space that satisfies (2.3.1) is

named space of constant curvature. In [I4] is shown that any two spaces of
constant curvature of the same dimension and metric signature which have

equal values of & must be (locally) isometric.

Remark 2.3.1. The constant curvature property implies an Finstein mani-

fold, but the opposite way is not necessarily true.

In n =4, the RW spacetime metric can be written as:
dip?

1 — ky?

where 1,60, ¢ are the space coordinates. Through an appropriate rescaling

of the coordinate ¢ and the scale function f(¢), the constant k takes three

ds® = —dt® + f(t)2 +%(d6? + sin® 0dp?) |

possible values +1,0. For k = 1, after the substitution v = sinr, the induced

metric on M* in spherical coordinates represents the surface of a 3-sphere, i.e.,
dr? + sin? r(d6? + sin® 0d¢?).

The value £ = 0 gives the ordinary 3-dimensional flat space. In spherical

coordinates, the metric is
dip? + 12 (d6* + sin® Odg?).

Finally, for k = —1 the submanifold M* is a 3-dimensional hyperboloids. In

hyperbolic coordinates, with 1) = sinhr, the metric takes the form
dr? + sinh? 7(d6? + sin® 0dg?).

In [3], Brozos-Vézquez et al. studied conformally flat spacetimes and
proved that the two characterization are equivalent. We report the proof

in terms of the torse-forming vector:

Theorem 2.3.1. A GRW spacetime M is conformally flat if and only if the
submanifold M* in the warped product M = I Xy M™* is a space of constant

curvature.
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Proof. With Cjgem = 0 the Ricci tensor has the perfect fluid form and, in view
of proposition the Riemann tensor is largely determined:

26— R
Rjrom =————=(91eGjm — Jkm3je)
TR (= 1) (n — 2) IR T 232)
R —né& e
+ m [gkmujue — GimUkUg + GjeUkUm — gkeujum]

The spatial components of the Riemann tensor are

28— R 2
R Voo — * * _ * *
wrr = 1) (n = 2) 90900 = 9o090p)

R* 2 * % * %
= - [(71—1)(71—2) + 71 (900950 — Goo9pp)

From appendix Rivpe = Rjpe — f2(g;pgza — 959;)- Comparing the
two expressions for R0, the tensor R}, satisfies ([2.3.1]).

v po
Conversely, the general expression of the Riemann tensor is given by
26 - R
Rjkem =Cikem + m(gkégjm = Gkm9ije)
R —n¢
+ m [GremUjte — GimUkte + GjetkUm — Gretjlm]
then
* R* * * * *
pro N m(g”‘fgﬂp o gl’pgua) + C/WPU'

If the submanifold M* is a space of constant curvature it must hold C,,,,» = 0.
Since M™ is also an Einstein manifold, from ([2.2.11f) we obtain Cp,,0 = 0 and

(2.1.14) gives Cyp0 = 0. Finally we have Cjpp,, = 0. ]

The expression corresponds exactly to the general form of the Rie-
mann tensor in a RW spacetime and characterizes quasi-constant curvature
manifolds, introduced by B.-Y. Chen and K. Yano in 1972, [I1], such that the
submanifold M* is a space of constant curvature.

In n = 4, the Weyl tensor of pseudo-Riemannian manifolds presents the

special algebraic identity reported by D. Lovelock and H. Rund in [24]

0= giankZm + gank'Mm + gkncijﬁm
+ 9imCikne + 9imCrine + JemCijne (2.3.3)
+ giZCjkmn + gjﬂckimn + ngCijmn-

If Cjremu™ = 0, where u is a generic vector such that u? # 0, the contraction

with u’ gives the important identity
UnClikem + UmClkne + W Cikmn = 0
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and another contraction with u™ results in Cjien, = 0. As a consequence we

have:

Proposition 2.3.1. In n = 4, a GRW manifold with V" Cjgpy, = 0 is a

Robertson-Walker spacetime.

Proof. In a GRW the condition V™"Cjisy, = 0 is equivalent to Cjppmu™ = 0,

with u; the torse-forming vector. Then, in n = 4, it is Cjisy, = 0. O
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Chapter 3

Unicity of the torse-forming

vector

In the previous chapter we reported the characterization of the large class
of twisted spacetimes as in [30]. In particular, we discussed how the existence
of a torse-forming vector field gives a peculiar metric structure. Then, it’s
natural to think about the existence of a second torse-forming vector and
its implication, excluding the trivial twin antiparallel vector. The possible
existence of a second torse-forming vector would rise strong restrictions on the
spatial submanifold M*.

First of all we report a preliminary analysis in the most general case of
twisted spacetimes that admit two torse-forming vector fields. Such request
implies a doubly twisted metric for the spatial submanifold. Moreover, since
the Ricci tensor can be expressed in two different forms through the two torse-
forming vectors, we find an interesting property that the Weyl tensor must
satisfy. The 4-dimensional case is very particular since the existence of a
second torse-forming vector provides the complete tensorial structure of the
Weyl and, thus, Riemann tensors. In this way, using the EFE, also the stress-
energy tensorial structure is completely determined and corresponds to a two
perfect fluid mixture discussed in the first chapter. Before the discussion of
unicity in GRW case, we examine how, in [13], A. A. Coley and D. J. McManus
reach the same result in a 4-dimensional twisted spacetime with the aid of the
EFE.

Finally, we handle GRW spacetimes specializing the results already ob-
tained for twisted spacetimes. The unicity is guaranteed by the property
Vip = —pu; only if the eigenvalue of the Ricci tensor associated to w; is not

constant. Otherwise, we can prove the possible existence of a second non-
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trivial torse-forming vector and how the spatial submanifold takes the form of

a warped manifold.

3.1 Duality in twisted spacetimes

Let us consider a twisted spacetime endowed with a torse-forming timelike

unit vector field u;, i.e.,

Viuj = phij,

Vip = —ui + vbj,
where b*u, = 0 (b, is spacelike), b¥b, = 1 and v = b'V;p # 0. Besides
ug with scalar field ¢, let us suppose the existence of a second timelike unit

torse-forming vector field w;, not collinear with u;, with scalar field A such
that

Viwj = )\ilij, (311)
where iLZ'j = gij + w;w;.

Remark 3.1.1. The vector wy, is such that u*wy, # 0, otherwise wy would be
spacelike. Furthermore, we are assuming that u*wy, # %1, otherwise the two

vectors would be collinear, i.e., w; = tu; with A = L.

We prove the following main theorem about the possible existence of two

distinct torse-forming vectors:

Theorem 3.1.1. In a twisted spacetime, for another non-collinear timelike

unit torse-forming vector field to exist, it is necessary that

VbF
Vibj = pbiuj + (hij — bibj) —— = 5 (3.1.2)
2| Riju't’| < |Rij(u'v! + b)), (3.1.3)

If it exists, it is w; = wu; cosh a + b; sinh o, with

QRZ‘juibj
Rij(uiud + bibi)

tanha = —

V. bF
n—2

and Vw; = /\iLZ’j, where A = @ cosh o + and iLZ’j = (9ij + wiwj).
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The following identities with the Riemann tensor, [V, Vj]uy = Rjjpmu™ and
Vi, Vj]wg = R;jimw™, are evaluated with the torse-forming conditions for u
and w:
Rijimu™ = hji.Vip — hir,V o + 0% (ujgir, — uigjn),
Rijemw™ = hji Vi) — higV X + X (w;gir, — wigjr)-
The trace of both equations on ¢ and k gives identities with the Ricci tensor
Rjmu™ = hjp Vi + (n = 1)(¢*u; — V;p), (3.1.4)
Rjmw™ = hjp, VEA + (n — 1)(Vw; — V), (3.1.5)
while the contractions with w’ or with u’ respectively are
Rijimw'u™ = o' — (wujug +wi) Ve + @ (ujwg — w'uigir),  (3.1.6)
Rijkmumwi = B]k)\ — (uiwiwj + uj) VA + Az(wkuj — uiwigjk), (3.1.7)
where, for the second equation we have exchanged k with j, after renaming

i with m and vice versa. In (3.1.6)), ¢’ denotes the derivative of the scalar

function along wy: ¢’ = w*V . Subtracting one equation to the other,
ikl = (¢ = N)w'u; = N + ujure’ — (w'uiuy, + wi) Ve
+(9? = Nujwy, — wjwpA + (vtwaw; +u;) Ve = 0.

The vectors uj, w; and V¢ span, at most, a 3-dimensional space, then there
exist, at least, n — 3 orthogonal vectors to them. The contraction with one of

these non-zero vectors gives
¢ — A= (ulw;)(p? — \?) (3.1.8)
and, using this result in the starting equation,

wjupp' — (Wuuy +wg)Vip + (0 — A)ujwy (3.1.9)
—ijk/'\ + (uiwiwj + Uj)vk/\ = 0.

The trace of the latter is: (wiu;)(p? — A2+ N — @) +2(A — ¢') = 0. With the
aid of eq. (3.1.8) we obtain, after cancelling uw/w; # 0,

o+t =N+ (3.1.10)

Hereafter, we denote £ = (n — 1)(¢ + ¢?). The contraction of (3.1.9) with u
or with w* and the use of (3.1.10]) give

up’ + wiuip] + wp [N + wlwi] = [(vlwy)? — 1]V, (3.1.11)
uj[p + wrurg'] + wiA + vtwN] = [(utw;)? — 1]V ;. (3.1.12)
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If Vi is not collinear with uy, the coefficient of wy, in cannot be zero,
and the same equation shows that Vo is a linear combination of uy and wy.
Eq. shows that Vi A is a linear combination of u; and wy. Since wy, is
spanned by the vectors u; and by, it is convenient to introduce the hyperbolic

rotation of the orthogonal pair (u,b) to the orthogonal pair (w, c):

w; = u; cosh o + b; sinh «
a #0. (3.1.13)
¢; = u; sinh o + b; cosh a

Then: w? = —1, cpwk = 0, ke, = 1, ujuj — bjb; = w;w; — c;cj. The vector
w must have a component parallel to u, otherwise w would be spacelike. If
w exists, also —w is a timelike unit torse-forming with scalar field —\. The
following proposition shows that at most two different torse-forming vectors

can exist:

Proposition 3.1.1. The only possible hyperbolic rotation is:

Rij (u"uj + blbj) '

tanha = — (3.1.14)

Proof. The contraction of (3.1.4]) with u’ and of (3.1.5) with w’ give the same

result: Rijuiuj = Rijwiwj = —¢. Then
0= Rj(w'w’! — u'w?) = sinh Ry (u'v? + b'd’) sinh a + 2(R;;u'b’) cosh .
If a # 0, the result is obtained. O

Remark 3.1.2. The property |tanha| < 1 poses the condition (3.1.3) on
the Ricci tensor of the twisted spacetime for a second vector to exist. The
evaluation of (3.1.14) gives

n—1

<R L 2)Cijbibj> sinh a = 2v(n — 2) cosh a. (3.1.15)
Proposition 3.1.2. The vector field w; is associated to the scalar field
k

b
b 5 sinha. (3.1.16)

n —

A= pcosha +

Proof. The torse-forming conditions for u; and w; give the identity
Vi(uFwy) = (uFwy) (pus + Aw;) + ow; + Aug,
which becomes
Via = (Acosha — @)b; + Asinhau;, i.e., Vo= \¢; — @b;. (3.1.17)
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The relations Viw* = Vi (ufcosha + ¥¥sinha) = A(n — 1) and Viub =
e(n —1) give:

(A — @cosha)(n — 1) = sinh au* Vo + cosh ab*Via + sinh aVb".

The terms u*Vjia and b*Via are obtained from (3.1.17) and the previous
equation gives the function . O
Remark 3.1.3. Since v'u? — b = wiw? —c'dd and Rijuiuj = Rijwiwj = =¢,

it follows that Rijbibj = Rijcicj. Therefore, the angle o is also given by

IR wtcd
tanha = e (3.1.18)
R;j(w'wl + ctc?)
Eq. (3.1.18)), together with (3.1.14)), implies
v=—c'V;), (3.1.19)

that corresponds to Rijuibj = —Rijwicj.
Eq. (3.1.11)) in terms of u; and by becomes, after the cancellation of a factor
sinh a,

up[(0°Vi) + cosh a(b°V;\)] + by sinh a (B°V;\) = sinh a Vi \.

The contraction with b* gives nothing, while the contraction with «* and the
use of b'V;p = v give again the . After some simplifications, we obtain
that the derivative of \ is decomposed in a parallel and an orthogonal part to
w, as

Vid = —wpX — vey. (3.1.20)

Let us finally write the condition (3.1.1]) for w; to be torse-forming, in terms

of its hyperbolic components
Viw; = V;(cosh auj + sinh ab;)
= phyj cosh a + (uj sinh a 4 bj cosh a)) Vo + sinh o(V;05)
= Agij + wiw;)
= Ngij + uiu; cosh? a + (uibj + u;b;) cosh asinh o + b;b; sinh? al.

By means of (3.1.17)), the elimination of V;« gives
(hij — bibj)(pcosha — X) = sinh a(pbju; — V;b;).

The elimination of A by (3.1.16]) and the hypothesis sinh o # 0 give the con-
dition (3.1.2). If not fulfilled, the non-collinear vector w; does not exist.
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Proposition 3.1.3. Condition (3.1.2)) for V;b; is the most general combina-
tion of the kind V;b; = Ag;j + Busuj + Cb;b; + Dbju; + Ebju;.

Proof. The relation ijibj =0gives A+ C =0 and E = 0, while ujvibj =
—pb; provides D = ¢ and A—B = 0. Then: V;b; = A(gij+usuj—b;ibj)+pbiu;.
Finally: Vib* = (n —2)A, and (3.1.2)) is obtained. O

Proposition 3.1.4. If there exist two different timelike unit torse-forming

vectors u; and w;, the Weyl tensor satisfies

Cij = (uiuj + blbj) — Crijsbsbr, i.€., Crijs(usur + bsbr) = (uiuj + blb])
(3.1.21)

Proof. Using eq. (3.1.13) and ({3.1.20]), the Ricci tensor can be expressed in

two equivalent forms

R— _
ij = _q£UZUj + %gij +v(n — 2)(biuj + bjui) —(n— 2)Cij,
R - R - ~
R;; = - ngwiwj + %gij —v(n —2)(ciw; + cjw;) — (n — 2)Cyj,

where él-j = Cpijsw"w®. The subtraction of the two equations, after some

algebra, gives

R—
Tf sinha — 2(n — 2)vcosha| [(usu; + b;bj) sinh a + (u;bj + u;b;) cosh @]

n —

—I—(n - 2)(01 — Cl]) =0.
Using (3.1.15)) in the previous equation, we obtain

Cii =[(u;u; + bb;) + (u;b; + u;b;) coth a](C mbkbm
J [( J ]) ( J J ) ]( k ) (3.1.22>
— coth aijs(urbS + usbr) - Cm'jsbsbr.
Since a torse-forming vector is Weyl-compatible, then
Cm'js(urbs + usbr) = Csjirurbs + Cm'jsusbr = (ujC’SZ- + uiCsj)bS
and (3.1.22)) takes the form

Cij =[(usuj + b;b;) + (usb; + u;b;) coth ] (Crpb*d™) (31.23)
— coth Oz(Usti + chsi)bs - Cm'jsbsbr. . o
The contraction with u’ gives

Ui (Chnbb™) + b7 b°u' Chrijs = — coth afbj(Chm b d™) — Cy;b%].
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The lhs of the previous equation is zero: b’"bSuiC'MjS =0"b%(usCjp — u;Csy) =

—u;j(b"b°Chy), so that b is an eigenvector of Cjs
Cjsb® = b (b"b°Cry)

and (3.1.23]) reduces to (3.1.21]). ]

Through the following proposition, the condition (3.1.2)) can be expressed
in terms of the spatial submanifold (M*, g*):

Proposition 3.1.5. Condition (3.1.2) is equivalent to the requirement that

the spatial submanifold (M*, g*) admits a unit vector n’,(Z), such that

i
Vong = 9(ghs — nang) +nimp, (3.1.24)
where
9 — V*an(’;7
n—2
miy, = Ao — (g"°n% As)nl,  with A, = JZ? = Vi (Inf).

Proof. Choosing i,j = 0, and i,j = «, the condition (3.1.2]) gives the

non-trivial equations

Vb

SR (3.1.26
— ( )

Vibs = 2V I f b,V (0 f)gs + (/2655 — babs)

where V7, is the covariant derivative with respect to the metric g5, V** =
g*es V5 and Vi(In f) = Oa(In f). The expression for Vib* is evaluated as

Vel = £240T by = a2 [V, — 26,9 In ) + b, (In )"
= f‘2[V*7b7 + (n = 3)b, V™7 In f]

and V}bg takes the form
* * 1 * *: *
Vabs =200V Inf+ —— 2[V by — by V7 In flgks
1
- mf”[v*wy + (n— 3)b,V*" In f]babg.

The vector n¥, = b,/ f is a unit vector in the spatial submanifold: g*o‘ﬁnt’;ng =

1. In terms of n}, the previous equation, after some algebra, gives the expres-

sion ((3.1.24)) and (3.1.25)) reduces to 9;n}, = 0.
O
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In , the scalar function 9 can be viewed as expansion parameter in
the submanifold M* and the term mj = n**Vinj is the 3-acceleration, with
n**m}, = 0. The vector n}, is a shear-free and irrotational spacelike congruence
in terms of the 3-dimensional geometry, therefore, it admits a totally umbilical
foliation [2I]. In fact, through the discussion in subsection the normal

unit vector n* is such that
n*® g = —B4Q"p. (3.1.27)

where a = 1,...,n — 1, A = 2,...,n — 1, B*4 is the matrix of the first

derivative of the immersion ¢¢ = ¢*(u) and Q% is the second fundamental

form of the (n-2)-dimensional submanifold M with metric tensor § given by
JaB = gagB*aB’ ,

(45 = §19Q%g). The vector n*® is chosen to be along the direction 1
without loss of generality. Using the natural immersion, B' 4 = 0 and B4 p =
545, the expression of n*®| g is given by

n* g =n*" g+ "%, B pn*" = n** p + T*p,n*" = Vin*®

=0(gp" — npn™*) + npm™* = Jgp*,
then, for a = A, ggA = 0p? and (3.1.27) reduces to
Qap = —V3as,

i.e., the first and the second fundamental form are proportional. With the aid

of the following proposition, [17]:

Proposition 3.1.6. If a spacelike manifold (M*, g*) admits an umbilical fo-
liation, g* is the metric of the doubly twisted product X X (g, 1,y Y, i.e., there
exists a coordinate system (x, xA), with A =2,...,n—1, such that the induced

metric takes the form
ds*? = f2da? + f2ypdatda®,

where f1 and fo are two positive functions on M* and yap = yap(z©) is the

metric of the n — 2 spatial submanifold.

the vector n’, = (0, f1,0,...,0) and the manifold M gains the metric struc-
ture
ds® = —dt* + f(t,2)°[1(&)*da® + fo()*yap(aC)da da®].

44



CHAPTER 3. UNICITY OF THE TORSE-FORMING VECTOR

Remark 3.1.4. From definition of ve and n}, follows 0,9 = vfn} = vf f10%,
thus the twisting function f has a dependence only by t and x.

Moreover, if 0o f and n}, are parallel vectors, eq. reduces to V’&ng =
ﬁ(g;ﬁ - n;nz) and the spatial submanifold (M*, g*) is twisted, i.e., the metric
has the form

ds® = —dt* + f(t,2)*[da” + fo(7)*yap (29 )do?dz”).

3.1.1 Four-dimensional twisted spacetimes

No other progress can be made without further hypothesis. For n = 4
the special property (2.3.3]) holds and the tensorial form of the Weyl tensor is

completely determined:

Theorem 3.1.2. On a twisted spacetime with dimension n = 4, endowed by
two different timelike unit torse-forming vector field, the electric part of the

Weyl tensor has the following form
1
20@' =3C (bibj — 3hij> s (3.1.28)

where C' = Cleb*bt.

Proof. The contraction of (2.3.3) with u’u" gives the Weyl tensor as a Kulkarni-

Nomizu product between the two symmetric tensors (2u;u;j + g;5) and Cj;:

Cijie =2(uiweCir, — uurClp + ujurCip — ujueCiy) (3.1.20)
+ 9iCik — 9ikCje + gixCie — 9jeCi-
A further contraction with b'b¢ gives
Cineb' D" =2ujuy,C + Cjp + gjnC — b Cieb’ — b;Cped’
=2(ujur, — bjbr)C + Cji + gj1C.
Using the previous equation in , we obtain . ]

Remark 3.1.5. From the identification (2.1.18)), C;; corresponds to the anisotropic
stress tensor and it is given by the heat flux g; = 2vb; of the imperfect fluid as

3C 1
205 = el (%'Qj - 3q2hija> (3.1.30)

where ¢* = gijqiqj = 402,
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The Ricci tensor is given by

R—14 R — 1
73 fuiuj + 7§gij + 2v(uibj + ’U,jbj) - 3C (bibj — hij)

Ry =
7 3 3

and also the Weyl and the Riemann tensors can be fully expressed in terms of

vectors u; and b; and the metric g;;

Cijke =6C (uiupebyb; + ujupbgbi) + 3C(gie Ly + gje L),
1
Rijre =Cijke + (iR — 95 Rei) — 3 R9ik90;
=6C (usupbybj + wjurbgbi) + giFo; + 910 Fr)i-

where

1
Lij = bibj — uiuj — 594,

1 1
Fij =3(R = 4¢ +12C)uju; + (R — 26 +12C)gy5

+ v(uibj + Ujbi) —6Cb;b;.

3.1.2 Two perfect fluid picture

Using the EFE for a twisted spacetime with dimension n = 4 that admits
two distinct timelike unit torse-forming vectors, the stress-energy tensor can
be expressed in terms of geometrical quantities R, C, ¢, the vectors w;, b; and
the metric tensor g;; as (in units that absorb the constant k)

R —4¢ —-R—-2¢
3 il + e Ju

1
+ 2U(uibj + ’Lijj) - 3C <bibj — 3hij> .

1
Tz‘j = Rij — §Rgij =
(3.1.31)

The expression of Tj; is formally equivalent to for a two perfect fluid
mixture. In the same way of subsection let us suppose that there is
a mixture of two perfect fluid. The first one has a flow that is a shear-free,
irrotational and geodesic timelike congruence with velocity field u;, while the
second fluid has a velocity z; tilted with respect to u; (in general it is not the
second torse-forming vector w;). In comoving coordinates, u; = (—1,0,0,0),
the velocity vector field of the tilting perfect fluid and the heat flux ¢; are
given by

zi = u; coshp + t; sinh ¢ = (— cosh v, sinh ¢t,,),
¢ = (0,qta),
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where t; is a unit spacelike vector such that u’t; = 0 and, at the moment,

t; # b;. The stress-energy tensor is

1
TZIJ =(p+ u)uiuj + pgij + q(uitj + ujt,') 4+ <titj — 3hij> (3.1.32)

and the request T;; = TZ’] implies that b; must coincide with t; and 2v = ¢,

since the contractions with «? and the projections of and on

the orthogonal space of u; give hki(Tijuj) = —2vb; and hkz(TZ’]uj) = —qt;.
The equations (1.2.6]), (1.2.7)), (1.2.8) and give the five parameters

11, P1, pe, p2 and 1, that can be also read in terms of R, £, C' and v, then

p1+pp =5 —¢+3C

_ _3C
tanh ¢ = —5=
p2 + p2 = —4”23_0902
: o tanh 1) . —3C/2v . .
where we used sinh ) = ey o eyt With the aid of
R—4 402
p+p1r = (p1 + p2) + (p2 +p1) — (p2 +p2) = 3 §+C+£y

the expression for T;; as a sum of two stress energy perfect fluid is given:

R—4 40?2 R 9C?2 — 42
Tz‘j:< 3 §+C+U>uiuj'+<——€+0>gij+inZj,

3C 6 3 3C

where
1 ( 3¢
o — Wi —
Y

b;).
L /1-90? /42 %
In general z; # w;, but if we impose the condition ¥ = «, the expression of
tanh v and the equation (3.1.14)) give the following restriction

30 (R—4¢

In terms of p1, p2, 1 and po, it assumes the form

p1+ p1 = p2 + W2,

but the four parameters remain undefined, since the system of four equations
is indeterminate. No further progress can be made until physical conditions
on [, fe, p1 p2 and 1 are specified. If one such condition is specified, the
remaining four physical quantities can then in principle be expressed on terms
of f and its derivatives. Two conditions on i, po, p1 p2 and ¢ would then
give rise to a differential equation in terms of f that would need to be satisfied,

i.e., a further restriction on the form of the metric.
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3.1.3 The unique torse-forming vector case

In [13], the authors show that in a twisted spacetime with dimension
n = 4, the 3-spatial submanifold can assume a doubly twisted form using
the EFE with a peculiar stress-energy tensor, i.e., a two component perfect
fluids ([1.2.5)). The same discussion gives the same result without the use of
the Einstein’s equations, but imposing the form for the electric part

of the Weyl tensor. The relevant equations used for the proof are:

i. The projections of the Bianchi identities (conservation equations) along
the vector u and on the orthogonal subspace to u, u’ ViGij = 0 and
hi!ViG;; = 0:

R
2
j 1 1 k .
hi _éij — gvjf — 2V Cjk + 21}]' + 8901}j = 0,

£+ (R— 48 +2VFy, = 0,

where ¢ is given in terms of ¢ by the Raychaudhuri equation
€=3(¢" + ).

ii. A constraint and a propagation equation for Cj;, given by the Bianchi
identities on expressing the Riemann tensor in terms of the Weyl and

Ricci tensors

) 1 1.
QVJCij = 2pv; + ghﬂng — éhi]VjR, (3.1.33)
1 1
ukaCij +2pC;5 = §hikhj£V(lvk) — g(vk?)k)hij. (3.1.34)

Since u; is a timelike unit torse-forming vector, there exists a privileged
coordinate system such that the metric takes the form and ¢ = O (In f).
The conservation equations become

R
5
20100 + 60,10 f)vg — évag - éVaR — 20"V, Cup =0,

£+ (R —4€)0:(In f) + 29*PV g0, = 0,

then, in terms of the 3-dimensional metric g*

g — 4 (R—490(n ) + 2 V"0 + 0,V (In )] =0, (3.1.35)

1
20004 + 60 (In fu, — §Va§ — =V.R

1
6 (3.1.36)
—2f72[V*Chp + CopV* (In f)] =0.

48



CHAPTER 3. UNICITY OF THE TORSE-FORMING VECTOR

Finally, equations (3.1.33)) and (3.1.34)) reduce to
1 1
2f VB Chp + 2f 3 (VP £)Cop = 2000 + S Vel — g ViR, (3.1.37)
* * 1 * — *
201Cap = Vaup — 20(a Vg (In f) - ngV (f 21}"/)9(]57 (3.1.38)

where we used Vv, = VEVip =V ug.
If Cj; is given by (3.1.28), its non-zero components are the spatial compo-

nents 30 ]
2Cas = 5 |Vavs - §v2f2925 : (3.1.39)

Inserting the expression (3.1.39)) into the left hand-side of (3.1.38)) and then
using (3.1.36]) to get an expression for 0,v,, We obtain

Viva = Aqvg + Agva + Buavg + C’gzﬁ
(the precise expressions for A,, B and C' are unnecessary for the remainder
of the discussion). In terms of the unit spacelike vector
Nt =Y
a /9*551}61}6 ’
the expression for Vzva gives condition (3.1.24]). Then, we have the following

theorem:

Theorem 3.1.3. On a twisted spacetime with dimension n = 4, if (3.1.28))
holds, the space submanifold (M*, g*) admits a unit vector ny,(¥) that satisfies

(13.1.24)) and the metric assumes the form
ds® = —dt* + f(t,2)*[f*()*da® + fo(Z)*yap(z®)dzda®].

Remark 3.1.6. From the theorem by A. Korn and L. Lichtenstein, any 2-
dimensional spacetime is conformally flat, then ’yAB(xC)dacAde s propor-

tional to dy® + dz?* (the conformal map can be reabsorbed in f3).

The spatial components of eq. (2.1.10)) give the expression for the electric
part of the Weyl tensor in terms of the spatial geometry and the twisting

function f as
R —
_QC;W :R,ul/ - ng,uu
* 1 ko k * * * *
:R,u,u - gR g,u,u - vuvv(ln f) + vu(lnf)vy(ln f)
1 *O 7k *Oo * *
+3[VIVe(Inf) = V¥(In f)Vo (In f)lgp,
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Since b, = fn}, = f(0, f1,0,0) we have Cy4 = 0, then
24 =V Via(ln f) = 0,04(In f) — I"340,(In f)
= — 0z(In f)0a(In f1).

The term 0, (In f) is a function of both ¢ and x (otherwise ¢, = 0,0;(In f)
is identically zero), then it must hold R}, = 0 and we can take fi(Z) = 1
without loss of generality. The spatial submanifold (M*, g*) takes the form of

a twisted spacetime, i.e.,
ds? = —df? + f(t,2)[da® + fo(2)?(dy? + d=2)).
The expression of R} , for the previous metric is given by
0=Ris= fy20u 204 2 — f5 'Ouatfo,

with solution fo = x(z)¢(y, 2).

3.2 Unicity in GRW spacetimes

On a GRW manifold, the unicity of the timelike unit torse-forming vector
is guaranteed by the special property V;o = —u;¢, but for the particular case
where the eigenvalue of the Ricci tensor € is constant. We examine in a distinct
way the two different situations. As in the twisted case, let us suppose the
existence of another timelike unit vector wy that satisfies the torse-forming
property . A first answer is provided by the following theorem:

Theorem 3.2.1. On a GRW spacetime with non-constant eigenvalue &, the

vector field uy, is unique (up to reflection).
Proof. Eq. (3.1.11)), with the aid of V;p = —u;¢, simplifies to
wi[N + vlwiA] = [(ulw;)? — 1)V,

showing that VA is collinear with wg: ViA = —wi\'. Equations (3.1.4)) and
(3.1.5)) infer that uj and wy, are eigenvectors of the Ricci tensor

Rjmu™ = (n = 1)(p*u; — Vi) = (n = 1)(¢” + )uy,
Rjmw™ = (n = 1)(Nwj — V;A) = (n — (A + Ny,
with the same eigenvalue £, by means of (3.1.10)). Let’s evaluate:

Vi = o(upu™ 4+ 0™ ) Vi + "V, Vi
= o(upu™ + 0™ ) (—ump) + u" Vi (—ugp)

= —up[u"Vng] = —urdp,
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then the derivative of £ is parallel to u:
Vi€ = (n = DVi(p? +¢) = (n = D(2pVip — u) = —ws,

where £ = (n—1)(2¢p+ ). A similar result holds for w: Vi = —wi&’. From
Vi€ = —wpw! (—u;€) the contraction with u® gives: [1 — (uw;)?)¢ = 0, i.e.,

uj and w; are collinear if £ is not constant. O
Let us investigate the case with & = const.

Proposition 3.2.1. On a GRW spacetime, for the eigenvalue of the Ricci
tensor to be degenerate, it is necessary that o(t) = ct+ k, with constants ¢ and

k. If the eigenvalue & is constant, it must hold p = k.

Proof. The eigenvalue equations Rijwj = ¢w; in the warped frame are Roquw” =
§wp and R, w” = w,,. The first equation is —(n— D(f/f)w® = Ewp, then the
for any wo. The second equation, by R, = Ry, + g}, [(n — 2f2+ ff],
has always the solution w* = u*. Other solutions have non-zero space compo-

nents w* solving the eigenvalue equations

. .. d
Ry = €wy = gl [(n = 2)° + FIlu” = (n = 2) Zw

where we lowered an index: f2g;l,w”

= wy,. In the warped frame, the Ricci
tensor R}, of (M*,g*) does not depend on time, and so must the eigenvalue.
Then ¢ = At + B where A and B do not depend on space coordinates, as the
warping function does not.

If the eigenvalue £ = (n —1)[(ct + k)% + ] is a constant, it must hold ¢ = 0,

i.e., ¢ =k, with solution f(¢) = Aexp(kt), where A is constant. O

Theorem 3.2.2. On a GRW spacetime with constant ¢ the torse-forming
velocity is unique unless (M*, g*) is a warped submanilfold, i.e., (M*, g*) ad-
mits a unit vector field ny,(¥) such that Vyn;, = 9(x)(g;, — n;n,) with V59
proportional to n,.

Proof. Suppose that w; exists and that it is not collinear with u;. Then, there
is a reference frame where w® =1 and w* = 0, and the scale factor f(t), with
A= f / f . In this frame, by the previous discussion, degeneracy of £ requires
A to be constant. From , we obtain A = ¢ = k. The torse-forming

condition for w;, V;w; = A(gij + w;w;), in the warped frame may be specified
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by using the Christoffel symbol listed in Appendix [B.2]

dywo = k(wg — 1)
Guwo = kwy(wo +1)
Oywy, = kwy,(wo + 1)
Opw, — T, w, = k(wuw, + f*(wo + 1)g},)
Excluding the case & = 0, we can set f(t) = exp(kt)/k. The first three

equations are solved by

1+ d*(z) exp(2kt) = 1 (0,d*) exp(2kt)
1 —d?(x) exp(2kt)’ wulw:t) = k1 — d?(z) exp(2kt)’

wo(z, t)

(3.2.1)

where the function d(z) is determined by the last differential equation
8M(8l,d2(x)) — r*ﬁ,,(ade(x)) = 2g,, (), e, V;(&,dz) =2g,,- (3.2.2)

The normalization condition —1 = —w3 + f(t) " 2g**" w,w, gives

4d® = g*"(0,d*)(0,d?).

If we put 9,d = nj, then g**njnj = 1 and the concircular condition ({3.2.2)
for 8“d2 show that the 3-vector nj, is a spacelike unit torse-forming vector on
(M*, g*), ie.,
* * 1 * * *

Vi, = g(gw — nun,j), (3.2.3)
Furthermore, since the scalar function 1/d(z) has derivative parallel to n:
Vi (1/d) = 0,(1/d) = —n;/d2, the submanifold M* can be written as a warped
product, i.e., there is a choice of space coordinates (z,z?), with A =2, ..., n—
1, such that the metric takes the form

1 * A
ds* = —dt* + ﬁe%t(daz2 + f2y4 gda?dzB),

where fo = fo(z) and yap = yap(z®) is the spatial submanifold metric with

dimension n — 2. O

Remark 3.2.1. For d(x) = 0 equation (3.2.1) gives wy = ug, thus the vector
is unique. For k = 0 the warping function f is constant and the manifold
(M, g) is a trivial disjointed product between the time interval I and the spatial
submanifold M*, i.e., M =1 x M*.

This concludes the discussion about the unicity of the torse-forming vector

on GRW spacetimes. It can be phrased as follows:
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Theorem 3.2.3. On a GRW spacetime the timelike unit torse-forming vector
field u® is unique (up to reflection) unless the eigenvalue & associated to the
Ricci tensor is constant. Otherwise, there exists a second vector w' and the

submanifold (M*, g*) can be written as a warped product.
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Appendix A

A brief reminder of

differential geometry

We report a short reminder of differential geometry starting from the def-

inition of manifolds.

A.1 Manifolds

Definition A.1.1. A n-dimensional, C*°, real manifold M is a set together

with a collection of subsets {Oy} satisfying the following properties:
i. each p € M lies in at least one , i.e., the {Oy} covers M,

1. Ya, there is a one-to-one map @, : On — Uy, where Uy is an open subset
of R™,

iii. if any two sets O,NOg # 0, the maps ¢o and @g satisfy the compatibility
condition, i.e., the map vz 0 pat: 0a(Oa N Og) — p5(0n N Og) is

infinitely continuously differentiable.

Given two manifolds M and N of dimension m and n, respectively, the
product space M x N consists of all pairs (p, q) with p € M and ¢ € N into an
(n+m)-dimensional manifold as it follows. If ¢, : Oq — Uy and 93 : O% —U ,é
are charts, we define a chart ¢n5 : Oag — Uag C R™™™ on M x N by taking
Oap = Oa x O, Unp = Ua x Ug and setting ags(p, ¢) = [0a(p), ¥s(q)]. It can
be easily checked that the chart family {¢,s5} satisfies (ii)| and

A map f: M — N, between the two manifold M and N, is said to be C*°
if for each  and 3, the map g o f o ;! taking U, C R™ into Ug C R™ is
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C>®. If f: M — N is C*, one-to-one and it has C° inverse, f is called a

diffeomorphism.

A.2 Tangent space

On a manifold M, let F denote the collection of C*° functions from M
into R. We define a vector on M as the natural generalization of a vector on
R™:

Definition A.2.1. A tangent vector v at point p € M is the map v, : F — R
such that:

i. vplaf +bg) = avy(f) +bvy(g), Vf,g € F, a,beR,

ii. vp(fg) = f(P)vp(9) + g(®)vp(f).

The two properties of tangent vectors imply that if f € F is a constant
function, then v,(f) = 0. The collection of tangent vectors at p € M is
denoted as T),M and has the structure of a vector space under the addition
law (vp +wp)(f) = vp(f) +wp(f) and the scalar multiplication law (av,)(f) =
avp(f). Moreover, it can be proved that dim(7,M) = dim(M). Given the
basis {e;} of T,M, named coordinate basis, the vector v is given by v = vle;
where v* = v(z’ 0 ) are the components of v respect to the basis {e;}, ¢ a
coordinate chart and z° the coordinates of p through . Frequently the basis
e; = 0/0x" is used.

An equivalent definition of a tangent vector v is the triple (p, ¢, v), where
¢ is a chart, such that (p, p,v) and (p,¢’,v’) represent the same vector if v’
can be given by v as

o= 9
ozt

Finally, a tangent vector can be defined through a smooth curve + on a
manifold M, that is a C° map of I C R into M. At each point p € 7,
we can associate a tangent vector v € T,M such that, for f € F, we set

v(f) =d(f op)/dt, where f o~ :R — R is evaluated at p = v(0). Then

_ydat dat '
(fop )dt _Eez(f)'

0
ozt

d
v = —_— @] _=
(f) = 2(f o)
The components v* of the tangent vector v to the curve are given by

_da:i
Cdt

Ui
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A tangent field, v, on a manifold M is an assignment of a tangent vector,
v|p € Tp,M, at each point p € M. If f is a smooth function, then at each
p € M, v|,(f) is a number, i.e., v(f) is a function on M. The tangent field v
is said to be smooth if for each smooth function f, the function v(f) is also
smooth, i.e., if its coordinates basis components v* are smooth functions.

Let us introduce the notion of one-parameter group of diffeomorphisms on

a manifold M as:

Definition A.2.2. A one-parameter group of diffeomorphisms ¢ : R x M —
M is a C* map such that for fited t € R, ¢y : M — M is a diffeomorphism
and fort,s € R, we have ¢y 0 ps = Py45.

In this way, for fixed p € M, ¢¢(p) : R — M is a curve, called an orbit of
¢¢, which passes through p at t = 0 and we can define v}, as the tangent vector
to this curve at t = 0.

Conversely, given a smooth vector field, v, on M it is possible to find
integral curves of v that correspond to a family of curves in M having the
property that one and only one curve passes through each point p € M and
the tangent to this curve at p is v|,: if we choose a coordinate system in a
neighborhood of p, we see that the problem of finding such curves reduces to

solving the system of ordinary differential equations in R™

dz’
dt

='(z!, ..., 2",

where v' is the i-th component of v in the coordinate basis {0/0x%}. Such
a system of equations has a unique solution given a starting point at t = 0,
thus, every smooth vector field v has a unique family of integral curves. Given
the integral curves, for each p € M we define ¢;(p) to be the point lying at
parameter t along the integral curve of v starting at p. Then, ¢; will be a

one-parameter group of diffeomorphisms.

A.3 Dual form vectors and tensors

We give now the definition of dual vector space and dual form vectors:

Definition A.3.1. The dual vector space Ty M of T,M, is the collection of
linear maps wp = TyM — R, such that v, = wy(v,) € R. TyM is again a
vector space, i.e., addition and scalar multiplication of such linear maps are

defined in the obvious way.
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The space T); M is named cotangent space and elements of T)7 M are called
covariant vectors or dual form vectors, while vectors of T, M are called con-
travariant vectors. If one defines addition and scalar multiplication of such
linear maps in the obvious way, one gets a natural vector space structure on
Ty M. If {e;} is a basis of T,M, it is natural to define elements {¥;} of T; M
as

9 (ej) = &5
It follows that {1;} is a basis of Ty M, called dual basis to the basis {e;} of
T, M. In particular, given the coordinate basis {0/0z"} of T), M, the associated
dual basis of Ty M is usually denoted as {dxz'}. This shows that dim(Z; M) =
dim (7, M). Under change of basis from {dz’} to {dz''}, the components w; of
w € T,y M become
, ox'
wj = %wl
After defining vectors and dual form vectors over T),M, we define a general

tensors as:

Definition A.3.2. A tensor T of type (k,£) over T,M is the multilinear map

T:TMx...x TEM xT,M...T,M - R.

k times 0 times

With the obvious rules for adding and scalar multiplying maps, the space
of tensors of type (k,¢), denoted as F(k, £), has the structure of a vector space
with dimension n*+¢. Given two tensors T' and T" of type (k,¢) and (', ¢)
respectively, the outer product of T and T”, denoted by T'® T", is a tensor of
type (k+ k', £+ (') defined as

(T X T’)(w(l), cee ,’U(g_,_g/)) :T(w(l), ce ,w(k),v(l), ey ’U(g))

(WD BT vy v,

where {w(®} are k4’ dual vectors € Ty M and {v(;)} are £+’ vectors € T, M.
If {e;} is a basis of T,M and {1;} is its dual basis, it is easy to show that the
nk*¢ simple tensors {e;; ® ... ®e;, @YW ® ... ® ¥} yield a basis of F(k, ).

A tensor T of type (k,¢) can be expressed as sum of simple tensors
T=Th e1®...00@... 00,

with basis expansion components 771 j1...jo» named components of the tensor
T with respect to the basis {e;}.
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Another important operation on tensors is the contraction C : F(k,{) —
F(k—1,0 —1) defined as

CT=T(...,9, ... ¢e,...),

where {e;} is a basis of T,M and {9’} is its dual basis. Given a tensor T €

F(k,¢) with components T . the contraction CT has components

1. 0p—1 _ itemeig_y '
(CT) Jie-Je—1 T J1emige_1-

If T € F(k',¢') has components T ; ;. the components of P =T @ T"

are given by

Pil...ikJrk/ .

JivJoger — T“"'ijl-~~jozkmzk+k/ ]

]g...j[_M/ .
Finally, given the basis {0/82'} and its dual basis {dx;} of T,M and Ty M

respectively, the components T“'“ikjlmjz of a tensor T' € F(k, ) transform as

Az’ Az’ x OxJe

J1---Je 8xi1 o e 8$Zk ax/]i oo al-/jé7

g .
T/’Ll../ij, e Tzl...lk
1---Je

that defines the tensor transformation law.

A.4 Pseudo-Riemannian manifolds

Definition A.4.1. A pseudo-Riemannian manifold (M, g) is a differentiable
manifold M equipped with an everywhere non-degenerate, smooth, symmetric

tensorial field g of type (0,2), named metric tensor:
i 9ij = 9ji,
ii. forpe M if gp(v,w) =0 Vv € T,M then w = 0.

In particular, if g,(v,v) > 0 Vv € T, M the manifold is named Riemaniann
manifold, otherwise pseudo-Riemannian manifold. Given a metric tensor g on
an n-dimensional manifold M, the quadratic form ¢(v) = g,(v,v) applied to
each vector v of any orthogonal basis produces n real values. The signature
of the metric tensor (p, g, r) is the number of each positive, negative and zero
values produced, that are invariants of the metric tensor, independent of the
choice of the orthogonal basis. A non-degenerate metric tensor has r = 0 and

the signature is denoted by (p, q).

Definition A.4.2. A Lorentzian manifold (M,g) is a pseudo-Riemannian

manifold with signature of the metric tensor (n —1,1).
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Given the basis {dz'} of T;*M, we can define
ds’ =g = gl-jdxi ®dz’ = gijda;idxj,

where dx'dz’ is the symmetrized product. The metric tensor g establishes a
scalar product in T,M as (v|w) = gp(v,w) for v,w € T,M. If e; is the dual

base of {¥'}, the previous expression becomes
gp(v,w) = gp(v'es, wles) = gijv'w,

where g;; denoted g,(e;,e;), since a metric g is a tensor of type (0,2). If
we apply the metric to the vector v’, we get the dual vector gijvj . It is
convenient to denote this vector as simply v;, thus making notationally explicit
the isomorphism between T, M and T; M defined by g;;. The inverse of g;; is
a tensor of type (2,0) and is denoted as g;;. If we apply the inverse metric to a
dual vector w;, we denote the resultant vector g”w; as simply w’. In general,
raised or lowered indices on a general tensor denote application of the metric

or inverse metric.

A.5 Derivative operators

Definition A.5.1. A covariant derivative V on a manifold M is a map which
takes each smooth tensor field of type (k,l) to a smooth tensor field of type
(k, £+ 1) such that:

i. linearity: YA, B of type (k,{) and o, 8 € R,
VC(O‘Ail"'ikjlmje + BBiI’.'ikj1~~~j/z) - aVC(Ailmikjlmje) + 6VCBi1"’ikj1mjz)>
ii. Leibniz rule: VA of type (k,€) and B of type (K',¢'),

L , L ,
v i1ig L grLeT — (V. Al 1.7
C(A J1---Je ksl...s’z) _( A J1...je)B kg /

1.8y

o )
1.2 . X T1...T
+A 1.0 (ch ksy..s%)v
151, commutativity with contraction:

VC(A ]1..,m,..]g) - VCA Ji...m.. Jgo

w. consistency with the notion of tangent vectors as directional derivatives
on scalar fields: Vf : M — R and all v € T, M,

U(f) = Uivifa
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v. torsion free: Vf: M — R,

ViV,f = V;Vif.

The derivative operator is not unique, in fact, as shown in [35], any two

derivative operators V and V are related by
Viw; = @iwj — Ckijwk, (A.5.1)

where C’kij is a tensor of type (1,2) and wy a dual vector field. A symmetry
property of C’kij follows immediately from condition if we put w, =
Vif = Vg f it follows that Ckij = C’kﬂ. The general formula for V; on an
arbitrary tensor field T of type (k, ) in terms of V; and C¥;; is
k
VT :ﬁilemjkmL..mg 4 Z O g Tivendi

, =t (A5.2)

N T o

s=1

Thus, the difference between the two derivative operators V,; and @Z is com-
pletely characterized by the tensor field C¥;;. The most important case of
two different derivative operator is for @z = 0;. In this way, the tensor Ckij
is denoted as I’kij, named Christoffel symbol, that together with the ordinary

derivative tells us how compute the derivative V;.
On a manifold M with derivative operator V;, we can define the parallel
transport of a vector v’ along a curve v with a tangent t*. The vector v, given
at each point on the curve, is said to be parallelly transported as one moves

along the curve if the equation
V' =0

is satisfied along the curve.

Given only the manifold structure, many distinct derivative operators can
be defined, but there is a natural choice requiring the constancy of inner
product between two vector when they are parallely transported along any

curve, i.e., Vig;; = 0. It is easily provable that such request implies
1
I = 59“(619]'2 + 9jgie — 0ugij)-
and (A.5.1]) takes the form
Viwj = &-wj — Fkijwk.
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A.6 Curvature: the Riemann tensor

The curvature of a manifold is completely described by the Riemann cur-
vature tensor that is directly related to the failure of a vector to return to
its initial value when parallel transported around a small closed curve. The

Riemann tensor Rij;f is defined as
(ViV; — V;Vi)wg = Rijr‘we, (A.6.1)
where wy, is a dual vector field. For a general tensor of type (k,¢)
k
(vzvj B vjvi)Tmmakbl...be - _ ZRz‘jmaTTalmmmakby..bg

r=1

¢
+ § Rijp, " T "%y by
s=1

Using equation (A.5.2)) in (A.6.1)), the components of the Riemann tensor are

given by
Rij" = =0Tk + 0T + T3y — T 3 T
The proof of the important properties listed below can be found in [35]:
i Rt = —Rjut,
il Ry =0,
iii. since V;g;x = 0 we have R;jre = —R;ju,
iv. the Bianchi identities hold: V[ Rz, = 0.

The Riemann tensor can be decomposed into a trace part and a trace-free
part. By the antisymmetry properties |(i)| and the only non-zero trace of
the Riemann tensor is over the second and fourth (or equivalently, the first
and third) indices, that defines the Ricci tensor

Ry, = Riji.

Since R;jre = Rpeij (it can be easily proved using the first three properties)

the Ricci tensor is symmetric in its indices
Rir, = Ry;.

Finally, the scalar curvature R is defined as the trace of the Ricci tensor
R=R.
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The contractions of ¢ with m and j with £ of the Bianchi identities V|; R;y,™ =

0 lead to a fundamental equation for the consistency of Einstein’s equation
ViR'; = §VjR, (A.6.2)

that can be written as
V'Gyj =0,

where )
Gij = Rij — 5 Rgij
is named the FEinstein tensor.

The trace-free part of the Riemann tensor is named Weyl tensor, Cijke,

and is defined for manifolds of dimension n > 3 by the equation:

2

2
Rijre = Cijre + m(gi[kRé]j — gjRai) — ngi[ng]j-

By the definition, the Weyl tensor satisfies the first three properties of the Rie-
mann tensor. Moreover, it can be verified that it is invariant under conformal
transformations of the metric, then it is also called the conformal tensor.

As for the standard decomposition of the Maxwell tensor F;; into its electric
and magnetic parts E and B with respect to an observer, i.e., a unit timelike
vector u’, we can define the electric and magnetic parts of the Weyl tensor as
in [20]:

(C1)Y = BB b B Cops + Al G g s

(C_)p = 20 W™ Clpppppttgt” + 20wl O™ oy g,

At a spacetime point (or region) the Weyl tensor is called purely electric (mag-
netic) with respect to u’ if C_ =0 (Cy = 0).
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Riemann tensor on twisted

and GRW spacetimes

B.1 Twisted spacetimes

Christoffel symbol Fkij = %gkm(gjm,i + Gim,j — Gijm):

POiO = 07 I‘kOO = 07 Fpu() = (f/f)(spua Fo;w = ffg;w
Fp;w = F*pw/ + (fu/f)(spu + (fu/f)(;pl/ - (fp/f)g;w

where f =0if, fu=0uf and f¥ =g f,.
Riemann tensor Rjie™ = —0;1" o + O™ j¢ + Fijgfmki — I’ingmji:

R,quO = ffg;p7
Ry’ =g, (fOuf — £1.) = a5, (fOuf — £ fu),

o * O 2 f)\f)\ * O * O
R,ul/p = + <f2 - (gupé v _gz/p(S M)

f2
* ;2<f “fodhy — £ Fubip + Fufod%y = fo o)
1
IV, = 5070 = VoI = S0

. k.
Ricci tensor Rjy = Rjpp:

Roo = —(n — 1)(f/1),
Ruo=—(n—2).(f/f),

Ry = Ry + gil(n = 2)f° + £ f] +2(n - 3) f!}fy
Ty 1_, Ly s oo
_(n—4)ff§ guy—(n—3)fvufl,_?ngaf .
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APPENDIX B. RIEMANN TENSOR ON TWISTED AND GRW
SPACETIMES

Scalar curvature R = R¥:

R :1;; + ;z(n —1)[(n—2)2 +2ff]
o A V:‘; o
—(n—2)(n—5)ff4f —2(n—2) fé,f

B.2 GRW spacetimes
Christoffel symbol Fkij = %gkm(gjmi + Gim,j — Gijm):

% =0, Troo=0, TPu0=(f/f)0"u T ="Ffg}.

Riemann tensor Rjie™ = —0;1"™ e + O™ o + Fing’m;ﬂ- — Tel™ i
RquO = ffg;m
R’ =0,
R;U/po = RZz/pU + f2 (g;p5ou - g:pégu)'
Ricci tensor Rjp = Rjkgki
Ry = —(n = 1)(f/f),
R0 =0,
R/“’ = R;V + -g;.kl,VI:(n - 2)f2 + ff]
Scalar curvature R = RFy:

R— JJj? + J}Qm— Di(n - 2)f2 +2f
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