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Chapter 1

Introduction

1.1 History of the Ising Model

The scope of this thesis is to give a description of the solution to the Ising model in a random
2-dimensional planar lattice given by Kazakov and Boulatov in [1]. Through the road to the so-
lution, it will be necessary to develop different mathematical techniques, which will be described
properly when needed.
The Ising model has firstly been theorized by Lenz in 1920 as an attempt to model ferromag-
netism. It consists in a system of spin degrees of freedom locked on a square lattice, and obeying
a Hamiltonian of the form

E = −J
∑
(i,j)

SiSj −H

N∑
i

Si

where Si can have only integer values ±1 and the sum over (i, j) is intended to be restricted to
the nearest neighbours.
This model has been solved exactly by Lenz’ student Ising in his thesis [2] in 1924 in the 1d case,
using a transfer matrix. However, the 1d exact solution does not predict a ferromagnetic phase
transition as the one is experimentally observed in 3d space, and the solution to the analogous
higher dimensional model revealed itself to be a formidable task. Ising himself thought erro-
neously that the absence of phase transitions would have been preserved in higher dimensions.
He brought qualitative arguments to support his idea, not recognising some peculiar aspects
of the 1d model. Landau, instead, gives a qualitative argument that justifies the absence of a
transition in one dimension at any finite temperature, but otherwise leads to the possibility of
phase transition in two or more dimension.
The argument is the following: consider N spin sites on a d dimensional lattice, and let’s start
with a zero temperature state with all the spins aligned. Now, we calculate the variation of
free energy at any temperature T for the creation of a single domain wall. In 1d this corre-
sponds to a flip of a single spin, in 2d to the creation of an area of connected flipped spins. We
have ∆F = ∆E − T∆S. In 1d, ∆E = 2J , and ∆S = k log

((
1

N−1

))
= k log(N − 1). Hence,

∆F ≈ 2J−kT log(N − 1). For every T > 0, in the thermodynamic limit N → ∞ ∆F is less than
zero, and hence it is energetically favourable to flip spin sites: no spontaneous magnetization
domain holds, and hence no phase transitions are expected to be found.
On the other hand, consider a domain wall in 2d composed by L segments (sides dividing two
spins with different orientation). The calculation of the exact number of states is difficult, since
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CHAPTER 1. INTRODUCTION

we should choose the sides of an arbitrary domain imposing its closureness. However, we can eas-
ily observe that, starting from an arbitrary point, for each side between two spins in the domain
wall there are at least two arbitrary possibilities of choice. If we now approximate ∆S ≈ k log 2L,
we get ∆F = ∆E − T∆S ≈ L(2J − kT log 2). In this case, 2J − kT log 2 can be either positive
or negative depending on the temperature, there is a change of sign at T = 2J

k log 2 . Hence, the
creation of domains with different spin orientations could possibly be energetically disfavourable
at certain temperatures, and thus the existence of two different phases is not excluded.
As a consequence of the 1d absence of phase transitions, the Ising model had been considered
unuseful and too much idealized by physicists’ community in the following years; quoting Heisen-
berg: "Ising succeeded in showing that also the assumption of directed sufficiently great forces
between two neighbouring atoms of a chain is not suffcient to explain ferromagnetism" [3].
Physicists hence began to investigate other more complex models in the hope to find the miss-
ing phase transition, such as the Heisenberg model or the XY model. Heisenberg model, for
example, treats spins as quantum mechanical degrees of freedom, and uses the Hamiltonian
H = − 1

2

∑N
j=1

[∑3
i=1

(
Jiσ

(i)
j σ

(i)
j+1

)
+Bσz

j

]
, where the σ(i) are the x, y and z Pauli matrices,

and Ji the coupling constants for x, y and z directions. XY model instead considers the spins as
planar vectors of fixed length, which can freely rotate by an arbitrary angle.
Around 1935, the physical community found out that the Ising model was related to other in-
teresting problems and a new debate started on the possibility of having a phase transition in
higher dimensions. Peierls [4] in 1936 suggested that this indeed could have been the case, and
new attempts to find an exact partition function were made.
In 1942, Lars Onsager ended the debate announcing at a meeting of the New York Academy of
Science that he had found an exact solution of the 2d model in absence of magnetic field, which
was later published in [5] (For another easier solution, see [6]). The solution indeed predicted
a phase transition and the significance of the discovery was immediately recognized. Pauli, in
a letter to Casimir, wrote: "nothing much of interest has happened except for Onsager’s exact
solution of the Two-Dimensional Ising Model" [7].
In the following years, the importance of the Ising model continued to grow, and it has been used
to analyze different situations in statistical physics, such as the liquid-gas transition through a
lattice gas model [8]. Since Onsager solution, many attempts had been made to find an exact 3d
solution, but without any success.

1.2 Kazakov Ising model

In 1986, Kazakov gave a solution to the 2d Ising model on a random planar graph with zero
magnetic field [9], followed by the full solution in another article in collaboration with Boulatov
[1]. In contrast to the traditional treatment, which is based on a regular square lattice, he had
the idea to consider the graph itself as a new degree of freedom. Fixing only the number of edges
for vertex, he succeeds to calculate the partition function in the limit of the number of vertices
of the graph going toward infinity.
To successfully achieve this result, Kazakov used a connection between random graphs and
matrix models known as topological expansion, firstly pointed out by Gerard T’Hooft in his
notorious article [10]. Hence, solving the matrix model, he was able to find the partition function
analytically and to calculate the properties of the phase transition. In the following chapters, we
will go through the various steps of the solution, developing the mathematical formalism needed
to understand the process properly and reaching finally the desired result.
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Chapter 2

Mapping Ising model to a matrix
model

The Hamiltonian of the Ising model with N vertices in the variant of Kazakov can be written in
the following fashion:

E = −J

N∑
i,j=1

GijSiSj −H
∑
i

Si

where Gij is 1 if i and j are nearest neighbours and 0 elsewhere. We observe that the matrix Gij

is encoding the shape of the particular graph we are considering, and thus it has to be considered
a variable by itself. We will hereafter considerJ = 1. To extract the statistical properties of the
system when interacting with a standard heat bath, the partition function has to be calculated:

ZIsing(β,B) =
∑

G,{Si}

e−βE(G,{Si}) (2.1)

where {Si} is denoting a state (so an n-uple of spin values, one for each i) of the system and we
are summing over all possible states and matrices Gij . We shall see that considering the graph
itself as a new degree of freedom is crucial to map the system to a matrix model and hence to
calculate the partition function explicitly.
To enhance the aforementioned connection, we can rewrite the various terms of the sum in a
different way. Let V↑ and V↓ be respectively the numer of vertices of a given graph in a given
configuration which hosts a spin up particle, E↑↑the number of edges connecting two spin-up
vertices, E↑↓ the number of edges connecting a spin-up and a spin down vertex and E↓↓ the
number of edges connecting two spin-down vertices. Let Ep = E↑↑ + E↓↓ and Ea = E↑↓. Then,
we can rewrite the partition function as

ZIsing(β,H) =
∑

config

eβ[(Ep−Ea)+H(V↑−V↓)] (2.2)

In this form, we see that we need to perform a sum over graphs, when each graph has a weight
of e±βH for each V↑/ ↓ vertex and of e±β for each parallel/antiparallel edge. We shall see in the
following chapter that a sum of this kind can be performed through an integral over a matrix
space.
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Chapter 3

How to sum over graphs: Matrix
models

We first consider, as an introductory case, a one dimensional Gaussian integral. Then, we will
move to vector and matrix integrals.

3.1 Gaussian integrals and Feynman diagrams expansion

Consider the standard Gaussian integral:

I0 =

∫ ∞

−∞
dxe−a x2

2 =

√
2π

a

The aim is to find expressions for integrals of the type

1

I0

∫ ∞

−∞
dxxke−

a
2 x

2

If we consider 1
I0
e−a x2

2 as a probability measure over R, this is equivalent to calculate mean
values of xk. To solve this problem, we can introduce a so-called generating function for the
moments of the Gaussian probability measure, which is similar to a Fourier transform without
the imaginary unit, of the probability distribution. We hence consider

1

I0

∫ ∞

−∞
dxe−

a
2 x

2+Jx = e
J2

2a =
1

I0

∞∑
k=0

(J)k

k!

∫ ∞

−∞
dxxke−

a
2 x

2

=

∞∑
k=0

(J)k

k!
⟨xk⟩

and we observe that
∞∑
k=0

(J)k

k!
⟨xk⟩ =

∞∑
l=0

J2l

(2a)ll!

Comparing these expressions term by term, we get ⟨x2k+1⟩ = 0 as expected, and:⟨
x2n
⟩

(2n)!
=

1

(2a)nn!
⇒
⟨
x2n
⟩
=

(2n)!

(2a)nn!
=

1

an
(2n− 1)(2n− 3)...3 · 1 =

1

an
(2n− 1)!!
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CHAPTER 3. HOW TO SUM OVER GRAPHS: MATRIX MODELS

This number corresponds to all the possible connections in pairs of k dots. For example, for
2n = 4, there will be the following pairings:

⟨xxxx⟩⟨xxxx⟩⟨xxxx⟩

We in particular have that ⟨xx⟩ = 1
a .

Figure 3.1: The three ways of coupling four points two by two

Since for each choice of pairing of the set of points there are n = k
2 connections between the

points, we can look at the integral above as "composed" by a sum over all the graphs connecting
k = 2n points, where each edge (and then each pair) of every graph carries a multiplicative
weight of 1

a .

In the example k = 2n = 4, we get (we use ′ symbol to mark the x’s):

⟨
x4
⟩
= ⟨x′x′′⟩⟨x′′′x′′′′⟩+ ⟨x′x′′′⟩⟨x′′x′′′′⟩+ ⟨x′x′′′′⟩⟨x′′x′′′⟩ = 1

a
· 1
a
+

1

a
· 1
a
+

1

a
· 1
a
= 3

(
1

a2

)
We can show this result through a different, more direct way. We have that

1

I0

∫ ∞

−∞
dxxke−

a
2 x

2

=
1

2I0

∫ ∞

−∞
dte−

1
2attn−

1
2 =

1

I0

(
2

a

)n− 1
2
∫ ∞

−∞
dse−ssn−

1
2 =(

2

a

)n Γ
(
n+ 1

2

)
Γ
(
1
2

) =

(
2

a

)n(
n− 1

2

)(
n− 3

2

)
· ...3 · 1 =

1

an
(2n− 1)!!

This is the 1D statement of the so-called Wick theorem [11], which we will prove in the general
case after. Although the first method of calculation may seem involved and unnecessarily com-
plicated, it is crucial in order to understand the final, more general result.
Starting from what we have just obtained, we are ready to find a series expansion for an integral
of the type:

1

I0

∫ ∞

−∞
dxe−

a
2 x

2+gxk

(3.1)

Expanding the exponential as a Taylor series in g, and exchanging the sum with the integral
leads to

1

I0

∫ ∞

−∞
dxe−

a
2 x

2+gxl

=
1

I0

∞∑
k=0

(g)k

k!

∫ ∞

−∞
dxxlke−

a
2 x

2
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CHAPTER 3. HOW TO SUM OVER GRAPHS: MATRIX MODELS

Figure 3.2: First order diagrams for quartic potential (observe the correspondance with Fig 3.1)

But now, each of the integrals in the sum can be understood using Wick theorem. We can
construct a vertex with l edges, and consider k vertices of this kind. Connecting the different
vertices in all possible ways gives us all the possible combinations for matching together k · l
dots. The division by k! accounts for the exchange symmetry between the different vertices, and
leads us to consider one time only the equivalent diagrams. So, the original integral (3.1) can be
considered as composed by a sum over all k ∈ N of all diagrams with k vertices, having l edges
per vertex, in which each edge of each graph has a weight of 1

a .
We observe that in this sum we are considering also disconnected diagrams, namely diagrams
composed by different smaller connected parts, as in Fig 3.1. We show now that in order to
obtain connected diagrams only we need to take the logarithm of the integral.

Figure 3.3: Examples of connected and disconnected diagrams with two vertices

Let

Z = ⟨egx
k

⟩ = eW =

∞∑
n=0

Wn

n!

we now show that W is the sum of all connected diagrams. Let D be a single possibly disconnected
diagram, and Cn the list of all possible connected diagrams. Then,

D =
1∏
I nI !

∏
I

(CI)
nI

Where nI is the number of CI diagrams that are present in D. The factor
∏

I nI ! counts for the
symmetry for vertices exchange of the single connected diagrams, so that we do not consider the

7



CHAPTER 3. HOW TO SUM OVER GRAPHS: MATRIX MODELS

same diagram more than once when we sum over all nI . Then we get:

Z ∝
∑
{nI}

D =
∑
{nI}

∏
I

1

nI !
(CI)

nI =
∏
I

∞∑
nI=0

1

nI !
(CI)

nI =
∏
I

eCI =

e
∑

I CI = eW

3.1.1 Vector Gaussian integrals
We now move on to the generalization of the technique exposed before to vector integrals. We
shall see that an analogous result holds and we will prove Wick theorem for a vector integral in
a way similar to the one shown above in the 1D case. Then, we will apply the result to matrix
integrals, which will give us the right diagrammatic expansion to handle the original problem.
Consider the Gaussian integral over RN :

I0 =

∫
dx1...dxNe−

1
2x

T Ax

where A is a symmetric, positive definite matrix. We can calculate the integral with a change of
variable diagonalizing the matrix A. Let Λ be the diagonalized matrix, and O be the orthogonal
matrix such that A = O†ΛO. Then, if y = Ox, since det(O) = 1, the integral become:∫

dy1...dyNe−
1
2y

T Λy =

N∏
i=1

∫
dyie

− 1
2y

2
i λi =

N∏
i=1

√
2π

λi
=

(2π)
N
2√

|det(A)|

We can now calculate mean values of expressions like xi1 ...xik using a method similar to the 1D
method. We observe that

1

I0

∫
dx1...dxNxi1 ...xike

− 1
2x

T Ax =
1

I0

∂

∂Ji1
...

∂

∂Jik

∫
dx1...dxNe−

1
2x

T Ax+JTx

⏐⏐⏐⏐
J=0

But, again with the change of variable y = Ox and remembering that O−1 = OT , we have:∫
dx1...dxNe−

1
2x

T Ax+Jx =

∫ +∞

−∞
dyie

− 1
2λiy

2
i+(JO)iyi =

N∏
i=1

√
2π

λi
e

1
2 (JO)i

1
λi

(JO)i =√
(2π)N

|det(A)|
e

1
2J

T ·A−1·J

Firstly, we can calculate mean values of ⟨xixj⟩. Deriving the generating function, we obtain:

⟨xixj⟩ =
1

I0

∂

∂Ji

∂

∂Jj

∫
dx1...dxNe−

1
2x

T Ax+Jx

⏐⏐⏐⏐
J=0

= A−1
ij (3.2)

We now expand both the exponentials and compare term by term:∫
dx1...dxNe−

1
2x

T Ax+JTx =

∞∑
k=0

⟨(JTx)k⟩
k!

=

∞∑
l=0

(
J iA−1

ij Jj
)l

2ll!

8



CHAPTER 3. HOW TO SUM OVER GRAPHS: MATRIX MODELS

The mean value of xi1 ...xik in the first series is multiplied by a factor of 1
k!

k!
n1!·...nN !Ji1 ...Jik where

ni is the number of times that the i-th component occurs. The combinatorial factor k!
n1!·...nN !

is the different ways to choose k different elements from k places, devided by the permutations
given by the presence equal terms. On the other hand, the term containing Ji1 ...Jik on the right
hand side of the equation correspond to l = k

2 and is made by 1
n1!...nN ! times the sum of all

possible pairings 1
2ll!

∑
σ

(
A−1

)
σ(i1)σ(i2)

· · ·
(
A−1

)
σ(ik−1)σ(ik)

. The combinatorial factors cancels
out, and we obtain the multi dimensional Wick Theorem:

Theorem 1 (Wick’s theorem). ⟨xi1 ...xik⟩ = 1
2ll!

∑
σ

(
A−1

)
σ(i1)σ(i2)

· · ·
(
A−1

)
σ(ik−1)σ(ik)

The factor 1
2ll!

is needed to count each Wick contraction once. We remark that the importance
of this result is that we have expressed the mean value of a product on k coordinates as a sum
of products of mean values of products of two coordinates. These fundamental quantities, which
we have seen are in correspondance with edges of the graphs, are called propagators, borrowing
the terminology from QFT.

3.2 Matrix integrals and topological expansion

We now move to an integral over the vector space of Hermitian matrices over RN . We set a
Gaussian measure on this space of the type:

I0 =

∫
dMe−

N
2 TrM2

The final scope is to expand diagrammatically an integral of the type:

1

I0

∫
dMe−

N
2 TrM2+gN Tr(M4) (3.3)

Where dM has to be understood as
∏n

i=1 dMii

∏
i<j Re{dMij} Im{dMij}. The N multiplying

the exponent, which is the size of the matricies, has only a rescaling effect which can be easily
accounted for but is crucial in the topological expansion we are going to perform.
We can expand the integral applying the vectorial Wick theorem, so we first calculate the "prop-
agators": ⟨MijMkl⟩ = δilδjk, as it’s easily obtained deriving the generating function properly
( ∂
∂Jij

means derivation respect the ij matrix component):

⟨MijMkl⟩ =
1

I0

∂

∂Jij

∂

∂Jlk

∫
dMe−

N
2 TrM2+Tr(JM)

⏐⏐⏐⏐
J=0

=
∂

∂Jlk

1

N
Jij e

Tr(J2)
2N

⏐⏐⏐⏐⏐
J=0

=
1

N
δilδjk

We are now ready to compute, firstly, the value of ⟨Tr (Mn)⟩. This is probably better illustrated
with an example, let’s say, with n = 4.
Using Wick theorem, we get (summation over equal indices is implied):⟨

Tr
(
M4
)⟩

= ⟨MijMjkMklMli⟩ =
⟨MijMjk⟩ ⟨MklMli⟩+ ⟨MijMkl⟩ ⟨MjkMli⟩+ ⟨MijMli⟩ ⟨MjkMkl⟩ =

1

N2
(δikδjjδikδll + δjlδiiδjlδkk + δijδjkδklδli) =

1

N2

(
N3 +N3 +N

)
9



CHAPTER 3. HOW TO SUM OVER GRAPHS: MATRIX MODELS

Figure 3.4: A quartic vertex, corresponding to (M4)

We can better understand and generalize this example by slightly modifying the basic idea
of graph expansion. For each term of the sum we get from Wick theorem, we create a vertex as
in Figure (3.4). Then, we connect the ribbon edges with each other, using double (ribbon) lines,
respecting the orientation of the arrows. Each double line connection corresponds to a mean
value of a possible Wick contraction, each "ribbon" graph possibly obtained by this means to a
term of the sum.

Considering the closed linear (not ribbon) loops which are hence created starting from an
indexed line, we note that each loop is in correspondance with a closed sequence of indices (in
the example, ikki, jj, ll for the first graph, then jllj, ii and kk for the second and illkkjji
in the third). Each pairing of two indices corresponds to a Kronecker δ with these two indices
as subscripts. Hence each closed line, and then each closed sequence of indices, represents a
summation over the "chain" of delta’s which result finally in contributing by a factor of N .
The correspondence is now clear:

• the double connections in a given graph give us a certain choice of coupling the various
terms in a way analog to Wick theorem.

• Each pairing gives us two Kronecker’s deltas, which are represented by the two lines of the
ribbon pairing connecting two indicies, and a 1

N factor.

• The various deltas obtained can be summed in cycles, each cycle gives an N factor when
it’s closed: this corresponds to a (multiplicative) contribution of N for each closed linear
loop obtained.

Once we established this observation, we are finally ready to move to the full integral (3.3).
We consider its development in a power series of g as usual:∫

dMe−
N
2 TrM2−gN Tr(M l) =

∞∑
k=1

(−g)kNk

k!

∫
dM Tr

(
M l
)k

e−
N
2 TrM2

Now, every Tr
(
M l
)

gives a single vertex, and for every order k we make the same procedure
exposed before, creating all different possible ribbon graphs with k vertices. We observe that the
N in the second part of the exponential gives an extra N factor for every vertex in the diagram
we are considering. Now, something amazing happens. We recall all the various N factors for
each diagram:

• One N factor for each vertex.

10



CHAPTER 3. HOW TO SUM OVER GRAPHS: MATRIX MODELS

Figure 3.5: The three diagrams corresponding to ⟨M4⟩

• One 1
N factor for each ribbon edge.

• One N factor for each linear loop.

We can now define the Euler characteristics for fatgraphs as χ = V −E + L, where V is the
number of vertices, L of loops and E of edges [12]. This is the same of imagining each diagram as
lying on a 2d surface, in such a way that different edges do not intersect. A diagram whose edges
directly do not self intersect can lay on a sphere. For the other diagrams, each intersection needs
a handle to be added to the sphere, so that one edge can pass over the other (in the example,
the first diagram of 3.2 lies on a torus).
In a similar fashion, one can embed each of these graphs in a topologically different 2d surface.
Moreover, every connected compact orientable 2d surface can be classified as a sphere with a
number h of handles, and the Euler characteristic can be defined for it as χ = 2 − 2h (see
Appendix 1). We now observe that each graph divides the surface on which is embedded in
different regions (faces), and each loop encloses and hence corresponds to one face. Thus, the
number of loops equals the number of faces. We get then that the previously defined Euler
characteristic equals to the standard one: χ = V − E + F .
Moreover, since each loop can be turned to a triangle adding two vertex and two edges, hence
without affecting the Euler characteristic defined before, we see that the graph can be turned
in a triangulation of the surface. We can then relate the definition of Euler characteristic for a
graph and the one for a surface in term of the genus, and show that are equal. This is further
discussed in Appendix 1.
Then, we established that each graph can be associated with a 2d surface with a certain genus,
and that his weight in the integral is proportional to NV−E+F = Nχ. This non trivial and
extremely important result is known as topological expansion, and will have application in the
original problem: once we have mapped the partition function to a matrix integral, we will know
that the leading term in N will corrispond to planar graphs only.

11



Chapter 4

Finding the right matrix model

Now that we have developed the formalism of matrix integrals, we can turn to the original
problem: the calculation of the partition function (2.1). As we showed in chapter (2), we need to
find an integral that can correspond to a sum over graphs with two different types of vertices and
then edges with different weights. After that, we will need to find a method to solve it exactly
in order to extract the information desired. To obtain this result, we should generalize the single
matrix integral and use a double matrix integral:

Z(N, c, g,H) =

∫
dAdBe[−N tr(A2+B2−2cAB+4geHA4+4ge−HB4)]

We observe that the 4 multipling geH and ge−H is only dued to the fact that we removed
the 1

2 in front of N , hence rescaling the integral calling A =
√
2A′ and B =

√
2B′.

The mechanism is analogous to the one explained before, but guarantees the possibility to have
vertices with different weights. Tr

(
A2 +B2 − 2cAB

)
is a quadratic form over the two matrices

A and B, given by (
A B

)(1 c
c 1

)(
A
B

)
with determinant 1

1−c2 . Hence, (
1 c
c 1

)−1

=
1

1− c2

(
1 −c
−c 1

)
and, following (3.2), we obtain the two weights for edges connecting A and B vertices.

⟨trAA⟩ = ⟨trBB⟩ = 1

1− c2

and
⟨trAB⟩ = c

1− c2

We will still have a weight proportional to the Euler characteristic of a given configuration,
but with the additional contributions of the propagators connecting the edges, which are no more
the unity. Moreover, the vertex of the two types will have additional weight of geH and ge−H

respectively. Thus, the weight of a diagram is:

Weight = Nχ
(
geH

)VA
(
ge−H

)VB ⟨AA⟩Ep⟨AB⟩Ea = Nχ

[
− gc

(1− c2)
2

]V
c−

1
2 (Ep−Ea)eH(VA−VB)

12



CHAPTER 4. FINDING THE RIGHT MATRIX MODEL

Where V = VA + VB is the total number of vertices, and we used Ep + Ea = E = 2V . If we
identify VA with spin up vertices and VB with spin down vertices, we can find the value of the
constant c which makes this weight corresponding to the desired Ising weight of a configuration.
Comparing with (2.2) gives c = e−2β . We will keep on writing c in all the following sections.
As before, we are now considering disconnected diagrams too. Taking the logarithm, we restrict
ourselves only to connected diagrams. Then, we have:

F (c, g,H) = log
Z(c, g,H)

Z(c, 0, 0)
=

∑
configurations

Nχ

[
− gc

(1− c2)
2

]V
eβ[(Ep−Ea)+H(V↑−V↓)] (4.1)

We recall that we want to consider only the planar configurations, and that the thermodynamic
calculation requires the number of vertices going towards infinity.
To account for the first problem, we use the topological expansion. Each topology brings a factor
of Nχ, and any non planar topology has Euler characteristic ≤ 0 (Appendix 2). We can thus
divide by N2 and take the limit for the dimension of the matrix space going to infinity (N → ∞):

Fpl(c, g,H) = − lim
N→∞

1

N2
F (c, g,H) (4.2)

For planar diagrams, the Nχ = N2 simplifies, and for all other topologies the limit is 0. We are
then left with a sum over all connected planar graphs with any numer of vertices. Of course (see
(4.1) and chapter (3) ) Fpl(c, g,H) is a power series in g, where the exponent classifies the numer
of vertices and each term FV (c,H) has all the contributions from that number:

Fpl(c, g,H) =

∞∑
V=1

[
− gc

(1− c2)
2

]V
FV (c,H)

We need to estimate the coefficient for V → ∞. In order to do this, we observe that F admits
a series expansion, and is thus analytic in g. If the series has a finite radius of convergence (we
shall see later that this is indeed the case), Hadamard’s formula gives us:

1

R
= lim

V→+∞
V
√
FV

Hence, if we know R = c|gcr(c,H)|
(1−c2)2

we can estimate limV→+∞ FV :

ZIsing = lim
V→+∞

FV = lim
V→+∞

[
c |gcr(c,H)|
(1− c2)

2

]−V

And finally, we get the free energy per site:

FIsing = − 1

V β
logZIsing(V, β,H) =

1

β
log

[
c |gcr(c,H)|
(1− c2)

2

]
(4.3)

Then, we now have to calculate the integral, perform the limits described here and obtain gcr.
To this calculation will be dedicated the following sections.

13



Chapter 5

Performing the calculation

To actually solve the integral in the matrix model, we need to resort to an integral formula found
by Harish-Chandra in [13]. In the following chapter, we develop the mathematical formalism to
understand it, and we expose a proof valid in our particular case following Metha [14]

5.1 Haar measure on Lie groups

Consider a Lie Group (G, ·) and denote, for every g ∈ G by Lg the diffeomorphism induced by
left multiplication by g. Then we can, as usual, build the left invariant vector fields defined by
the condition dL′

g

(
X|g

)
= X|g′◦g for every left invariant field X and for every g, g′ ∈ G. The

group operation offers a possibility to naturally induce a metric on the entire manifold starting
from an arbitrary metric on the tangent space at the identity g. We can use left multiplication by
group elements to "move" the vector from the tangent space they belong to to the Lie algebra,
so defining the metric at a point g by ⟨X,Y ⟩g = ⟨dLg−1

(
X|g

)
, dLg−1

(
Y |g
)
⟩. This is the same

to define the metric at g as the pullback of the metric on g to Tg by Lg−1 . With this definition,
we are actually transporting an orthonormal basis on g to every tangent space in the manifold.
Moreover, this metric has the property of being left invariant, that is, every left translation is an
isometry. ⟨dLg′

(
X|g

)
, dLg′

(
Y |g
)
⟩ = ⟨X,Y ⟩g.

Having defined a metric on G, we can now measure lengths and, as a consequence, volumes. We
want to define the volume form in such a way that the infinitesimal volume of a parallelepiped
made up by an orthonormal base is 1. We should first define the manifolds which can have a
volume form consistently defined everywhere: these manifolds are called orientable. The precise
definition is that a manifold is orientable if there exists an everywhere non zero n form. Since the
vector space of n forms is one dimensional, and a volume form is an n-form, the two statements
are actually the same. Moreover, every Lie group is orientable: you can just define an n form at
the identity and pull-back it on every point in G similarly to how we did with the metric.

So, for an orientable Riemannian Manifold of dimension n, we define the volume form as
the unique n form which in an orthonormal frame e1...en has the form ω = e1 ∧ ...en. Before
showing that this is indeed a good definition, we need to find the expression for ω in a generic
coordinate sistem. Let A be the change of basis matrix, so that e′i = Aj

iej . we have that
ω′dx′1 ∧ ...dx′n = 1

n!ϵj1...jnA
j1

i1 ...A
jn

indx
′i1 ∧ ...dx′in = det(A)dx′1 ∧ ...dx′n. But, for every

change of coordinaates between two orthonormal bases, det(A) = 1, so ω has the same action on
the two bases and the definition is well posed. Moreover, for an orientation preserving change of

14
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coordinates, we find that det(A) =
√
AtA =

√
det(g). Then, we get:

ω =
√

det(g)dx1 ∧ · · · ∧ dxn (5.1)

Using the same procedure, we can define on a Lie group a right invariant metric and measure as
well. However, in general the two are not equivalent. On the other hand, in the special case of a
(connected) compact Lie group we can show that exists a both left and right invariant measure:

Theorem 2. Every connected compact Lie Group admits a bi-invariant measure [15].

Proof. Let dimG = n, and dω a left invariant measure on G.
Consider now, for every g ∈ G, the n-form R∗

g (dω). We want to show that R∗
g (dω) = dω.

This form is still left invariant since left and right translations commute. Moreover, since
dimΛn (V ) = 1, R∗

g (dω) = h(g)dω. We can thus define the function ∆ : G ∋ g → h(g) ∈ R. Since
R∗

g◦g′ = R∗
g′ ◦R∗

g, ∆(g′ ◦ g) = ∆(g′)∆(g). But ∆(e) = 1 and G is connected, so ∆(g) > 0 ∀g ∈ G,
otherwise would exist a g such that R∗

g (dω) = 0. Moreover, G is compact and ∆ is countinuous,
so ∆(G) is compact. If there exists g ∈ G such that ∆(g) ̸= 1, then the sequence ∆(gn) for n ∈ Z
would be unbounded and this contradicts the compactness of ∆(G). Hence, ∆(g) = 1 ∀g ∈ G,
and as a consequence, dω is right-invariant.

In Appendix 2 we will show how a bi-invariant measure is found in U(N) and explicitely
calculate the metric tensor in suitable coordinates.

5.2 Integrating over a Lie algebra: eigenvalues and unitary
sector

To actually perform the integral we want to calculate, we need to integrate over the vector space
of Hermitian matrices over CN , which is the Lie algebra of U(N). We now show how we can make
a change of coordinates which parametrizes the matrices with their eigenvalues and a unitary
matrix.
The concept is similar to the one of the Weyl integration formula over Lie groups. In that case,
one observes that we can choose a maximal abelian subgroup of a Lie group, called the maximal
torus, which consists in the case of a matrix group of a maximal set of commuting (and hence
simultaneously diagonalizable in U(N) case) matrices. Then, since every element of a Lie group
is conjugate to an element of the maximal torus (spectral theorem guarantees that every unitary
matrix is conjugate to a diagonal one), one can integrate separately over the maximal torus and
over the subset of the group which is needed to perform the conjugation.
This leads to the following formula for integration over Lie groups:∫

G

f(g)dg = |W |−1
∫
T

∆(t)2
∫
G/T

f
(
gtg−1

)
d[g]dt

where |W | is the order of the Weyl group, ∆(t) the Vandermonde determinant (cfr: App 3) and
d[g] the Haar measure on G/T . We are now going to obtain a similar expression for integration
over a Lie algebra. Of course, corresponding to the maximal torus there will be a maximal
abelian subalgebra (the Cartan subalgebra), and we can write an arbitrary Hermitian matrix H
as H = U†ΛU , where Λ is diagonal. Starting from a flat metric tensor gij = δij , we can calculate
the metric tensor in the new coordinates. We begin with:

dH = d
(
UΛU†) = dUΛU† + UdΛU† + UΛdU†

15
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Since d
(
UU†) = dI = 0, we have:

dU† = −U†dUU†

Then, we obtain:

dH = dUΛU† + UdΛU† − UΛU†dUU† =

= U
(
U†dUΛ + dΛ− ΛU†dU

)
U† =

U
([
U†dU,Λ

]
+ dΛ

)
U†

We can now obtain the form of the metric tensor:

ds = Tr (dHdH) = Tr
([
U†dU,Λ

]
+ dΛ

)2
Since

(
U−1dU

)†
= dU†U = −U−1dU , the matrix U−1dU = idT is anti Hermitian, so dT is

Hermitian.
We get:

ds2 = Tr (idTΛ− ΛidT + dΛ)
2
= Tr

(
dTΛdTΛ− dTΛ2dT + ΛdTΛdT + dΛ2

)
= −Tr

(
[dT,Λ]

2
)
+Tr dΛ2

= Tr dΛ2 +Tr
(
(dTΛ)

2
+ (ΛdT )

2 − dTΛdT 2 − ΛdT 2Λ
)

=
∑
k

(
dλ2

k

)
− 2 tr

(
dTΛdTΛ− (dT )2(dΛ)2

)
=
∑
k

(
dλ2

k

)
− 2

∑
ij

(dT )ij(dT )ji
(
λiλj − λ2

i

)
=
∑
k

(
dλ2

k

)
− 2

∑
ij

|dTij |2 λj

(
λiλj − λ2

i

)
=
∑
k

(
dλ2

k

)
+ 2

∑
ij

[
d (ReTij)

2
+ d (ImTij)

2
]
(λi − λj)

2

From the metric tensor in the new coordinates, it’s easy to obtain the measure. From (5.1), and
since det g = 2n

2−n
∏

i<j (λi − λj)
4 we get:

dµ = 2
1
2n(n−1)∆(λ1 . . . λn)

2
n∏

i=1

dλi

∏
i<j

dTij (5.2)

where ∆(λ1 . . . λn) is the Vandermonde determinant(cfr: App 3).
We thus devided the integration in a part over the eigenvaules and in a part over unitary matrices.
We observe that the integration over unitary matrices is not over the whole U(N): to avoid
multiple matrices counting the same Hermitian matrix, we need to fix n parameters, and we are
in fact integrating over U(N)/ exp(Λ) [16]. However, we will keep on writing the integration as
it would be over the whole group.

5.3 Divergence and Laplacian On a Manifold

To prove the Harish-Chandra formula, we need to introduce a last topic, the divergence on a
manifold. We consider a manifold endowed with a volume form ω, and a vector field X on that
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manifold. The vector field induces a local diffemorphism on the manifold, which in turn modifes
the volume form at every point. The divergence of the vector field X at a point is the first order
change of the volume form at this point induced by the infinitesimal diffeomorphism related to
X. We are then led to the definition:

Definition 1 (Divergence of a vector field). Let X be a vector field on a manifold endowed with
a volume form ω. Then, ∇ ·X is defined by the equation (∇ ·X)ω = LXω

We observe that, since Λn
(
T ∗
p

)
has dimension one, every n form is proportional to the volume

form. Then the divergence is well definded. Moreover, we can use Cartan’s homoopy formula:
LXω = iXdω+diXω, and knowing that dω = 0, we find that (∇·X)ω = diXω. If the manifold is
endowed with a metric, there is a corrispondence beetween k forms and n-k forms. Let a ∈ Λk(T ∗

p )

be a k form. Then, the metric maps naturally a in a multivector a∗ ∈ Λk(Tp). Contracting the
volume form with this multivector gives a n-k form, whihc is called the (Hodge) dual form ⋆a.
In this corrispondence, every n form is mapped to a zero form: a function. Then we obtain
∇ · X = ⋆LXω = ⋆d ⋆ X♭. We can understand this duality relation thinking that the Hodge
star send a k form α to a "perpendicular" n-k form ⋆α: a form which kernel is the orthogonal
subspace to the kernel of α and such that α ∧ ⋆α = ∥α∥2ω (or equivalently ∥α∥ = ∥⋆α∥).
We can now compute an explicit formula for the divergence in arbitrary coordinates. Using the
definition, we calculate LXω:

LXω = LX(
√
|det(g)|)dx1 ∧ ...dxn = diX

(√
|det(g)|)dx1 ∧ ...dxn

)
= d

(√
|det(g)|(X1dx

2 ∧ ...dxn −X2dx
1 ∧ dx3...dxn + ...(−1)n−1Xndx

1 ∧ ...dxn−1)
)

=

n∑
i=1

∂i(
√

|det(g)|Xi)dx
1 ∧ dx2 ∧ ...dxn

Now, since (∇ ·X)ω = (∇ ·X)
√
|det(g)|dx1 ∧ ...dxn = LXω by definition, we compare the two

expressions and we find:

∇ ·X =
1√

|det(g)|
∂a
√
|det(g)|Xa

Having found the divergence of a vector field, we are directly brought to the general form of
the Laplacian operator:

Definition 2 (Laplacian of a scalar function). Let ϕ : M → R be a scalar function on a
Riemannian manifold. Then,

∇2ϕ = ∇ ·∇ϕ =
1√

|det(g)|
∂a
√
|det(g)|gaj ∂ϕ

∂xj
(5.3)

5.4 Harish-Chandra formula for U(N)

We turn back to the original integral (4.2). Firstly, we diagonalize the matrices: A = U†XU and
B = V †Y V where X and Y are diagonal matrices. We observe that:

Tr(AB) = Tr
(
U†XUV †Y V

)
= Tr

(
V U†XUV †Y

)
= Tr

(
WXW †Y

)
where we defined (V U†) = W . Using the above calculation, we can handle the 2cTr(AB) in the
exponential, and we obtain:∫

dXdY∆2(X)∆2(Y ) exp

[
−N

∑
i

(
x2
i + y2i + 4geHx4

i + 4ge−Hy4i
)] ∫

dW exp
[
2Nc tr

(
WXW †Y

)]
17
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We used formula (5.2) to handle the differential of the change of variable. The difficult part to
integrate is now the one in dW . We will follow the path used by Metha, in [14].

Consider the heat equation for a scalar function over the vector space of Hermitian matrices
(A and B will be Hermitian matrices hereafter) with initial condition ξ(A, 0) = η(A) which we
will suppose that depends only on the eigenvalues:

∂ξ(Aij , t)

∂t
=

1

2
∇2ξ(Aij , t) =

1

2

⎡⎣∑
i

∂2

∂A2
ii

+
1

2

∑
i<j

∂2

∂ (ReAij)
2 +

∂2

∂ (ImAij)
2

⎤⎦ ξ(Aij , t)

The solution is the spatial convolution by the heat kernel 1
(2πt)n2/2

exp
[
− 1

2t tr(A−B)2
]
:

ξ(A, t) =

∫
dB

1

(2πt)n2/2
exp

[
− 1

2t
tr(A−B)2

]
η(B)

We can now make a change of variable diagonalizing B and A:

A = U†XU and B = V †Y V

Using (5.2) for B we get:

ξ(X,V, t) =
1

(2πt)n2/2

∫
dY∆(Y )2η(Y )

∫
dU exp

[
− 1

2t
tr
(
V †XV − U†Y U

)2]
But

Tr
(
V †XV − U†Y U

)2
= Tr

[
U(U†XU − V †Y V )U†U(U†XU − V †Y V )U†] = Tr

(
X − (UV †)Y

(
V U†))2

We call V U† = W and we get:

ξ(X, t) =
1

(2πt)n2/2

∫
dY∆(Y )2η(Y )

∫
dW exp

[
− 1

2t
tr
(
X −W †YW

)2]
This change of variable (which is possible because η does not depend on U) shows that the solution
too depends only on the eigenvalues. We can further expand the term in the exponential:

Tr
(
X −W †YW

)2
= TrX2−2Tr

(
XW †YW

)
+Tr

(
W †YW

)2
= TrX2−2Tr

(
XW †YW

)
+TrY 2

This gives us:

ξ(X, t) =
1

(2πt)n2/2

∫
dY∆(Y )2η(Y ) exp

(
− 1

2t
TrX2

)
exp

(
− 1

2t
TrY 2

)∫
dW exp

[
1

t
Tr
(
XW †YW

)]
(5.4)

Consider ξ as a function of X is the same as making the change of coordinates in A before solving
the differential equation and then solving the differential equation in the new coordinates. We
can hence use the laplacian in his general-coordinate form (5.3) to obtain the new equation solved
by ξ(A(X)):

∂ξ(X, t)

∂t
=

1

2

1

∆2(X)

n∑
i=1

∂

∂xi
∆2(X)

∂

∂xi
ξ(X, t)
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Since the initial condition does not depend on U , the derivatives of ξ with respect to U and
hence the corrispondent part of the laplacian vanishes, and only eigenvalues part is left. Taking
the derivatives, we get:

∂ξ(X, t)

∂t
=

1

2

1

∆2(X)

[
2∆(X)

∂∆(X)

∂xi

∂ξ(X, t)

∂xi
+∆2(X)

∂2ξ(X, t)

∂2xi

]
and

∂

∂t
(∆(X)ξ(X, t)) =

1

2

[
2
∂∆(X)

∂xi

∂ξ(X, t)

∂xi
+∆(X)

∂2ξ(X, t)

∂2xi

]
We now use the fact that Vandermonde determinant is an harmonic function of the eigenvalues
(see Appendix 3) and then ∂2∆(X)

∂2xi = 0

∂

∂t
(∆(X)ξ(X, t)) =

1

2

[
∂2∆(X)

∂2xi
+ 2

∂∆(X)

∂xi

∂ξ(X, t)

∂xi
+∆(X)

∂2ξ(X, t)

∂2xi

]
=

1

2

∂2

∂2xi
∆(X)ξ(X, t)

Hence, F (X; t) = ∆(X)ξ(X, t) satisfies the diffusion equation again:

∂

∂t
(F (X, t)) = ∇2F (X, t)

With initial condition F (X, 0) = ∆(X)η(X).
Again, the solution is provided by heat kernel:

F (X, t) =

∫
dY∆(Y )η(Y )

1

(2πt)n/2
exp

[
− 1

2t
tr(X − Y )2

]
(5.5)

We can now compare (5.4) and (5.5), to get:

∆(X)

∫
dY∆(Y )2η(Y ) exp

(
− 1

2t
TrX2

)
exp

(
− 1

2t
TrY 2

)∫
dW exp

[
1

t
Tr
(
XW †YW

)]
=

(2πt)
n(n−1)

2

∫
dY∆(Y )η(Y ) exp

[
− 1

2t
tr(X − Y )2

]
= (2πt)

n(n−1)
2

∫
dY∆(Y )η(Y ) exp

(
− 1

2t
TrX2

)
exp

(
− 1

2t
TrY 2

)
exp

[
1

t
tr(XY )

]
We can now simplify exp

(
− 1

2t TrX
2
)
. Now, we choose η(Y ) in order to get our desired integral.

Hence, we set η(Y ) = exp
(

1
2t TrY

2
)
exp
(
−N(

∑
i y

2
i + 4ge−Hy4i )

)
to obtain the desired expres-

sion. Setting now t = 1
2Nc , multiplying by ∆(X) exp

(
−N(

∑
i x

2
i + 4geHx4

i )
)

and integrating in
dX gives us:∫

dXdY∆(X)2∆(Y )2 exp

[
−N

∑
i

(
x2
i + y2i + 4geHx4

i + 4ge−Hy4i
)] ∫

dW exp
[
2NcTr

(
XW †YW

)]
=

( π

Nc

)n(n−1)
2

∫
dXdY∆(X)∆(Y ) exp

[
−N

∑
i

(
x2
i + y2i + 4geHx4

i + 4ge−Hy4i + 2cxiyi
)]

This result is equivalent to the one obtained by using the Harish-Chandra-Itzkyson-Zuber for-
mula, which exactely calculates the integral

∫
dWe2Nc tr(WXW †Y ).∫

SU(n)

dW exp

[
1

t
tr
(
XWYW †)] = t

1
2n(n−1)

n−1∏
j=0

j!
det
[
exp 1

t (xiyj)
]

∆(X)∆(Y )
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5.5 Bi-orthogonal polynomials

After the tour de force proving Harish-Chandra formula, we ended with the result (neglecting
numerical factors which will finally simplifies when normalizing):

Z =

∫
dXdY∆(X)∆(Y ) exp

[
−N

∑
i

(
x2
i + y2i + 2cxiyi + 4geHx4

i + 4ge−Hy4i
)]

(5.6)

To solve the integral, we exploit the property of the determinant to be invariant under linear
combinations of columns, and then we will develop the technique of bi-orthogonal polynomials.
First, let’s call v(x, y) = x2 + y2 − 2cxy + 4geHx4 + 4ge−Hy4. We now observe that thanks to
the antisimmetry of det under colums exchange, summing to each column of the Vandermonde
matrix a linear combination of the preceding ones does not affect the determinant. Then, we
can rearrange the matrix in such a way that on each m column we have an arbitrary monic
polynomial [Pm (xk)]

m=0...N−1
k=1...N of degree m in indeterminate xk. This allows us to choose the

polynomials in a convenient way, and hence to caclulate the integral.
Equation (5.6) becomes:

Z =

∫
dXdY det [Pr (xk)] det [Qr (yk)] e

−N
∑

i v(xi,yi) (5.7)

and we impose that polynomials satisfy the following relationship of bi-orthogonality:∫
dxdye−Nv(x,y)Pk(x)Qj(y) = hkδkj (5.8)

We will prove that the condition can indeed be satisfied if hk are chosen properly, and that this
is sufficient to completely define the polynomials. Before summarizing the principal properties
of bi-orthogonal polynomials, we show why this choice will permit us to calculate the integral.
We write (5.7) using Levi-Civita symbol:

Z = ϵi1...iN ϵj1...jN
∫

dx1dy1...dxNdyNe−N
∑

i v(xi,yi)Pi1(x1)...PiN (xN )Qj1(y1)...QjN (yN )

= ϵi1...iN ϵj1...jN
∫

dx1dy1...dxNdyNe−N
∑

i v(xi,yi)
N∏
l=1

Pil(xl)

N∏
k=1

Qjk(yk) =

ϵi1...iN ϵj1...jN
N∏
l=1

∫
dxldyle

−Nv(xl,yl)Pil(xl)Qjl(yl)

This is the sum of (N !)2 integrals. Now, using bi-orthogonality condition, we have that the
integrals are non zero only when il = jl ∀ l. This happens once for every permutation on the N
indices (we can change the first N indeces arbitrarily, the second N are determinate by the first
since they must be equal), and gives a factor of

∏N
k=1 hk. Thus, the final integral is:

Z = N !

N∏
k=1

hk

5.5.1 Properties of bi-orthogonal polynomials
In this section we expose a series of properties of bi-orthogonal polynomials that will allow us
to find the hk. We firstly recall two properties of orthogonal polynomials which will have an
analogous in the bi-orthogonal case:
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Proposition 1. Let {Pi(x)} a family of orthogonal polynomials. Then, Pk(x) is orthogonal to
every polynomial of degree ≤ k

Proof. Let Q(x) be a polynomial of deg m ≤ k. The orthogonal polynomials of degree ≤ k
are linarly independent, since they are all of different degree. Moreover, since the space of
polynomials of degree ≤ k has dimension k + 1, they are a basis of this space. Then, Q =∑k

i=0 ciPi, and using orthogonality, Q is orthogonal to Pk.

Proposition 2. Orthogonal polynomials satisfy a three-term recurrence relation with constants
Ak, Bk and Ck [17]:

xPk(x) = AkPk+1(x) +BkPk(x) + CkPk−1(x)

Proof. Suppose that the recurrence contains also the term DkPk−2(x), then:∫
σ

dxxPk(x)Pk−2(x) = Dk

Since xPk−2 is a linear combination of polynomial of degree ≤ k − 1, the left integral vanishes
by orthogonality and gives 0 = Dk. In the same way one proves the absence of all lower order
terms in the recurrence.

Similar results hold for bi-hortogonal polynomials:

Proposition 3. Let Qk(y) a bi-orthogonal polynomial of degree k. Then,∫
dxdye−Nv(x,y)P (x)Qk(y) = 0

for all polynomials P (x) of degree m ≤ k.

Proof. Bi-orthogonal polynomials in x variable Pj(x) with j ≤ k are a basis for polynomials in
x of degree j ≤ k. Then, P =

∑k
j=0 Pj , and using orthogonality condition (5.8), we get the

thesis.

Proposition 4. Bi-orthogonal polynomials satisfy the following recursion relations:

xPk(x) = Pk+1(x) +RkPk−1(x) + SkPk−3(x) (5.9)
yQk(x) = Qk+1(x) +R′

kQk−1(x) + S′
kQk−3(x) (5.10)

Proof. xPk(x) is a polynomial of degree k + 1, then is certainly a linear combination of the
k + 2 Pj(x) j ≤ k + 1. We suppose that in (5.9) there is a term TkPk−5(x). We can multiply
both sides of (5.9) by Qk−5(y) and integrate with the usual measure. We get:∫

dxdy exp(−Nv)xPk(x)Qk−5(y) = Tkhk−5

Now, to solve the LHS, we need to transform multiplication by x in operations involving y. We
observe that

∂

∂y
e−Nv(x,y) = 2N

(
cxe−Nv(x,y) − e−Nv(x,y)

(
y + 8ge−Hy3

))
Then,

cxe−Nv(x,y) =
1

2N

∂

∂y
e−Nv(x,y) + e−Nv(x,y)

(
y + 8ge−Hy3

)
(5.11)
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Inserting this result in the previous integral, we get:∫
dxdy

[
1

2N

∂

∂y
e−Nv(x,y) + e−Nv(x,y)

(
y + 8ge−Hy3

)]
Pk(x)Qk−5(y) = cTkhk−5

The second part of the integral gives a polynomial in y of degree k− 2. Integrating by parts the
first part gives a polynomial of degree k−6. Then, by proposition (3) the integral is 0, and since
hk ̸= 0 must be Tk = 0. An identical procedure gives (5.10).

We now search for additional relationships which allow us to determine hk. Let fk = hk

hk−1
.

Then:

Proposition 5. The following relationships hold:

cSk = 8ge−Hfkfk−1fk−2

cS′
k = 8geHfkfk−1fk−2

cRk =
[
1 + 8ge−H

(
R′

k+1 +R′
k +R′

k−1

)]
fk

cR′
k =

[
1 + 8geH (Rk+1 +Rk +Rk−1)

]
fk

k

2N
= −cfk + 8ge−H

[
R′

k

(
R′

k+1 +R′
k +R′

k−1

)
+ S′

k+2 + S′
k+1 + S′

k

]
+R′

k

k

2N
= −cfk + 8geH [Rk (Rk+1 +Rk +Rk−1) + Sk+2 + Sk+1 + Sk] +Rk

Proof. We will prove relations 1,3 and 5. The other three are completely analogous.

• To prove the first relation, we multiply (5.9) by cQk−3 and integrate with the measure.
The result is:

cSkhk−3 =

∫
dxdye−Nv(x,y)cxPk(x)Qk−3(y)

Using (5.11) we get

cSkhk−3 =

∫
dxdy

[
1

2N

∂

∂y
e−Nv(x,y) + e−Nv(x,y)

(
y + 8ge−Hy3

)]
Pk(x)Qk−3(y)

The first two terms in the integral give polynomials in y of degree ≤ k and than null
contributes. To handle y3Qk−3(y), we use (5.10) three times: observe that the only term
of degree ≥ k which comes out from the recursion relation is exactly Qk(y). Then

cSkhk−3 = 8ge−Hhk

• To prove the second relation, we multiply (5.9) by cQk−1 and integrate with the measure.
The result is:

cRkhk−1 =

∫
dxdye−Nv(x,y)cxPk(x)Qk−1(y)

Using (5.11) we get:

cRkhk−1 =

∫
dxdy

[
1

2N

∂

∂y
e−Nv(x,y) + e−Nv(x,y)

(
y + 8ge−Hy3

)]
Pk(x)Qk−1(y)

The first term in the integral is 0. To handle∫
dxdye−Nv(x,y)

(
y + 8ge−Hy3

)
Qk−1(y)Pk(x)
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we use again (5.10). The yQk−1 term gives Qk as the only term of degree ≥ k. The term
y3Qk−1 is more complicated. We need to apply (5.10) three times, and find out all the
possible terms of degree k. There are three possible ways to obtain terms of degree k, in
total we get (Rk+1 +Rk +Rk−1)Pk. Using orthogonality relation, this leads to

cRkhk−1 = hk

[
1 + 8ge−H

(
R′

k+1 +R′
k +R′

k−1

)]
• To prove the third relation, we multiply (5.9) by cQk+1 and integrate with the measure.

The result is:
chk+1 =

∫
dxdye−Nv(x,y)cxPk(x)Qk+1(y)

Using (5.11) we get:

chk+1 =

∫
dxdy

[
1

2N

∂

∂y
e−Nv(x,y) + e−Nv(x,y)

(
y + 8ge−Hy3

)]
Pk(x)Qk+1(y)

The yQk+1(y) term gives contribution R′
k+1Qk(y). To handle the term containing the

derivative, we integrate by parts: since Qk+1(y) is a monic polynomial, taking the derivative
gives a degree k polynomial with coefficent (k+1) for the term of degree k. This polynomial
can be written as (k + 1)Qk +

∑k−1
i=0 ciQi(y)(we recall that {Qi(y)}i=0...k are a basis for

polynomials o degree ≤ k). Then, the only contribution is −k+1
2N hk. For the other therms

we use a procedure analogous to the one exposed before. The result is:

chk+1 = 8ge−Hhk

[
R′

k+1

(
R′

k+2 +R′
k +R′

k−2

)
+ S′

k+3 + S′
k+2 + S′

k+1

]
+R′

k+1hk−
k + 1

2N
hk

5.6 The limit N → ∞: going to continuum

In principle, we could use relationships of proposition (5) to find the hk and the appropriate
coefficents. However, we recall that we are interested in the N → ∞ limit. We will see that it’s
more convinient to firstly perform the limit, and only after to solve recursion relations. In fact,
when N → ∞ we can make a passage to continuum, and approximate the discrete relations in k
of (5) by algebraic equations in a continuum variable.
We observe that k = 1...N . Then, xk = k

N goes from 0 to 1, and the difference between two
consecutive values xk+1 − xk = dx = 1

N goes to zero in the limit consedered. The relation
between k and xk is one to one, so we can equally use xk as an index. Hence, we can replace k
by Nx. If we accept that fk − fk−1 → 0 if N → ∞, fk become a continuous function f(x), with
0 ≤ x ≤ 1. Then, the relationships (5) become:

cS(x) = 8ge−Hf3(x) (5.12)

cS′(x) = 8geHf3(x)

cR(x) =
[
1 + 24ge−HR′(x)

]
f(x) (5.13)

cR′(x) =
[
1 + 24geHR(x)

]
f(x) (5.14)

cx+ 2c2f(x)− 24(4g)2f3(x) = 2cR′(x)
[
1 + 24ge−HR′(x)

]
(5.15)

cx+ 2c2f(x)− 24(4g)2f3(x) = 2cR(x)
[
1 + 24geHR(x)

]
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We can now use (5.12) (5.13) and (5.14) to obtain S(x) R(x) and R′(x) as a function of f(x):

cS(x) = 8ge−Hf3(x)

R(x) = f(x)
c+ 24ge−Hf(x)

c2 − (24g)2f2(x)

R′(x) = f(x)
c+ 24geHf(x)

c2 − (24g)2f2(x)

and then, inserting in (5.15), we can find an equation which relates f(x) to x, g and H. In
principle, solving the equation gives f(x) and then all the terms of the orthogonality condition.
The equation is:

x

2
= −cf(x) +

12(4g)2

c
f3(x) + c

f(x)

[c− 24gf(x)]2
+ 48gc2f2(x)

(coshH − 1)

[c2 − (24g)2f2(x)]
2

which can be written more compactly defining z(x) = (24g/c)f(x):

4gx = −1

3
c2z +

1

9
c2z3 +

1

3

z

(1− z)2
+

2

3

z2

(1− z2)
2 (coshH − 1) ≡ w(z) (5.16)

Solving the equation 4gx = w(z) would give us f . However, it’s clear that the equation is
too complex to be solved analytically. Moreover, we are interested not in f(x), but in the
continuum limit of Z = N !

∏N
k=1 hk or, to be precise, to the logarithm, which will takes connected

diagrams. Keeping f(x) implicitely defined by (5.16), we now search for the right expression for
the continuum limit desired.
We want to find:

F = log

(
Z(c, g,H)

Z0(c, 0, 0)

)
We have Z = N !

∏N
k=1 hk, and Z0 = N !

∏N
k=1 h

(0)
k , where h

(0)
k are calculated using the previous

relationships and setting H = g = 0. For each hk, holds: hk = h0

∏k
i=1 fi. Then,

Z = N !

N∏
k=1

hk = N !hN
0 fN−1

1 · ...f1
N−1 = N !hN

0

N−1∏
k=1

fN−k
k

Then,

F = log

⎛⎝ hN
0

∏N−1
k=1 fN−k

k

h
(0)
0

N ∏N−1
k=1 f

(0)
k

N−k

⎞⎠ = N log

(
h0

h
(0)
0

)
+

N−1∑
k=1

(N − k) log

(
fk

f
(0)
k

)

We can now select the planar topology by taking the limit:

Fpl = lim
N→∞

1

N2
F = lim

N→∞

1

N
log

(
h0

h
(0)
0

)
+

1

N

N−1∑
k=1

(
1− k

N

)
log

(
fk

f
(0)
k

)

1
N log

(
h0

h
(0)
0

)
−→n→∞ 0 since the argument of the logarithm is finite. We recall that xk = k

N

and xk+1 − xk = dx = 1
N . The sum approximates a Riemannian sum, which then become an

integral:

Fpl(c, g,H) =

∫ 1

0

dx(1− x) log
f(x)

f (0)(x)

24



CHAPTER 5. PERFORMING THE CALCULATION

Finally, f (0)(x) is easily found, since (5.16) is immediately solved when g = H = 0.

f0(x) =
1

2

cx

1− c2

The last thing to do is to evaluate the integral we have obtained. The integral is in the variable
x, but we know f(x) only implicitely (we are supposing that x(f) is bijective near x = f = 0).
However, we know x(f). We can then make a change of variable, integrating in df , so that the
only thing to be found implicitely are the extremes of integration. We will use z(x) instead of f
for more simplicity. We have: x = w(z), dx = dw

dz dz. Hence:∫ z(1)

z(0)

dzw′(z)(1− w(z)) log

(
c(1− c2)z

12gcw(z)

)
The integral can be done, however it is fairly complicated becouse of the logarithm. Integrating
by parts before doing the change of variable makes the calculation easier:∫ 1

0

dx(1− x) log
2(1− c2)f(x)

cx
=(

x− x2

2

)
log

2(1− c2)f(x)

cx

⏐⏐⏐⏐1
0

−
∫ 1

0

dx

(
x− x2

2

)
c

2(1− c2)

x

f(x)

d

dx

(
2f(x)(1− c2)

cx

)
=

1

2
log

(
z(1)(1− c2)

12g

)
−
∫ 1

0

dx
(
x− x

2

) f ′(x)

f(x)
+

∫ 1

0

dx

(
x− x2

2

)
x =

1

2
log

(
z(1)(1− c2)

12g

)
+

3

4
−
∫ 1

0

dx
(
x− x

2

) f ′(x)

f(x)

Now, we use dz
dx = 24g

c f ′(x), dx = dz c
24gf ′(x) . We get:

Fpl(c, g,H) =
1

2
log

(
z(1)

(
1− c2

)
12g

)
+

3

4
−
∫ z(1)

z(0)

dz
c

24gf ′(x)

(
x(z)− x(z)

2

)
f ′(x)

f(z)

=
1

2
log

(
z(1)

(
1− c2

)
12g

)
+

3

4
−
∫ z(1)

z(0)

dz

z

(
w(z)

4g
− w2(z)

32g2

)
We consider z(0) = 0: the result is hence a function depending on z(1).

5.7 The partition function

Having found the planar free energy of the matrix model, we now have to take the last step
towards the partition function of the Ising model.
We recall that Fpl is a valid free energy when is analytical in g. Consider now a plot of y = w(z).

We find z(1) by intersecting the graph with an horizontal axis of height 4gx|x=1 = 4g. Now, since
analycity depends only on the module of g, we can let 4g varying on both positive and negative
w-axis. Hence, if we find a value of g for which the corresponding z(1, g) has a discontinuity,
the integral which gives us Fpl can no longer be analytic. This situation happens if w′(z) = 0.
Imposing this condition, we are thus able to find the critical points gcr, which, using (4.3), will
give us FIsing.
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Figure 5.1: The function w(z, c, 0) cut by the plane c = 1/4, and its derivative ∂w
∂z (z, c, 0), cut

by z = 0. Note that at c = 1/4 the two zeros of the derivative superpose at x = −1

We get:

w′(z, c,H) =
1

3

1 + z

(1− z)3
[
1− c2(1− z)4

]
+

4

3

z
(
1 + z2

)
(1− z2)

3 (coshH − 1) = 0

from which we can obtain the condition:

coshH − 1 = −
(1 + zcr)

4
[
1− c2(1− zcr)

4
]

4zcr (1 + z2cr)
(5.17)

Using (5.17), we can eliminate cosh(H)− 1 in (5.16), obtaining 4gcr = wcr as a function of zcr,
and implicitely of H. We get:

4gcr = wcr(zcr(c,H), c) =
5

18
c2zcr

(
z2cr − 3

)
+

1

6

(
4c2 + 1

) zcr
1 + z2cr

(5.18)

For H = 0, we can find the zeros of the derivative exactly. The five solutions are:

zcr = −1, zcr = 1± 1√
c
, zcr = 1± i√

c

Of course we exclude the complex ones. According to the argument given above, only the critical
value of z nearer in module to 0 will be the one determinant for the partition function. We recall
that 0 < c < 1. Then, zcr = 1+ 1√

c
is always greater than 1 and as a consequence unimportant.

The two important roots are hence zcr_1 = −1 and zcr_2 = 1− 1√
c
, and marque the two phases.

In fact, for c ≤ 1
4 , z2 is nearer to 0 than z1, and for c ≥ 1

4 the roles exchange. At c = 1
4 , the

two zeros of the derivative superpose, and there is a minimum of fourth order in the function.
Inserting zcr in (5.18), we can find the values of gcr:

4gcr(c, 0) =

{
2
9c

2 − 1
12 0 < c ≤ 1

4

− 2
9c

2 + 2
3c−

4
9

√
c 1

4 < c < 1

Finally, we’ve obtained the so long desired partition function and Ising free energy, for H = 0.
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Using (4.3), we get:

FIsing = log

[
c |gcr(c,H)|
(1− c2)

2

]
=

⎧⎪⎪⎨⎪⎪⎩
log

[
c( 2

9 c
2− 1

12 )
(1−c2)2

]
0 < c ≤ 1

4

log

[
c(− 2

9 c
2+ 2

3 c−
4
9

√
c)

(1−c2)2

]
1
4 < c < 1

Of course, FIsing is analytical when c ̸= 1
4 . For c = 1

4 , we have a phase transition.
If H ̸= 0, we can find the perturbations to zcr(c, 0) and then to gcr and FIsing to the leading order
in H. On the leading order, for H small cosh(H)− 1 ≈ 1

2H
2. Then, let zcr(c,H) = zcr(c, 0) + ϵ.

For zcr(c, 0) = −1, we get:

1

2
H2 =

−ϵ4
[
1− c2(2− ϵ)4

]
4(ϵ− 1)(2 + ϵ2 − 2ϵ)

≈ ϵ4(1− 16c2)

8

=⇒ ϵ =

√
2H

(1− 16c2)
1/4

For zcr(c, 0) = 1− 1√
c
, we get:

1

2
H2 ≈

−
(
2− 1√

c
+ ϵ
)4 [

1− c2( 1√
c
+ ϵ)4

]
4
(
1− 1√

c
+ ϵ
)[

1 +
(
1− 1√

c

)2] ≈
ϵ
√
c
(
2− 1√

c

)4
(
1− 1√

c

)(
2− 2√

c
+ 1

c

)

=⇒ ϵ =
H2
(
1− 1√

c

)(
2− 2√

c
+ 1

c

)
2
√
c
(
2− 1√

c

)4
We can insert this development in (5.18), and we thus obtain the values of gcr:

4gcr(c,H) =

{
2
9c

2 − 1
12 +

√
1−16c2

12 H + o(H) 0 < c ≤ 1
4

− 2
9c

2 + 2
3c−

4
9

√
c+ κH2 + o(H2) 1

4 ≤ c < 1

Inserting in (4.3) gives the free energy.
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Chapter 6

Critical Exponents

Now that we found the free energy of the Ising model on a random quartic planar lattice, we are
ready to calculate critical exponents. We recall in the following chapter what a critical exponent
is, and why do they arise (see Appendix 4 for further details on the theory).
In statistical physics there are two types of phase transitions. The ones with discontinuous Gibbs
free energy are called first-order phase transitions, the others, which have continuous Gibbs free
energy but discontinuities in higher order derivatives are called continuous phase transitions (or
n-th order phase transition, according to the order of the first discontinuous derivative in the
free energy).
Examples of first order phase transitions are the liquid-gas transition in fluid or abrupt change of
magnetization in a ferromagnetic medium at low temperature induced by a change of orientation
of the magnetic field to which ferromagnet is exposed. Phase transitions of this kind happen when
the probability distribution of the system (given by the free energy of the configuration) presents
two unequal minima depending on a parameter; the system stays on the absolute minimum
(thermodynamics confuses mean value with most probable value invoking central limit theorem).
When changes in the parameter switch the relative height of the two minima, the system abruptly
passes from one state to another, and a first order phase transition occurs.
When we consider a second (or n-th) order phase transition, a different mechanism occurs. Here,
when the temperature changes, the free energy passes from a state with one minimum to a state
with two separate, possibly equal, minima. The system chooses one of the minima, broking the
symmetry of the original distribution. As a consequence, a quantity with non zero mean value
appears: the so-called order parameter. When this happens a second order phase transition
occurred; the temperature at which it happens is called critical temperature. The first general
theory of second order phase transitions was given by Landau and Ginzburg. However, for subtle
reasons it failed to predict right critical exponents. More advanced theories succeded, as scaling
theory (see Appendix 4).
The quantities describing the most characterizing properties of a system near a continuous phase
transition are critical exponents. These are defined in the following way: near the critical point,
we can expand the various thermodynamic quantities in the parameter (T − Tc). The critical
exponents will be in general associated to the exponent which governs the behaviour of a certain
thermodynamic parameter near the critical point.
We concentrate now on the case of a ferromagnetic system. The parameters on which the free
energy depends are the temperature T , the magnetic field H, the magnetization ⟨s⟩ = ∂F

∂H ,
its conjugate parameter. Other interesting thermodynamic quantities are the spacific heat at
constant temperature 1

N
∂U
∂T

⏐⏐
H

and the magnetic susceptivity χ = ∂M
∂H

⏐⏐
H=0

. We define the
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following critical exponents:

• α: specific heat at constant H.
α is defined as the negative leading exponent of CH = C = −T

(
∂2F
∂T 2

)
H=0

near the critial
point, as a function of the adimensional parameter ϵ = (T − Tc) /Tc. Then we search
α : CH

(
T−Tc

Tc

)
= CH(ϵ) ≈ ϵ−α. Since at c = 1

4 there’s a discontinuity of third derivative,
which is the derivative of specific heat, we get α = −1.

• β: spontaneous magnetization.
β is defined as the leading exponent governing the behaviour of M near the critical point, as
a function of ϵ, in zero magnetic field:M(c, 0) ≈ (−ϵ)β . Since M is the conjugate parameter
of H, we get:

M(c, 0) =
∂

∂H
log gcr(c,H)

⏐⏐⏐⏐
H=0

=

{
3
√
1−16c2

8c2−3 0 < c ≤ 1
4

0 1
4 < c < 1

Considering that ccr = 1
4 , we have, calling ccr − c = ϵ ≥ 0:

M(ϵ, 0) ≈
3
√
1− 16(1/4 + ϵ)2

8 · 1
16 − 3

≈ 3
√
8ϵ

− 5
2

≈ −12
√
2

5

√
ϵ

Then, M ≈ (Tc − T )
1/2 and β = 1

2

• γ: magnetic susceptivity.
γ is defined as the negative leading exponent which governs the magnetic susceptivity
χ = ∂M

∂H

⏐⏐
H=0

near the critical point, as a function of ϵ. We get γ = 2.

• δ.
δ represent the variation in the magnetization when a magnetic field is turned on near
critical point. It is defined by: M (ccr, H) = |H|1/δ signH. To find this exponent, we need
to find how zcr, and then gcr and FIsing varies for small H at the critical temperature. We
call as before zcr(c,H) = zcr(c, 0) + ϵ and we get:

1

2
H2 ≈

−ϵ4
[
1− 1

16 (2− ϵ)4
]

4(−1)(2)
≈ 2ϵ5

8

=⇒ ϵ =
5
√
2H2

We insert in (5.18) to find:

4gcr
(
zcr_1, ccr, H

)
= − 5

72
+

5
√
2

24
H6/5 + o(H6/5)

We find:
M (ccr, H) =

∂

∂H
logwcr

(
zcr_1, ccr, H

)
∝ H1/5

This exponents are different from the classical ones (to which can be related by KPZ formula),
but however they satisfies equally the relationships obtained by scaling theory (Appendix 4).
Moreover, Kazakov and Boulatov tested universality solving the problem with cubic vertices,
and found the same exponents.

29



Appendix A

Euler characteristic and
classification of 2d compact
manifolds

Euler characteristic has been originally defined by Euler on regular polyhedra, when he observed
that for a regular polyhedron held V − E + F = 2. More generally, is possible to define Euler
characteristic for any triangulable surface extending the above definition: this reveals itself to be
a topological invariant, and gives a topological classification of 2d compact orientable surfaces.
We will first describe the process involved in an intuitive way. The general rigorous definition of
Euler characteristic for arbitrary manifolds is given in terms of the Betti numbers of Homology
group, which will expose briefly later.
We start now defining Euler characteristic for a sphere. The idea is to create a triangulation,
namely a non intersecting triangle graph, which grows in points number until it matches the
surface at the limit, and to find, starting from a single triangle, a quantity invariant for the
addition of new vertices and edges.
Consider hence a tetrahedron. It’s immediately verified that V −E +F = 2. Moreover, we note
that adding a new vertex and connecting it to the tetrahedron requires adding 3 new edges, 2
new faces, since three faces are created and one removed, and of course one new vertex. Hence,
χ = V − E + F remains unchanged. We can then start from a tetrahedron whose vertices lay
on the sphere, and then iterate the aforementioned procedure adding more and more vertices on
the surface. As the number of points grows, the triangulation matches the surface and we see
that χ = V − E + F is hence a feature of the surface itself. Moreover, in the limit of the graph
approaching the surface, any continuous deformation only alters the positions of the vertices but
not their connections and their mutual relationships. We can imagine a continuous deformation
which makes the edges intersect, but creating a triangulation more strictly matching the surface
resolves the problem. We see then that χ is a topological invariant.
Having found Euler characteristic for a sphere, we want to extend it to every other 2d manifold.
We can hence analyze how cutting holes and gluing together objects affect χ. The effect of an
infinitesimal hole is evident: a triangle is removed and everything else is unchanged. Hence,
Euler characteristic is diminished by 1. Now, stretching the hole arbitrary does not change χ as
before: hence every hole has the same effect of reducing χ by one. It follows immediately that a
cylindric surface without the two basic circles has χ = 0. Now, we want to glue a cylinder to a
sphere to create a torus: we cut two holes in the sphere, making χ decreasing by two, and then we
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glue the two removed bases of the cylinder to the holes. Of course the two Euler characteristics
sum together, but since the cylinder has χ = 0, we find that the Euler characteristic of the torus
is χ = 0.
To create further surfaces, we introduce now the connected sum of two surfaces. The procedure
is the following: we cut one hole in each surface, and then we glue together the edges of the two
holes. For example, the connected sum of a manifold with a torus adds a handle to the initial
manifold. Let’s consider two surfaces M1 and M2, and denote the connected sum of the two as
M1♯M2. It’s easy to see that

χ(M1♯M2) = χ(M1) + χ(M2)− 2

This holds because cutting the two holes diminishes Euler characteristic by one for each manifold,
and gluing together the edges sums the two Euler characteristics. Then, we know that a sphere
with a certain number NHa of handles and a certain number NHo of holes will have an Euler
characteristic of:

χ = 2− 2NHa −NHo

We now try to justify heuristically a rigorous proven theorem, which states that every con-
nected compact orientable surface is homeomorphic to the sphere or to the connected sum of
a certain number of tori, with some holes if it has a boundary. This, together with the result
staten before, implies that χ completely classifies 2d orientable surfaces (the result is extandable
to non orientable surfaces too, these are obtained summing together a certain number of projec-
tive planes).
We first define an n-simplex as the n dimensional analogous of the triangle or tetrahedron. For-
mally, an n simplex in Rn is, given n+ 1 linerly independent points v0, . . . , vn, the set of points
∆n such that:

∆n =

n∑
i=0

civi :

n∑
i=0

ci = 1 ∧ ci ≥ 0 ∀i

v0, . . . , vn are the vertices of the simplex. The order of the vertices is also important: they define
the orientation of the simplex. We will denote an n-simplex with an orientation as [v0, · · · , vn].
The faces of an n-simplex are defined by taking convex linear combinations of n of the n + 1
original vertices. The set of all the faces, each one taken with the right orientation, is defined to
be the boundary of the simplex (the hat means that the marked vertex is excluded):

∂∆n =
∑
i

(−1)i [v0, · · · , v̂i, · · · , vn]

We define a simplicial complex as a set of simplices such that each face of a simplex is contained
in the complex (for example, all faces, edges and vertices of a tetrahedron are in a simplicial
complex which contains the tetrahedron) and that the intersection of two simplices is a face
of both (no superposition). A simplicial complex is homogeneous of dimension n if the only
simplicies of dimension different to n are faces of other simplices. In 2d, homogeneous simplicial
complexes are just triangles sharing edges and vertices.
Now, we can define a triangulation of a surface (manifold) as a homomorphism from a simplicial
complex to the surface (manifold).
It’s a nontrivial theorem in topology that every compact 2d surface admits a triangulation.
Although the proof is non obvious, we can justify this assertion by adopting an extrinsic approach,
which follows the reasoning used to find Euler characteristic for the sphere. We embed the
manifold in Rn, and we use the result of the embedding to define a triangulation in Rn which
vertices are on the surface. Then, we continuously deform the surfaces of the triangles in such a
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way that they approach the surface: this is the desired triangulation.
From now, we follow intuitively Conway’s ZIP proof [18]. Take the triangulation and separate
all the triangles of the simplicial complex from each other. We know that each triangle is
homeomorphic to a sphere with a hole. We want to reconstruct the surface gluing triangles,
showing that this can only cause to close holes and adding handles, if the surface is orientable.
The only thing that gluing sides of triangles can do is to glue parts of the boundary of a hole
with each other or to glue parts of the boundaries of two different holes with each other.
If we glue the whole boundaries of two holes together we have the following possibilities:

• If the two surfaces are initially disconnected, we simply connect them. The number of
handles and holes other than the two glued simply adds and nothing else happens.

• If the two holes are on the same connected surface, completely gluing them together pre-
serving orientation adds a handle to the surface (it would have added a Klein bottle if glued
not preserving orientation)

If we glue parts of a single hole together we have:

• If two complementary sides of the hole are glued, preserving orientation, the hole is closed
and nothing else changes.

• If the two parts glued together are not the entire hole, they just create one more hole
(without preserving orientation they could have added a Moebius strip).

If we do not glue all the boundaries of two holes but only a part, we can imagine shrinking all
the parts of the boundaries that we are not gluing together to small regions. This means that
the procedure is equal to gluing together two whole holes, with a little hole remaining unclosed.
Gluing two holes together preserving orientation gives a handle, we then get a handle and some
more holes.
We started with a triangle, which is a sphere with a hole. We showed heuristically that gluing
triangles together can only create/closing holes, connecting disconnected components or creating
handles. Hence, the theorem follows. Then, we found out that Euler characteristic measures the
number of handles of a 2d surface. We now see why it can equivalently be defined as: χ = 2− 2g
where g, the genus of a surface, is the maximum number of cuts along non-intersecting closed
simple curves which do not make the resultant manifold disconnected.

A.1 Simplicial homology

The modern approach to Euler characteristic goes through Homology groups. Here we will give
only a short introduction which will allow us to give the modern definition. Starting from a
simplicial complex, we will now define the simplicial homology of a topological space. The idea
is similar to find a triangulation: we try to glue an n simplicial complex and its boundaries,
which are of course triangulable, to a space and then we will "move" the triangulation from the
simplex to the space. We can hence work with the complex instead of the space. We give the
following definition [19]:
A ∆ complex structure on a space X is a collection of maps σα : ∆nα → X, with n depending
on the index α, such that:

• The restriction σα|
◦
∆nis injective, and each point of X is in the image of exactly one such

restriction σα|
◦
∆n.
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• Each restriction of σα to a face of ∆n is one of the maps σβ : ∆n−1 → X, where we identify
faces of ∆n and ∆n−1 in the obvious way.

• A set A ⊂ X is open if and only if σ−1
α (A) is open in ∆n for each σα

We now define ∆n(X) as the free abelian group with basis σαn

(
◦
∆n

)
, namely, all the possible

combinations of element of the simplicial complex we choose:
∑

α nασα nα ∈ Z.
We can extend the definition of a boundary for each ∆n(X) taking the boundary of its basis
components σαn :

∂n (σαn
) =

∑
i

(−1)iσαn
| [v0, · · · , v̂i, · · · , vn]

Hence, ∂n : ∆n(X) → ∆n−1(X).
The core property of the boundary is that the boundary of a boundary is zero: we will always
take two sides twice with opposite orientations. Although this is intuitive, we can formally prove
it:

∂n−1∂n(σ) =
∑
j<i

(−1)i(−1)jσ| [v0, · · · , v̂j , · · · , v̂i, · · · , vn]

+
∑
j>i

(−1)i(−1)j−1σ| [v0, · · · , v̂i, · · · , v̂j , · · · , vn]

and the two terms cancels out. Since the boundary of a boundary is zero, the boundary of
an element of ∆k(X) will have a null boundary. However, the converse it’s not true: an el-
ement with a null boundary, which is called a cycle, not always is a boundary of something
else: this depends only on the topology of the space. We then define the k-th homology group
Hk = Ker ∂k/ Im ∂k+1. Thus, we are identifiying two k cycles if they differ by a boundary of an
element of ∆k+1. Finding the dimension (the number of independent generators) of Hk it’s like
counting the k dimensional holes of a manifold.
We report as an example in (A.1) three cases of ∆ complexes (which corrisponds to triangu-

Figure A.1: Three triangulations (∆ complexes) on torus, projective plane and Klein bottle [19]

lations) defined of the torus, the projective plane and the Klein bottle. If we focus now on 2d
surfaces, we can see the similarity between the two approaches: we searched a way to describe a
surface with a triangulation, and we counted the holes inside. If we define the k-th Betti number
as the dimension of Hk, then Euler characteristic for two dimensional surfaces can be defined as:

χ = b0 − b1 + b2

This is the same as old definition χ = V − E + F : Betti numbers are counting independent
vertices, loops and closed faces that does not come from higher dimensional boundaries and
hence that give a non zero contribution to Euler characteristic.
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An example of Haar measure: the
U(N) case

We can give an example of a bi-invariant metric for the Lie Group of unitary matrices of dimension
n. For a matrix group, the grorup operation is simply matrix multiplication, which is a linear
operation on the vector space Mat(n,C) which contain the group, so action of dLV on a vector
dU is just V dU . Defining on the Lie algebra g a metric of the usual form ⟨dX, dY ⟩ = tr (dXdY ),
we obtain that the metric at some point U is

⟨dX, dY ⟩U = tr
(
U−1dXU−1dY

)
(B.1)

It is easy to verify, that this is indeed a bi-invariant metric: we have that (UV )
−1

d(UV ) =
V −1U−1dUV (this expression has to be considered as a linear combination of the components
ot the vector dU). Hence, we obtain Tr

(
U−1V −1V dXU−1V −1V dY

)
= Tr

(
U−1dXU−1dY

)
for a

left translation by V and, using the cyclic property of the trace, Tr
(
V −1U−1dXV V −1U−1dY V

)
=

Tr
(
U−1dXU−1dY

)
for a right translation by V . This construction gives us the possibility to

calculate volume integrals on classical matrix Lie groups.
Having found an explicit form for the metric, the issue of calculating a volume integral reduces to
find a good, global coordinate system which allows us to perform the calculation explicitly. This
can be achieved in a quite general fashion for a compact Lie Group [Molinari, non saprei come
citarla]. We first observe that the Lie algebra g of a Lie group G, being a vector space, admits
obviously a global coordinate system. On the other hand, the exponential map is surjective for
a compact Lie group, and hence can be used to integrate over the whole group, with appropriate
domain restrictions. We can move on the algebra, and use the exponential map to obtain a
coordinate system on the group.
We consider on g a basis {T1..Tn} orthonormal with respect to the scalar product chosen at the
identity (we recall that the tangent space at the identity is canonically isomorphic with g). The
coordinates for a point in the Lie algebra H = λiTi will be {λ1...λn}. The exponential map send
g ∋ H → exp{H} ∈ G. Then, we can use {λ1...λn} as a coordinate system for the group. The
metric on a point exp

{(
λiTi

)}
can now be pulled pack on the point λiTi of the algebra using the

differential of the exponential: if ∂i = ∂
∂Ti

are the basis of the tangent space at H in the algebra,
we have ⟨∂i, ∂j⟩H = ⟨d exp{(∂i)}, d exp{(∂j)}⟩exp{H}. The differential of the exponential map,
which is far from trivial being the group non commutative, is given by the following:
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Theorem 3 (Lie-Trotter formula).

deH =

∫ 1

0

dte(1−t)H(dH)etH

Proof. A formal proof make use of the parametric expression Γ(s, t) = e−sX(t) ∂
∂te

sX(t) and shows
(by a simple derivation by s) that satisfies the differential equation: ∂Γ

∂s = e−sX(t) ∂X
∂t e

sX(t) =

ead−sX ∂X
∂t . Solving the equation and evaluating Γ in s = 1 gives the desired result.

However, we can give a more intuitive, less rigorous proof. We have that:

d

dt
eX(t) = lim

n→+∞

(
1 +

X(t)

n

)n

Recalling that X(t) does not commute with X(t)
dt , we find, applying the product rule and keeping

the right order:
d

dt
eX(t) = lim

n→+∞

n∑
i=1

(
1 +

X

n

)n−i
1

n

dX

dt

(
1 +

X

n

)i

Taking the continuum limit when n → +∞ we obtain that 1
n = dk and i

n = k. This is equivalent
to write k = i

n , i ∈ N and summing over all possible values of k from 0 to 1.

d

dt
eX(t) = lim

n→+∞

1∑
k= 1

n

(
1 +

X

n

)n(1−k)
1

n

dX

dt

(
1 +

X

n

)nk

When n → +∞, 1
n = ki − ki−1 → dk, the

∑
k →

∫ 1

0
dk and

(
1 + X

n

)n → eX . We hence obtain:

d

dt
eX(t) =

∫ 1

0

dke(1−k)X dX

dt
ekX

Having in hand a general formula for the differential of the exponential, we now possess an
explicit formula to calculate integrals on Lie groups. We can now apply, following Molinari, the
construction above to the case of the unitary group of dimension N .
Let T1...Tn an orthonormal basis of g, and H = xaTa a generic point in the algebra. Let
U = exp{(H)} the point in the group G corresponding to coordinates x1, ...xn with the previous
construction. Then, dU = deH = eH

∫ 1

0
dte−tHdHetH = Udxa

∫ 1

0
dte−xaTaTae

xaTa . Inserting in
the metric (B.1), we obtain,

gabdx
adxb = dxadxb Tr

[∫ 1

0

Ade−tH (Ta)

∫ 1

0

Ade−tH (Tb)

]
=

dxadxb

∫ 1

0

∫ 1

0

dt1dt2 Tr
[
et1HTae

(t1−t2)HTbe
t2H
]

We perform now the change of variable: t = t2 − t1 and s = t1+t2
2 . The new coordinates are to

be integrated in the intervals: −1 < t < 1 and| t2 | < s < 1− | t2 |. Using the cyclic property of the
trace, we get

dxadxb

∫ 1

−1

∫ 1−| t2 |

| t2 |
dtdsTr

[
e(−s+ t

2 )HTae
−tHTbe

(s+ t
2 )H

]
=

dxadxb

∫ 1

−1

dtTr [AdetH (Ta)Tb]

∫ 1−| t2 |

| t2 |
ds
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Now, let [Ta, Tb] = fab
kTk, where fab

k are the structure constants of the group in the chosen
basis. Then, adλiTi

(
µjTj

)
= λifij

kµjTk. Moreover, since the adjoint representation of the
group is the exponential of the one of the algebra, we get Ad

eλ
iTi

= exp{(adλiTi
)} and thus

AdetH (Ta) = ex
ifia

l

Tl. Then, Tr [AdetH (Ta)Tb] = etx
ifia

l

Tr [TlTb] = etx
ifiab . We then obtain

gabdx
adxb =

∫ 1

−1

dt (1− |t|) etx
ifiab

If we call xifiab = Mab (M : g → g), we have, from the antisymmetry of the structure constants,
that M = −M†. Then M is diagonalizable and we get, if iλk are the eigenvalues of M :

gab =

∫ 1

−1

dt (1− |t|) eiλaδab =
sin2 (λa/2)

(λa/2)
2 δab
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The Vandermonde determinant

Here we introduce briefly Vandermonde matrices and Vandermonde determinant. Consider a
vector with components:{λi}ni=1. Then, a Vandermonde matrix is a matrix of the form Tij =
[λi]

j−1: ⎛⎜⎜⎜⎜⎜⎝
1 λ1 λ2

1 . . . λn−1
1

1 λ2 λ2
2 . . . λn−1

2

1 λ3 λ2
3 . . . λn−1

3
...

...
...

. . .
...

1 λn λ2
n . . . λn−1

n

⎞⎟⎟⎟⎟⎟⎠
Vamdermonde matrices has different applications through mathematics and physics: for example,
the DFT matrix is a Vandermonde matrix containing roots of unity. Given an n dimensional
vector, the matrix which impement DFT is:

Fjk =
1√
n

[
ei

2π
n

](j−1)(k−1)

1 ≤ i, j ≤ n

In the present work, the determinant of a Vandermonde matrix arise in connection with the
volume element in matrix Lie Groups, and λi are the eigenvalues of a matrix. We hence will
refer to λi as eigenvalues hereafter, and call Λ the vector composed by λi. We now define the
Vandermonde determinant:

∆(Λ) = det
(
[λi]

j−1
)

The principal property of this determinant is that it can be written in a simple form in terms of
the eigenvalues. The following Proposition holds:

Proposition 6. ∆(Λ) =
∏

1≤i<j≤n (λj − λi)

Proof. ∆(Λ) is an homogeneus polynomial in the λi. Since every term of the determinant is a
prodoct of n different factors, each one having degree from 0 to n − 1 in its indeterminate λi,
the total degree of every term is

∑n−1
i=0 i = n(n−1)

2 .
We can now consider ∆(Λ) as a polynomial of degree n− 1 on every λi on turn. Evaluating this
new polynomial in every other λj , j ̸= i corresponds to substitute λj to λi in the determinant.
This gives two equal columns in the matrix, hence the determinant is 0, hence λj is a root of
this polynomial. Since this holds for every λi and λj , using unique factorization theorem for all
the polynomials in the various λi we get that (λi − λj) are factors of the original polynomial:

∆(Λ) = Q(λ1, ..λn)
∏

1≤i<j≤n

(λj − λi) (C.1)
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But the product is already of degree n(n−1)
2 , hence Q is a constant. Since all the terms in the

original sum have coefficent one, and the product in (C.1) gives factors with coefficent 1, Q = 1.
Hence we get:

∆(Λ) =
∏

1≤i<j≤n

(λj − λi)

This can also be proved constructively by using elementary rows and columns operations and
properties of the determinant.

We state and prove now a last useful fact.

Proposition 7. Let {λi}ni=1 ∈ Rn/Cn be n continuous parameters. Then, ∆(Λ) is an harmonic
function of {λi}ni=1:

∇2(∆(Λ)) = 0

Proof. Let i = 0...(n−1) and σ(i) a permutation of i’s. Then, ∆(Λ) =
∑

σ(−1)ϵ(σ)x
σ(1)
1 ...x

σ(n)
n =∑

σ(−1)ϵ(σ)
∏n−1

i=0 x
σ(i)
i . For each j, ∂2∆(Λ)

∂λ2
j

is an homogeneous polynomial of degree n(n−1)
2 − 2,

where the maximum degree of λj is n − 2. Each term in ∇2∆(Λ) can come from two possible
terms in the original ∆(Λ): from ∂2

∂λ2
i
xa1
1 ...xk+2

i xk
j ...x

ak
n and from ∂2

∂λ2
j
xa1
1 ...xk

i x
k+2
j ...xak

n the same

term k(k − 1)xa1
1 ...xk

i x
k
j ...x

ak
n is obtained (for all other possible choices in the ai, such that the

exponents are overall a permutation σ(i)), and no other term will contribute to this monomial.
But xa1

1 ...xk+2
i xk

j ...x
ak
n and xa1

1 ...xk
i x

k+2
j ...xak

n coem in opposite sign in ∆(Λ) because of the
antisymmetry of the determinant for exchange of columns. Hence, the two contributes cancels
out, and the Vandermonde determinant is harmonic.
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Ginzburg-Landau theory and scaling

We give here an example of Ginzburg-Landau theory. Landau observed that, in a continuous
phase transition, there is always an order parameter which is zero in the first phase, and becomes
non zero because of the symmetry breaking is the second phase. Consider the free energy as a
function of the order parameter ϕ: G = G (T, P, ϕ,N). Since near the critical point the order
parameter is small, this suggests an expansion of the free energy in a power series on the order
parameter:

G = G0(T, P ) +G1(T, P )ϕ+G2(T, P )ϕ2 +G3(T, P )ϕ3 + · · ·

Now we exploit the symmetries of the system to remove terms from the free energy. We consider
the case of an interaction with a magnetic field: the order parameter in this case would be
the magnetization m, and the conjugate intensive parameter the magnetic field B = ∂G

∂m . In a
one dimensional system m is a scalar. Since the system, at B = 0 is invariant for flipping the
magnetization, only terms with even power can appear. If we had considered the model in more
dimensions, the order parameter would have become a vector. Its rotational invariance would
have implied the dependence of G only to the module of the magnetization. For a general system,
this reasoning brings to different consequences case by case. We now focus on the 1d example,
since already contains all the element of interest. The free energy is reduced to:

G (T, P, ϕ,N) = G0(T, P ) +G2(T, P )ϕ2 +G4(T, P )ϕ4 + ...

For small ϕ, we can retain the first two terms only, and we will suppress the dependence from the
pressure, which is unrelevant for now. We observe that the qualitative plot of G depends on the
signs of G2 and G4. When both G2 > 0 and G4 > 0 the plot has a single minimum for ϕ = 0, if G2

changes sign, then two symmetrical minima appears on opposite ϕ values and ϕ = 0 becomes an
unstable maximum point. Hence, in this second region the real stable thermodynamic curve will
have an horizontal plateau connecting the two minima (and hence a discontinuous first derivative
if G is seen as a function of B), and the passage from one to another will denote a classical first
order phase transition. As a consequence, we define the critical temperature as the temperature
Tc at which G2 change sign. This is the point at which second order phase transition happens.
We can moreover expand G2 in powers of (T − Tc):

G2[T, P (T )] = (T − Tcr)G
0
2 +O(T − Tc)

2

Since G4 remains positive, we will keep implicit its temperature dependence: it does not influence
the qualitative behaviour. Now we show what is intuitively clear: under Tc, for a zero magnetic
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Figure D.1: The Ginzburg Landau free energy for T < Tc, T = Tc and T > Tc

field there will be two opposite symmetric stabel states with nonzero magnetization. We just
impose B = ∂G

∂ϕ = 0 and solve the equation:

∂G

∂ϕ
= 2 (T − Tc)G

0
2ϕ+ 4G4(T )ϕ

3 = 0 (D.1)

We see that the sign of the coefficent of ϕ 2 (T − Tc)G
0
2 determines the number of solutions: for

(T − Tc) > 0 there is only one real solution: 0. For (T − T − c) < 0, two minima appears in

ϕ = ±
[
2

G0
2

G4(T )
(Tcr − T )

]1/2
and ϕ = 0 become a maximum: a second order phase transition has occured. This theory allows
us to calculate the behaviour of the interesting thermodynamical quantities near Tc, as power
laws in (T − Tc). Critical exponents are the leading order exponents related to the behaviour of
the various quantities.
We see immediately that spontaneous magnetization at zero magnetic field goes as (Tcr − T )

1/2,
hence β = 1

2 . The specific heat at constant temperature −T
(

∂2G
∂T 2

)
B

,which gives the exponent
α, does not diverge nor goes to 0 in general, it simply approach a constant. Hence, α = 0. The

susceptibility χ = ∂ϕ
∂B =

[(
∂2G
∂ϕ2

)
T,ϕ→0

]−1

is find deriving G twice:

∂2G

∂ϕ2
= 2 (T − Tcr)G

0
2 + 12G4(T )ϕ

2

Taking the limit ϕ → 0, we obtain:

χ = 2
[
(T − Tcr)G

0
2

]−1

The critical exponent γ is then γ = 1. The last exponent δ is realated to ∂ϕ
∂B

⏐⏐⏐
Tcr

and tells how ϕ

react to changes is his conjugate parameter B at Tc. This can be read directly from (D.1), and
gives δ = 3.
Landau Ginzburg theory can also considered as a mean field theory: one consider G as a function
of both ϕ and his conjugate parameter B:

G(T,B, ϕ) = G0(T ) +G2(T )ϕ
2 +G4(T )ϕ

4 −Bϕ
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Then one minimizes G, and use the abslute minimum value as the actual value of G, finding hence
the relationship betwenn ϕ and B. This theory seems to be really general, relying only on the
postulates of thermodynamics, and on symmetry considerations. However, although it predicts
correctly the qualitative behaviour, it fails in predicting the right critical exponents. This is
because of an oversimplification in thermodynamics: it substitutes the mean value with the most
probable value [20]. Since the probability distribution is generally really sharp, this does not
lead to errors in the thermodynamic limit. However, near the critical point the distribution loses
this characteristic, and long range correlations become important. Hence, to obtain the right
exponents, one has to deal with the full statistical mechanic treatment of the system, starting
from its partition function.
In spite of this, a general theory has been developed, which offers at least relationships between
various critical exponents: the scaling theory. The idea is to use as an help the long range
correlations emerging at critical point: we thus hypotize that, near Tcr, moving away from
critical point does not change the form of the free energy, but only its scale. This means, if x is
a parameter on which free energy depends, that holds:

G(λx) = g(λ)G(x)

We now show that this is equivalent to say that G(λx) = λpG(x), or that g(λ) is a polynomial.
From here, the discussion is primarly taken from [21].
First, consider

G(λµx) = g(λµ)G(x) = g(λ)g(µ)G(x)

Hence, we have that
g(λµ) = g(λ)g(µ) (D.2)

Now, if we derive (D.2) with respect to µ, we get:

∂

∂µ
g(λµ) = λg′(λµ) = g(λ)g′(µ)

Now, we pose µ = 1, g′(1) = p. We get:

λg′(λ) = pg(λ) =⇒ λ

p
=

d

dλ
(log(g))

Hence, g(λ) = λp, and G(λx) = λpG(x). In two variables, this becomes

G (λpx, λqy) = λG(x, y) (D.3)

A relationship of this kind means that G does not depend freely on the two parameters: the
two are correlated, and we can exploit this correlation to find relationships between p and q and
the various critical exponents.
Let now be x = (T − Tc) and y = B. We calculate the various critical exponents:

• For the heat capacity, we have C = −T
(

∂2G
∂T 2

)
B=0

. We differentiate both sides twice (D.3):

λ2pC(λp(T − Tcr), λ
qB|B=0) = λC((T − Tcr), 0)

Since λ can be chosen freely, we can set is so that it makes the first argument of G equal
to 1, balancing (T − Tcr). We choose hence λ = (T − Tcr)

−1/p, which gives:

C((T − Tcr), 0) = (T − Tcr)
(1−2p)/pC(1, 0)

So we find α = 2− 1
p : we moved the dependency by (T − Tcr) outside the function thanks

to the scaling hypotesis.
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• For magnetization we follow an analogous procedure: We derive (D.3) with respect to B
and set B = 0 and λ = (Tcr − T )−1/p. The result is

λqM (λp(T − Tcr), λ
qB) = λM((T − Tcr), B) (D.4)

M(T − Tcr, 0) = (Tcr − T )(1−q)/pM(−1, 0)

and β = 1−q
p .

• For susceptibility, again we follow the same procedure. We derive (D.3) respect to B, set
λ to the usual value and get:

χ(T − Tcr, 0) = (T − Tcr)
(1−2q)/pχ(1, 0)

Hence, γ = 2q−1
p

• Finally we find δ. We start from (D.4) and we impose T = Tc and λ = B−1/q. We obtain:

M(0, B) = B(1−q)/qM(0, 1)

and δ = q
1−q .

We found all critical exponents in terms of the unknown p and q. We can hence find p and q in
terms of, for example, α and δ:

p = (2− α)−1 and q =
δ

1 + δ

Inserting in the expression for β and γ we get β(1 + δ) = 2− α and γ = δ−1
δ+1 (2− α). Combining

the equations gives Widom’s scaling law:

γ

β
= δ − 1

And Rushbrooke law:
α+ 2β + γ = 2

These very general relationships need to be satisfied by every set of critical exponents of a system
which respects the general hypothesis on the basis of scaling theory. In reference to the present
work, it’s immediately checked that the exponents found for Ising model in a random planar
lattice indeed satisfy scaling relationships.
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