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Abstract

Fractional quantum Hall effect was discovered more than 30 years ago by
Tsui, Stormer and Gossard [TSG82], but because of its intrinsically strongly
correlated nature, is not yet completely understood.

Among the relevant questions, it is not clear why the celebrated Laugh-
lin’s ansatz is such a good approximation for exact ground states of the
system. From a more mathematical point of view, another unsolved problem
is to represent this correlated wavefunction within the second quantization
formalism, i.e. to understand its Slater decomposition. Many authors, for ex-
ample [Dun93] and [DFGIL94], attacked this problem in the nineties without
finding any conclusive answer.

New light on the problem was shed in 2008 by Haldane and Bernevig
[BH08], who discovered that bosonic Laughlin’s wavefunctions belong to a
special class of symmetric functions, Jack symmetric functions, widely stud-
ied in the mathematical literature.

As a byproduct of this correspondence, they were able to discover a re-
markable recurrence relation fulfilled by the coefficients of the monomial de-
composition of Laughlin states. This recurrence relation can be non-trivially
generalized to the fermionic case.

In this thesis, we systematically review these recent results, whose com-
prehension requires a deep knowledge of advanced purely mathematical lit-
erature on special orthogonal polynomials.
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Chapter 1

Open Problem:
Slater decomposition of fractional
quantum Hall states

Consider a system of electrons confined in a plane and subject to a constant
perpendicular magnetic field B. When a current flows through it, the sample
will show the so called Hall effect [Hal79], i.e. will generate a transverse
potential drop. The resistivity tensor ρ will be anisotrope; its transverse
component ρxy is called Hall resistance.

Hall resistance is a function of the applied magnetic field; in different
regimes, different behaviours arise. In the classical regime, one measures a
linear dependence between ρxy and B. As the magnetic field grows (B ∼ T)
and the temperature is lowered (T ∼ mK), plateaux appear at values h/ne2,
with n integer. This is explained by Landau level formation and impurity
induced localization. In extreme regimes, a whole new variety of plateaux
arise at values h/fe2, with f suitable rational non-integer numbers.

It is widely accepted that the fractional plateaux are mainly related to the
correlations between electrons induced by Coulomb repulsion. Moreover, it is
believed that understanding the physics of the system in a strong field limit,
which freezes the dynamics of the system to the lowest energy level (lowest
Landau level, LLL), could be enough to understand the whole fractional
behaviour.

The high degeneracy of LLL is usually solved by choosing a particular ge-
ometry along with a suitable gauge. In disk geometry with symmetric gauge,
the LLL Hilbert space is generated by properly symmetrized homogeneous
monomials, apart from a non relevant exponential factor and a normalization
constant, i.e.

|λ1 . . . λN⟩ = S/A[zλ1
1 . . . zλN

N ],
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where S/A denotes symmetrization/antisymmetrization.
In 1983, Laughlin proposed [Lau83] a variational ansatz for the ground

state of the simplest filling fractions ν = 1/q observed in the experiments
(in particular 1/3). It is based on qualitative assumptions: it’s a polynomial
(i.e. describes a LLL state), it has definite angular momentum (i.e. it’s
an homogeneous polynomial), it has poles every time two particles meet
and respects Pauli principle (q is an integer, odd for fermions and even for
bosons):

ϕL
GS(z1, . . . , zN) =

∏
i<j

(zi − zj)
q.

This family of wavefunctions has been particularly successful in describing
fermionic systems at filling fraction 1/q, with extremely high overlaps with
computed ground states; nevertheless, they are not exact groundstates them-
selves.

It is still not clear why these wavefunctions work so well for the fractional
quantum Hall effect problem. Some hints on the problem may be given by a
second quantization form of Laughlin’s wavefunctions, i.e. by their expansion
on the LLL non interacting basis of homogeneous monomials.

To be more concrete, here is an example of such an expansion (manually
computed), for 3 particles and for q = 3:

ϕL
GS(z1, z2, z3) = [(z1 − z2)(z1 − z3)(z2 − z3)]

3

= sl(6,3,0) − 3sl(6,2,1) − 3sl(5,4,1) + 6sl(5,3,1) − 15sl(4,3,2).

Other examples can be found in [Dun93]. It can be proved that the number of
slater determinants of the decomposition grows exponentially in the system
size N.

A reasonable framework to work with LLL in the symmetric gauge and
with Laughlin’s wavefunctions is given by symmetric functions theory (re-
stricting for the moment to bosons). Symmetric functions are a generaliza-
tion of polynomials, in the sense that they can be thought as polynomials in
an indeterminate number of variables.

Many features of fractional quantum Hall effect can be recognised in this
framework:

• symmetric monomials appear as a natural basis for symmetric functions
(see [Sta89] or [Mac95] for example);

• symmetric functions are usually parametrized by partitions, which can
be thought as the quantum numbers λ1 . . . λN of the LLL basis;

• bosonic Laughin’s wavefunctions are symmetric functions.

4



n1 n2 n3 n4 n5 n6 n7

n1 n2 n3 n4 n5 n6 n7

Example of squeezing
Dots represent electrons, ni’s occupation numbers.
Red electrons are being squeezed by 2 units, i.e. their angular momenta are being
modified by two units.
Notice that only inward squeezings are considered.

The last point is of particual interest. Dunne [Dun93] proved some results
about Laughlin’s decomposition on the Schur functions, a particular family
of symmetric functions. In [DFGIL94], some sum rules for the coefficients
of the Slater expansion were found. Nevertheless, the first big progress on
the problem was made by Bernevig and Haldane [BH08], who recognised
Laughlin’s wavefunctions to be Jack polynomials.

Jack polynomials are a set of symmetric functions already well known
for their relevance in integrable systems theory (they are excitations of the
Sutherland model, i.e. eigenvalues of Laplace Beltrami differential operator).
They are parametrized by a real parameter and a partition. Their intrinsic
properties allowed proving a recursion law [TERB11] for the coefficients of
the expansion of Laughlin’s wavefunctions over the monomial basis.

The idea is based on the concept of squeezing. Consider a particular
configuration of the LLL, i.e. n0 electrons with Lz = 0, n1 with Lz = ℏ
etc. . . . Then, a squeezed configuration consists of the same distribution of
electrons, apart from a finite number of pairs of particles. For each of these
pairs, the particle with highest angular momentum has it reduced of a number
of units, while the other has it augmented of the same amount.

Squeezing allows for the introduction of a partial ordering relation (indi-
cated by the usual ordering symbols) over the set of partitions. Moreover,
one has:

• Jack polynomials (of partition λ) expand over the monomial basis with
non null coefficients only for partition squeezed from λ:

Jα
λ =

∑
µ≤λ

cµλmµ;
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(630)

(540)

(531)

(621)

(432)

(333)

Squeezed partitions from (630)

Given a partition λ = (630), i.e. a configuration with 3 electrons with momenta 0, 3ℏ
and 6ℏ, one can identify all possible squeezed partition that are generated by λ.
Reiterating the process, one finds a chain of partitions.
On the left, partition language is used. For a clearer physical picture, on the right the
corresponding particle configurations are shown.

• Laplace Beltrami operator acts on the λ monomial generating a sum
over squeezed partitions:

HLBmλ =
∑
µ≤λ

xµλmµ.

It’s the interplay of these two properties that allows proving recursion
laws. A concrete example is given by the above computed expansion of
Laughin’s wavefunction for 3 particles and q = 3. In fact, the partition
labeling it as a Jack polynomial is (630), and its squeezed partitions are
exactly those appearing in the expansion, as in Fig. (??).

The aim of this thesis is to review some of the useful results of quantum
Hall effect (first chapter), symmetric functions and Jack polynomials (second
chapter). In the third chapter, results from [TERB11] will be presented with
detailed calculations.
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Chapter 2

Quantum Hall Effect

This chapter focuses on quantum Hall effects. First, an historical section is
given to sum up qualitative and experimental features of quantum Hall ef-
fects. Next, Landau levels theory is explained and some quantitative insights
of quantum Hall effects are given.

The main results introduced in the chapter are:

• the basis for the lowest Landau level is given by properly symmetrized
monomials, apart from an exponential factor;

• Laughlin’s wavefuntions are good approximations for quantum Hall
effect groundstates.

2.1 Brief Hystory of Hall Effects
Hall effect is a long known physical phenomenon that has recently revealed
surprising features.

Hall effect was first discovered by E. H. Hall in 1879. He noticed that a
conductor, under the effect of an electric and a magnetic field perpendicular
one to the other, exibits a current flow in the direction orthogonal to both
the fields. Conversely, a magnetic field and a current perpendicular to each
other generate a voltage in the third direction (see Fig. (2.1.1)).

Carrying out the classical theory, the Hall resistivity is defined as the ρxy
component of the resistivity tensor relating the current density causing the
Hall effect and the induced electric field. One can see (see [Jai07] pg.13 for
example) that the Hall resitivity equals

ρH = ρxy =
B

ρqc
, (2.1)
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Figure 2.1.1: The classical Hall effect

The picture on the left represents the Hall induced current I due to a magnetic field B⃗
and a voltage difference ∆V . The picture on the right shows the opposite effect, i.e. the
Hall induced voltage difference ∆V due to a magnetic field B⃗ and a current I.

Figure 2.1.2: Classical Hall effect: plot of the resistivity
Plot of the two relevant components of the resistivity tensor as functions of the magnetic
field. ρxy show the expected linear dependence. The plot is taken from [Tsu83].

where ρ is the density of charge carriers, q is their charge and c is the speed
of light; ρH is linear in B.

In 1980, Von Klitzing and his collaborators observed the first significant
deviation from this simple model. They were studying the Hall effect caused
by two-dimensional electrons in silicon MOSFET (metal oxide-semiconductor
field-effect transistor); as the magnetic field strength was raised, they ob-
served the simple linear dependence of ρxy with respect to B deform to show
plateaux (see Fig. (2.1.3)) at quantized values given by h/ne2 (independent
from the sample).

This phenomenon is called Integer Quantum Hall Effect (IQHE). IQHE
can be justified in an independent electron picture: the magnetic field quan-
tizes electrons’ energy, creating a sequence of conduction states and localized
states (due to impurities). This alternation explains both the plateaux for-
mation and the universal value for the quantum of Hall resistivity.
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Figure 2.1.3: Integer quantum Hall effect: plot of the resistivity
Plot of the two relevant components of the resistivity tensor as functions of the magnetic
field. As the magnetic field is increased, ρxy shows the characteristic plateaux. The plot
is taken from [Tsu83].

Figure 2.1.4: Fractional quantum Hall effect: plot of the resistivity
Plot of the two relevant components of the resistivity tensor as functions of the magnetic
field. In critical conditions for the magnetic field and the temperature, a variety of
fractional plateaux appear. The plot is taken from [Tsu83].
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Soon, as the experimental setups allowed for stronger magnetic fields
and lower temperatures, a variety of new plateaux appeared at fractional
multiples of h/e2 (with fractions of the form integer divided by odd integer).

This effect is called Fractional Quantum Hall Effect (FQHE). FQHE can-
not be justified without taking into account the strong correlation between
electrons due to Coulomb repulsion. This new effect can be seen as the IQHE
for a new kind of quasi-particles, composite fermions ; this theory will not be
treated here (see [Jai07]).

A fundamental result in the study of FQHE was given by Laughlin in
1983 (see [Lau83]): he proposed an ansatz for the wavefunction of the ground
state of the FQHE system. This ansatz is meaningful, simple to write and
overlaps extremely well with computed ground states (for a small number of
electrons); nevertheless, it is not the exact ground state. It’s unclear why
this ansatz should work so well as the ground state of FQHE systems.

2.2 Motion of an electron in a magnetic field:
Landau Levels

In this section, a physical system of one electron moving in the xy plane and
subject to a B⃗ = Bz⃗ magnetic field is studied.

2.2.1 Hamiltonian for the free electron

The Hamiltonian for a free electron in a magnetic field is

H =
1

2me

(
p⃗− eA⃗

)2
+ gµB s⃗ · B⃗, (2.2)

where:

• e is the electron charge (e < 0);

• me is the electron mass; in the case of an electron in a periodic external
potential, as in crystal structures, it is its effective mass;

• p⃗ is the canonical momentum operator;

• A⃗ is the vector potential operator;

• g is the Landé factor for the electron;

• µB is the Bohr magneton;
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• s⃗ is the elctron spin operator.

The interaction between the spin of the electron and the magnetic field
leads to a term proportional to sz. As it will be discussed, in the strong field
limit the electron is confined in the spin down eigenstate; for this reason, the
spin dependence will be ignored.

In the Hamiltonian, the canonical momentum operator p⃗ appears, with
the usual commutation relations [ri, pj] = iℏδij. In absence of external mag-
netic field, this operator conicides with the linear momentum mev⃗ and with
the generator of translations K⃗. When an external magnetic field is turned
on, this coincidence holds no more.

The linear momentum is given by

π⃗ = mev⃗ = me
i

ℏ
[H, r⃗ ] = p⃗− eA⃗, (2.3)

with commutation relations

[πx, πy] = iℏeB = −iℏ
2

l2
. (2.4)

Above, the magnetic lenght l was introduced (l =
√

ℏ/|e|B).
The generator of translations (called pseudomomentum) is given by (see

[Yos02], pg. 20)

K⃗ = p⃗− eA⃗+ eB⃗ × r⃗ = π⃗ + eB⃗ × r⃗, (2.5)

with commutation realations

[Kx, Ky] = i
ℏ2

l2
. (2.6)

An interesting feature of the non commutativity of K⃗ components is that
translation operators doesn’t commute.

One finally has:
[πi, Kj] = [πi, πj]. (2.7)

2.2.2 Energy and Angular Momentum spectra

Using the linear momentum components, one can rewrite the Hamiltonian
as

H =
1

2me

(
π2
x + π2

y

)
. (2.8)
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Since π⃗ components are a pair of canonical observables, one recognises H
to be in the form of an 1D harmonic oscillator and tries to construct ladder
operators.

First, another pair of canonical observables must be chosen: usually, the
center coordinate operators (X, Y ) are used. They are defined as

r⃗ =

(
X +

l2

ℏ
πy, Y − l2

ℏ
πx

)
, (2.9)

with commutation relations

[X, Y ] = il2. (2.10)

They represent the center for the electron’s classical cyclotron motion. Notice
also that they commute with the linear momentum components and thus with
the Hamiltonian.

Having chosen two pairs of canonical operators, mutually commuting, one
has a complete set of coordinates to describe the problem.

Ladder operators for the linear momentum components are introduced as

a =
l√
2ℏ

(πx − iπy) ,

a† =
l√
2ℏ

(πx + iπy) ,

(2.11)

such that the Hamiltonian can be rewritten, introducing the cyclotron fre-
quency ωc = |e|B/me, as

H = ℏωc

(
a†a+

1

2

)
. (2.12)

The energy spectrum is En = ℏωc (n+ 1/2) for n ≥ 0, with an additional
degeneracy with respect to the freedom in X and Y , due to the fact that the
center coordinates commute with H.

These energy levels are called Landau Levels.
To examine the degeneracy induced by X and Y , the symmetric gauge is

choosen, i.e. A⃗ = (−By/2, Bx/2, 0). In this gauge, the z component of the
angular momentum L⃗ = r⃗ × p⃗ is given by

Lz = − ℏ
2l2
(
X2 + Y 2

)
+
l2

2ℏ
(
π2
x + π2

y

)
= − ℏ

2l2
(
X2 + Y 2

)
+

1

ωc

H. (2.13)
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Lz commutes with H since it is function of H, X and Y . Moreover, the
first term is again in the form of a 1D harmonic oscillator. Ladder operators
for X and Y are introduced as

b =
1√
2l

(X + iY ) ,

b† =
1√
2l

(X − iY ) ,
(2.14)

such that Lz can be rewritten as

Lz = ℏ
(
a†a− b†b

)
, (2.15)

with spectrum ℏ (n−m) for n,m ≥ 0.
In the symmetric gauge, the electron state is then characterized by two

integer quantum numbers, one identifying the Landau Level, the other the
angular momentum.

2.2.3 Schrödinger representation for the symmetric gauge

To give a coordinate representation of the electron states found in an abstract
way in the previous sections, one has to express the two pairs of ladder
operators as functions of r⃗ components and their respective derivations.

a =
−i√
2

[
1

2l
(x− iy) + l (∂x − i∂y)

]
,

b =
1√
2

[
1

2l
(x+ iy) + l (∂x + i∂y)

]
.

(2.16)

Substantial semplifications arise passing to the complex variables z =
(x− iy)/l and z∗ = (x+ iy)/l and introducing exponential terms:

a = −i
√
2e−

|z|2
4 ∂z∗e

+
|z|2
4 ,

a† =
i√
2
e−

|z|2
4 (z∗ − 2∂z) e

+
|z|2
4 ,

b =
√
2e−

|z|2
4 ∂ze

+
|z|2
4 ,

b† =
1√
2
e−

|z|2
4 (z − 2∂z∗) e

+
|z|2
4 .

(2.17)
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The ground state wave function ψ0,0(r⃗) = ⟨r⃗|0, 0⟩ is given by solving
a |0, 0⟩ = 0 and b |0, 0⟩ = 0. These equations state that ψ0,0 must be con-
stant function in both z and z∗ (i.e. a numerical constant) multiplied by an
exponential term e−

|z|2
4 . Normalization and real choice of phase give

ψ0,0(r⃗) =
1√
2πl

e−
|z|2
4 . (2.18)

All the other simultaneous eigenfunctions of H and Lz are built from the
ground state as

ψn,m(r⃗) =

(
a†
)n

√
n!

(
b†
)m

√
m!

ψ0,0(r⃗). (2.19)

The explicit form for ψn,m can be found in [Yos02], pg. 24. As it will be
shown, in the strong field limit one can restrict the analysis to the Lowest
Landau Level (LLL), i.e. to the subspace generated by ψ0,m; the explicit
form for this particular subset of eigenfunctions is useful:

ψ0,m(r⃗) =
1√

2m+1πm!l
zme−

|z|2
4 . (2.20)

Notice that the action of b† restricted to the LLL (generated by functions
of the z variable only) is a multiplication by z/

√
2.

Given an explicit coordinate representation for the energy eigenfunction,
one can also explicitly count the available states per level, given a particular
finite geometry.

The symmetric gauge is particularly suited for the so called disk geom-
etry: the xy plane is reduced to a single disk of radius R. The probability
distributions of energy eigenfunctions |ψn,m(r⃗)|2 are peaked on a circle of ra-
dius

√
2ml, so that the maximum angular momentum allowed is given by

m = ⌊R2/2l2⌋ (⌊ ⌋ is the floor function). The degeneracy per unit area is
(2πl2)−1 = eB/hc.

A particularly useful thing to notice is that all the eigenfunctions ψn,m

have the same exponential factor, which is also applied to the ladder operators
a and b as a similarity transformation. This observation leads to consider the
exponential factor as part of the measure of the integral defining the scalar
product. Such a change of measure allows dropping the exponentials both in
the eigenfunctions and in the ladder operators.

In particular, one has

b =
√
2∂z,

b† =
1√
2
(z − 2∂z∗)

LLL
=

z√
2
,

(2.21)
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ψ0,m(r⃗) =
zm√

2m+1πm!l
. (2.22)

The modified wave functions are polynomials in z, and the ladder opera-
tors appear in a particularly simple form.

2.2.4 Limit of strong field

The limit of strong field is fundamental in the study of the quantum Hall
effects. Here, this limit is not given a physical justification, which is going
to be discussed later. Instead, its effects on the single electron Hamiltonian
are described.

From expression (2.2) and (2.12) one can deduce a linear dependence of
H from B, not only for the orbital part, but also for the spin part.

This implies that, in the strong field limit, the electron will be confined
in the LLL and in the spin ground state, i.e. the spin down state. It’s only
freedom is related to the degeneracy of the LLL.

2.3 Many particle problem
In the following, electrons will be substituted with bosons/fermions with the
same charge and mass of the electron for the sake of generality.

When treating the many particle problem, one has to take into account
the single particle Hamiltonians, which describe the independent behaviours
of the particles, and the interaction Hamiltonian. For electrons, the interac-
tion term is the Coulomb interaction V =

∑
i<j

e2

|r⃗i−r⃗j | .
The new Hamiltonian is then

H =
N∑
i=0

Hi +
∑
i<j

e2

|r⃗i − r⃗j|
, (2.23)

where Hi is the single particle Hamiltonian studied in the preceding section.
A basis of the N LLL particles Hilbert space is given by the tensor prod-

uct of N single particle bases of the LLL, symmetrized or antisymmetrized
according to the statistics obeyed by particles:

ΨS/Am1,...,mN
(r⃗1, . . . , r⃗N) = NS/A S/A [ψm1(r⃗1) . . . ψmN

(r⃗N)]

= NS/A S/A
[

zm1√
2m1+1πm1!l

. . .
zmN√

2mN+1πmN !l

]
exp

[
N∑
i=1

|zi|2
4

]
,

(2.24)
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where N is the total number of particles and S/A are the symmetrization
and antisymmetrization operators. Notice that these wave functions are not
normalized; one needs the extra term NS/A to correct for permutations:

NS/A =

√
N !

n1!n2! . . . n∞!
, (2.25)

where ni is the number of particles in the same state mi.
The same logic described in section 2.2.3 applies here; thus, the exponen-

tials can be dropped:

ΨS/Am1,...,mN
(r⃗1, . . . , r⃗N) = NS/A S/A

[
zm1√

2m1+1πm1!l
. . .

zmN√
2mN+1πmN !l

]
=

NS/A√
2M+NπNm1! . . .mN !lN

S/A [zm1 . . . zmN ] ,

(2.26)

where the total momentum M =
∑N

i=1mi was introduced.
These wave functions, eigenstates of the independent particle problem, are

of particular interest. In fact, one recognises that S/A [zm1 . . . zmN ] are the
symmetric/antisymmetric monomials of degree M in N variables.

In general, N particles states will be a linear combinations of these inde-
pendent particles bases.

2.4 Integer Quantum Hall Effect
Integer quantum Hall effect is caused by the interplay of two mechanisms:
formation of Landau Levels and disorder. While disorder is fundamental to
explain plateaux formation in the IQHE, it’s really the underlying structure
of Landau Levels that triggers Hall resistance quantization.

In experimental conditions, electrons are not only affected by the mag-
netic field and the mutual repulsion. An important contribution is given by
the background potential generated by ions and impurities.

Thus, the background to the Hamiltonian (2.23) is not a constant poten-
tial; more reasonably, one can model it as a slowly varing (with respect to
the magnetic lenght) smooth potential.

One can expect that this background will solve at least partially the
high degeneracy of Landau levels, broadening them into a energy spectrum
without any gap.

The main result, here just sketched (see [Jai07] for a complete overview),
is that only those states relative to unperturbed energy are extended, i.e. not
localized in an area much smaller than the sample.
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Figure 2.4.1: Example of background potential
The lower contour plot shows equipotential lines, along which electrons move. The
straight line represents the behaviour of an electron in the unperturbed Landau level.
The closed lines are the semiclassical trajectories of electrons in the gap between Landau
levels.

A semiclassical picture useful to justify this claim is the following. The
background potential creates a "frame" for the motion of the electron com-
posed by peaks and valleys. If the electron’s energy coincides with one of the
unperturbed Landau levels, the electron will be unaffected by those back-
ground features and will be in an extended state. If the electron’s energy
is in the gap between unperturbed Landau levels, it will be automatically
confined on peaks or hills, moving along closed equipotential lines. Thus, its
state will be localized (see Fig. 2.4.1).

To show Hall resistance quantization, it is useful to switch from fixed
number of electrons and variable magnetic field to the opposite but equivalent
picture.

Fixing B, the system is gradually filled with electrons, and so the Fermi
energy will increase. As long as the Fermi energy ϵF is in a gap between
Landau Levels, the contribution to the conduction mechanism will be con-
stant, being generated by the same amount of extended states. Only when
the Fermi energy crosses a Landau level, one would observe a change in the
conductance, hence in the Hall resistance.

The number of filled Landau levels is called filling factor ν, and equals
the total electron density divided by the degeneracy per unit area, ν = ρhc

eB
.

Disorder explains Hall resistance quantization. Still a big question is to
be addressed: why RH has such a universal value, independent from all the
sample-dependent features (material, impurities, etc. . . )?

Moreover: in the classical picture, one finds that RH = B/ρec. Following
the previous section, one could expect to find the correct RH value using
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Figure 2.4.2: Progressive filling of broadened Landau levels
The sine like profile indicates the energy level degeneracy as a function of energy, peaked
around Landau levels (shown as broad black lines). The shading represents the filling of
the system.
Only when the Fermi energy ϵF crosses a Landau level the resistance changes.

ρ = ρextended. As the electron density in extended states is very small and
sample-dependent, RH could be very large, and highly dependent on disorder
features.

This puzzle was solved by Laughlin, who showed a remarkable fact: RH

is quantized at h/ne2 as long as En < ϵF < En+1.
Intuitively: a disorder-free system with ν = n has exactly RH = B/ρec =

h/ne2, as all the electrons contribute to conduction. The Hall resistance will
not change if a sufficently weak disorder is taken into account, such that no
mixing occurs between different Landau levels. Adding some electrons, i.e.
tuning ν away from n, will neither change RH , beacuse the procedure will
just result in localized charge carriers.

2.5 Fractional Quantum Hall Effect
If Landau levels were the unique feature underlying QHE, no fractional quan-
tization could be observed.

Fractional quantum Hall effect (FQHE) is the expression of correlation in
electrons’ behaviour, due to Coulomb repulsion.

As above, detailed treatment of the topic can be found in [Jai07] or
[Yos02].

From now on, the strong field limit will be used, to restrict the Hilbert
space of states to the LLL. In fact, filled Landau levels are believed not to
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contribute to FQHE plateaux formation. It seems a good approximation to
study electrons’ correlations in a single Landau level, namely the lowest one.

The LLL restriction can be carried on in two ways: the simplest one is
to restrict the analysis to the space generated by the LLL eignefunctions.
This approach is particularly easy: in fact LLL is generated by properly
symmetrized or antisymmetrized homogeneus monomials of at most degree
m (highest possible Lz eigenvalue) in N variables (where N is the number
of electrons in the sample). The other approach consists in projecting all
the operators using a similarity transformation. The problem is that LLL
projection operator is not simple, and the projected Hamiltonian is not easy
to be used (at least in the usual first quantization coordinate representation).

2.5.1 Laughlin’s Ansatz

A relevant quantity of theory has been built to explain FQHE. One of the
first successful approaches is the so called Laughlin’s Ansatz.

Driven by the use of Ritz variational principle, Laughlin proposed a simple
yet meaningful ansatz ϕGS(z1, . . . , zN) for the ground state of N interacting
electrons.

Here the main ideas are reported:

• the LLL is generated by monomials (see Eq. (2.26)). If no geometric
requirement is given, the LLL is an infinite dimensional Hilbert space,
and its generic element would be a non-trivial function. Disk geometry,
or other geometries with bounded surface, will lower the LLL degen-
eracy below infinity; in this case, the generic LLL function would be
a polynomial in the N complex variables zi. Keeping in mind disk
geometry, ϕGS(z1, . . . , zN) will be a polynomial;

• homogeneus polynomials are eigenfunctions of Lz, with the degree of
the polynomial as eigenvalue (in the LLL Lz is represented by

∑
zi∂zi).

As Coulomb interaction commutes with Lz, a simultaneous basis to di-
agonalize both of them can be chosen. Thus, ϕGS(z1, . . . , zN) will be an
homogeneous polynomial of degree M (the total angular momentum);

• electrons are fermions, so Pauli principle implies that ϕGS(z1, . . . , zN)
will be an homogeneous antisymmetric polynomial of deegree M ;

• Coulomb interaction is strongly repulsive at short distances. One can
reasonably assume that ϕGS(z1, . . . , zN) should have nodes every time
two coordinates coincide. This implies that ϕGS(z1, . . . , zN) should be
divisible by the Vandermonde determinant, i.e.

∏
i<j(zi − zj).
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Combining all the observations and assumptions above, one finds the so
called Laughlin’s wavefunction

ϕL
GS(z1, . . . , zN) =

∏
i<j

(zi − zj)
q, (2.27)

with q arbitrary odd integer.
At first sight, one could think of q as a variational parameter to minimize

the energy functional. It’s not the case: q is determined by the filling fraction
ν. First of all, it is to be noticed that ϕL

GS contains zq(N−1)i as the highest
power of each coordinate; this means that each electron can have at most
Lz = q(N − 1), i.e. his density distribution is peaked on a circle of radius
at most

√
2(q(N − 1) + 1)l (see Sec. 2.2.3). The enclosed area is 2(q(N −

1) + 1)πl2. Assuming a uniform density of electrons on the circle, one has
ν = 2πl2N/S

N→∞−→ 1/q.
Laughin’s wavefunctions are thus modeling FQHE ground states for a

specific series of fractional plateaux, not for all of them. Other model wave-
functions exists for different filling fractions, which will not be treated here.

Laughlin’s wave functions has proven to be an enourmously good ansatz
for 1/q filling fractions. Section 4.4 of [Yos02] provides some insights. Two
points are of fundamental interest:

• Laughlin’s wave functions is not the exact groundstate for the FQHE
Hamiltonian. Laughlin’s wavefunctions are ground states of particular
Hamiltonians (called Model Hamiltonians) built using Haldane pseu-
dopotentials (see [Jai07] or [Yos02]);

• Laughlin’s wave functions overlaps extremely well (∼ 99%) with the
exact ground state of FQHE Hamiltonian, computed numerically for a
small number of electrons (∼ 10).
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Chapter 3

Symmetric Functions and Jack
Polynomials

Jack Polynomials belong to a wide class of special functions, the Symmetric
Functions. Some preliminaries will be developed to define Jack Polynomials
and to show some of their properties.

Two key results will be presented:

• Laughlin’s bosonic states are Jack Polynomials;

• it is possible to generalize Jack Polynomials to take care also of fermionic
Laughlin’s states.

3.1 Partitions
A partition λ is a non increasing, definitively null sequence of integers. The
finite number of non null entries is called the lenght l(λ) of the partition.

Partitions are represented in various ways:

• indicating all the non null (and possibly also part of the null) entries
in decreasing order, (λ1, . . . , λl(λ), 0, . . . , 0);

• indicating all the entries in a contracted form and in decreasing or-
der, using exponents to indicate the number of repetitions of a certain
component, (λe11 , . . . , λ

el(λ)
l(λ) );

• using the multeplicities ni(λ) (number of appearences of i in λ),
(n1(λ), n2(λ), . . . , ni(λ), . . . );

• using a Young tableaux, a diagram composed by vertically stacked, left
aligned rows of squares. The i-th row is λi squares long.
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λ
6
6
3
1

Figure 3.1.1: Young tableau representation of (6, 6, 3, 1, . . . )

For example, the partition (6631 . . . ) can be written also as (623111),
(1010020 . . . ) or as in Fig. (3.1.1).

The sum
∑l(λ)

i=0 λi is often referred to as |λ|.
Partitions are pure combinatorial objects. Nevertheless, they are partic-

ularly useful. For example, Young tableaux and several bases of polynomial
spaces are in one to one correspondence with partitions.

It is important to find a meaningful physical picture for partitions, to
gain a better understanding and to avoid using them as a mere mathematical
object.

Consider the third representation given for partitions, in the example
above (1010020 . . . ). This is formally equivalent to a N -particles state ex-
pressed in an occupation numbers basis. Following the example, one has 1
particle in the first orbital, 1 in the third and 2 in the sixth. In this pic-
ture, other representations of partitions assume meaning: (6631 . . . ) lists in
decreasing order orbitals occupied by every single particle, and (623111) does
the same in a contracted way.

With this idea in mind, a generic N -particle state can be expressed on
an occupation number basis as |λ⟩, with l(λ) = N .

Notice that the fact that partitions are ordered sequences accounts for the
permutation symmetry of indistinguishable particles. One could choose not
to order the sequences of orbitals occupied by every single particle, but this
would destroy the one to one correspondence between partitions and physical
states (for example (6631) and (1636) would represent the same state).

To relate to LLL, orbitals are labeled by the angular momentum eigen-
valuem. A partition (1010020 . . . ) will represent a state in which one electron
has vanishing angular momentum, one electron has Lz = 2ℏ and two elec-
trons have Lz = 5ℏ. (6631) will be the list of electrons’ angular momenta,
in decreasing order. Notice that |λ| is the total angular momentum of the
system.

From now on, the decreasing listing representation will be called the usual
representation (λi will indicate the i-th component of λ). The multeplicity
representation will be called the occupation numbers representation.
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1 2 3 4 5 6 7

(6, 6, 3, 1)

(1, 0, 1, 0, 0, 2, 0, . . . )

Figure 3.1.2: Example of different notation for partitions

On the left, disk geometry for the
LLL is represented. Each orbital is
labeled by m.
On the right, the conversion
between occupation number
representation and the usual
representation.
Below, two examples of conversion
between the occupation number
representation and the usual
representation.
Notice the different convention for
the numbering of orbitals:
mathematical notation starts from
1, physical notation from 0.
The image is taken from [BH08].

Figure 3.1.3: LLL picture for partitions
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λ1 λ2 λ3 λ4
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∗

λ1 λ2 λ3 λ4
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λ
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µ∗

∗
µ
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λ4 λ3 λ2λ1

n1 n2 n3 n4 n5 n6 n7

λ4 λ3λ2 λ1
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µ4 µ2µ3 µ1

(6631)

(6451)∗

(6541)

(1010020 . . . )

(1001110 . . . )

(1001110 . . . )

Figure 3.1.4: Example of squeezing
On the left, squeezing in the usual representation is shown. First, the rough squeeze is
performed as defined in Eq. (3.1); then, reordering to restore decreasing order is done.
On the right, the occupation number counterpart of the same squeezing is shown. Notice
that no explicit reordering is needed in this representation.

3.1.1 Squeezing

A fundamental (for physical purposes) operation on partitions is called "squeez-
ing".

Given a partition λ, two integers 0 ≤ i ≤ j ≤ l(λ) and an integer 0 ≤
s ≤ λi − λj, the squeezing operator Rs

ij acts as

Rs
ij(λ1, . . . , λi, . . . , λj, . . . ) = (λ1, . . . , λi − s, . . . , λj + s, . . . )∗, (3.1)

where the ∗ means that a reordering to restore the decreasing order of the
final partition may be needed. Notice that squeezings preserve |λ|.

Fig. (3.1.4) shows an example of squeezing, both in the usual partition
representation and in the occupation numbers one.

In the second case of Fig. (3.1.4), it is easy to give a physical interpretation
of squeezing operations: two particles, the i-th and j-th, are moved inward
by s steps from their orbitals.

Squeezings are of fundamental importance. Suppose to have a two body
interaction V which is invariant under rotations (for simplicity, have in mind
the LLL disk geometry). Then, when passing in a second quantization pic-
ture,

V =
1

2

∑
r,s

∑
m,n

⟨r, s|V |m,n⟩ a†ra†saman, (3.2)

where creation and annihilation operators for the angular momentum ba-
sis have been introduced. As V commutes with the angular momentum,
⟨r, s|V |m,n⟩ ≠ 0 ⇐⇒ r + s = m+ n.
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This implies that a†ra†saman |λ⟩ must be multiple of |µ⟩ with µ squeezed
from λ (or unsqueezed, i.e. squeezed with negative s).

Therefore squeezing (and unsqueezing) operators become a sort of basis
for rotational invariant interactions.

In the following, chains of partitions squeezed from a fixed partition λ
will be useful; an example of such a chain is given in Fig. (??).

3.1.2 Orderings

Ordering relations can be established on the set of partitions. The squeezing
induced ordering, also called natural/dominance partial ordering is defined
equivalently as:

• two partitions λ and µ are such that λ > µ if µ can be derived from
λ with a finite number of squeezings. This implies that if |λ| ≠ |µ|, λ
and µ are not comparable;

• two partitions λ and µ are such that λ > µ if |λ| = |µ| and
∑r

i=1 λi ≥∑r
i=1 µi, ∀r > 0.

This ordering is not a total ordering on partitions. For examples, see Fig. (??).
In [Sta89], two more orderings are established:

• the reverse lexicographic ordering: two partitions λ and µ are such that

µ
R

≤ λ if the first non-vanishing term λi − µi is positive. This is a total
ordering, compatible with the dominance ordering;

• the Young tableaux induced ordering: two partitions λ and µ are such
that µ ⊂ λ if the tableau of µ is fully included in the tableau of λ.

In the following, dominance ordering will be used, as squeezing charac-
terizes some of the interesting properties of Jack Polynomials. However, it
shall be remarked that this is not a total ordering. Most of the theorems
related to ordering are proven in the reverse lexicographic ordering, and then
it is shown that all the total orderings compatible with the dominance one
are equivalent for the purposes of the proof.

3.2 The Ring of Symmetric functions
Symmetric functions generalize polynomials by removing any constraint on
the number of independent variables. This generalization can be useful to
describe wavefunctions of very large many body systems.
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Let Λn be the ring of symmetric polynomials in n independent variables,
with coefficients in a generic commutative ring R (in the following, R = Z).

The first thing to be stressed is that Λn is a graded ring: in fact, Λn =⨁
r≥0 Λ

r
n, where Λr

n is the subring of symmetric homogeneous polynomials of
degree r (by convention, 0 is homogeneous of every degree).

A collection of surjective homomorphisms (of graded rings) is constructed:
let ω : Λn+1 → Λn be defined by ω : f(x1, . . . , xn, xn+1) → f(x1, . . . , xn, 0)
for every f ∈ Λn+1. The restriction of ω to Λr

n is again surjective, and it is a
bijection if and only if r ≤ n.

These homomorphisms allow for the construction of the inverse limit Λr =
lim
←
n

Λr
n.

By definition, an element f ∈ Λr is a sequence {fn}n≥0 such that:

• fn ∈ Λr
n for each n ≥ 0;

• fn = ωfn+1.

Λr is again a ring, which is called the ring of homogeneous symmetric func-
tions of degree r.

Finally, the ring of symmetric functions is defined as Λ =
⨁

r≥0 Λ
r.

This is a very strict mathematical construction. The point is that sym-
metric functions are sequences of regular polynomials, each one with an ad-
ditional variable. Thus, symmetric functions can be regarded as polynomials
in infinitely many independent variables.

In the following, the symbol ΛR will indicate explicitly which ring of
coefficients is taken into account.

3.2.1 Relevant subsets of Λ

Monomial symmetric functions

Given a partition λ, a monomial is defined as xλ = xλ1
1 x

λ2
2 . . .

The sum of all distinct monomials obtainable from λ permuting the vari-
ables is called the monomial symmetric function mλ =

∑
xλ.

For example:

m(1,2) =
∑
i ̸=j

xix
2
j ,

m(1,1) =
∑
i<j

xixj.
(3.3)
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mλ’s form a Z-basis of ΛZ. For example, restricting to the 3 variables
case (x1, x2, x3) = (x, y, z),

x2y2z2 + 4xyz + 5xy + 5xz + 5yz = m(2,2,2) + 4m(1,1,1) + 5m(1,1,0).

In the particular case of N bosons in the LLL, it was shown that a basis
for the Hilbert space of states is given by symmetric homogeneous monomials
of degree M (total angular momentum).

This allows for the following observations:

• partitions λ label N -particles LLL states |λ⟩ whose Schrödinger repre-
sentation is given by a multiple of mλ. In particular, λi are the angular
momenta of the N particles and |λ| is the total angular momentum of
the system;

• the N -particles LLL Hilbert space is the closure of ΛM
N .

Elementary symmetric functions

For λ = (1r), mλ is called the r-th elementary symmetric function er. For a
generic partition λ, let eλ = eλ1eλ2 . . . . It can be shown (see [Mac88]) that
eλ’s form a Z-basis of ΛZ.

Examples of elementary functions are:

e1 = m(1) =
∑

xi,

e2 = m(1,1) =
∑
i<j

xixj,

e(2,1) = e2e1 =

(∑
i<j

xixj

)(∑
xi

)
.

(3.4)

Power sum symmetric functions

For λ = (r), mλ is called the r-th power sum symmetric function pr. For a
generic partition λ, let pλ = pλ1pλ2 . . . . It can be shown (see [Mac88]) that
pλ’s form a Q-basis of ΛZ.

Examples of power functions are:

p1 = m(1) =
∑

xi,

p2 = m(2) =
∑

x2i ,

p(2,1) = p2p1 =
(∑

x2i

)(∑
xi

)
.

(3.5)
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Schur symmetric functions

Let λ be a partition, and let Dλ = det
(
x
λj+n−j
i

)
. By the properties of

determinants, Dλ vanishes every time xi = xj; thus, it is divisible by the
Vandermonde determinant D0.

Schur functions are defined as sλ = Dλ/D0.
Since sλ(x1, . . . , xn) = sλ(x1, . . . , xn, 0), sλ’s are well defined (recall that

the number of zeros in the end of λ doesn’t alter the partition).
It is possible to introduce a scalar product ⟨, ⟩ on Λ such that:

⟨pλ, pµ⟩ = δλµzλ

zλ =
∏
r≥1

rnr(λ)nr(λ)! = 1n1(λ)2n2(λ) . . . n1(λ)!n2(λ)! . . .
(3.6)

with δ being the usual Kroneker’s delta.
It can be shown (see [Mac95]) that Schur symmetric functions are char-

acterized uniquely by the following properties:

• sλ = mλ +
∑

µ<λKµλmµ;

• ⟨sλ, sµ⟩ = 0 for λ ̸= µ.

i.e. they are an orthogonal system with a particular "triangular" form when
written on the monomial basis.

3.2.2 Relevant constructions from Λ

From symmetric functions to symmetric polynomials

Given a symmetric functions, it is always possible to reduce it to a symmetric
polynomial in N independent variables by setting xN+1 = xN+2 = · · · = 0. As
all the properties of symmetric functions are valid for an indefinite number
of independent variables, they will still hold in the polynomial case.

From symmetric functions to antisymmetric functions

The same construction of Λ applies for the ring of antisymmetric polynomials.
A useful property of antisymmetric polynomials is that they are divisible

by the Vandermonde determinant, and that this ratio defines a symmetric
polynomial. Thus, one can build every antisymmetric function by multiplying
a symmetric function with the Vandermonde determinant.

A useful basis of antisymmetric functions are the so called Slater deter-
minants slλ, i.e. completely antisymmetrized monomials.
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Notice that for N fermions in the LLL, slλ’s play the same role as mλ’s
for bosons.

Another useful remark is that, as antisymmetrization (i.e. Pauli principle)
prevents two indeterminates to have the same exponent in a homogeneous
polynomial (i.e. two particles to be in the same state), one can refer partitions
to the partition of minimal degree (i.e. state of minimal angular momentum),
which is (N − 1, N − 2, . . . , 2, 1, 0, . . . ) if N is the number of indeterminates
(see [Dun93]). Thus, a partition (λ1, λ2, . . . , λN) for N fermions could be
rewritten as (λ1 − (N − 1), λ2 − (N − 2), . . . , λN) without losing any kind of
information.

3.3 Jack symmetric functions
Let α ∈ R, α > 0. Let ⟨pλ, pµ⟩α = δλµα

l(λ)zλ be the scalar product on ΛR(α).
Then Jack symmetric functions (also known as Jacks) Pα

λ are uniquely
characterized by

• Pα
λ = mλ +

∑
µ<λ aµλmµ;

• ⟨Pα
λ , P

α
µ ⟩α = 0 for λ ̸= µ.

Sketch of proof (see [Sta89]): the first condition is basically Grahm-
Schimdt orthogonalization for the monomial basis with respect to the given
scalar product. The only issue is that the ordering used for the partitions
is not a total orderding. One should first prove that every total order com-
patible with the dominance order gives the same Grahm-Schmidt expansion,
and then provide an existence theorem for such a total order (in our case,
this is not required because reverse lexicographic ordering is a total order
and satisifies the compatibility condition). ■

Jacks generalize a variety of other subsets of symmetric functions (mod-
ulo a normalization factor), such as Schur funtions (α = 1) and monomial
symmetric functions (α → ∞).

Jacks’ definition implies that Pα
λ are monic, i.e. the first coefficient of

the expansion on the monomial basis is 1. This is usually called the P
normalization.

Other normalizations are possible. One among the most used is the J
normalization, defined by aλ,(1|λ|) = |λ|!.

From now on, Pα
λ will indicate Jacks with P normalization and Jα

λ Jacks
with J normalization.
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3.3.1 Properties

Expansion on the monomial basis

A fundamental property of Jacks is already required in the definition

Pα
λ =

∑
cµλmµ,

cµλ ̸= 0 ⇐⇒ µ can be squeezed by λ,
(3.7)

i.e. Jacks’ expansion on the monomial basis has non null coefficients only for
those partitions µ that can be squeezed from λ (c’s are functions of α).

This means that, since squeezing implies |µ| = |λ|, Jacks are homogeneous
symmetric functions of degree |λ|, and therefore are eigenstates of

∑
xi∂i

with eigenvalue |λ|.
An example of such an expansion is given for λ = (1001001), whose

squeezed partitions are listed in Ch. 1:

Pα
(1001001) = c

(1001001)
(1001001)m(1001001) + c

(0110001)
(1001001)m(0110001)

+ c
(1000110)
(1001001)m(1000110) + c

(0101010)
(1001001)m(0101010)

+ c
(0011100)
(1001001)m(0011100) + c

(0003000)
(1001001)m(0003000).

Laplace Beltrami operator

Jack symmetric functions can be characterized as the unique polynomial
eigenfunctions of certain partial differential operators.

Among the others, Laplace Beltrami operators are of great physical rel-
evance in relation to integrable models (to be precise, Calogero-Sutherland
and Calogero-Sutherland-Moser models).

The Laplace Beltrami operator is defined as

Hα
LB =

∑
(xi∂i)

2 +
1

2α

∑
i ̸=j

xi + xj
xi − xj

(xi∂i − xj∂j). (3.8)

To show that Jacks are eigenvectors of Hα
LB, one can notice that α

2
Hα

LB =
D(α) − N−1−α

2

∑
xi∂i, with D(α) defined in [Sta89], pg. 84. Following the

proof given in that reference, and recalling that
∑
xi∂i is diagonal on Jacks

gives that

Hα
LBP

α
λ =

[∑(
λ2i +

λi
α
(N + 1− 2i)

)]
Pα
λ . (3.9)

It is important to notice that this relation can be used as a definition for
Jacks, if Eq. (3.7) is also required.

Notice that if α → ∞, H∞LB =
∑

(xi∂i)
2, which is diagonal on the mono-

mial basis, justifying the claim lim
α→∞

Pα
λ = mλ.
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3.3.2 Negative parameter Jack polynomials

Jacks are defined for positive α. It’s of physical interest to study also negative
parameter Jacks. In [FJMM01], it is shown that problems may arise only for
negative rational values of α; for these values of the parameter, a criterion to
select partition whose associated Jack is regular was found. The condition
is called (k, r, N)-admissibility, and describes a generalized Pauli principle
which prevents more than k particles in a N -particles system to occupy r
consecutive orbitals. Mathematically, this principle is formulated as λi−λj ≥
⌊ j−i

k
⌋r for each i < j and with ⌊ ⌋ being the floor function.
Haldane and Bernevig, in [BH08], first pointed out that Laughlin’s wave-

functions (in their bosonic version), as well as other model wavefunctions,
are particular Jacks.

Bosonic Laughlin’s wavefunctions are defined as usual Laughlin’s wave-
functions divided by a Vandermonde determinant, i.e. ψL =

∑N
i<j(zi − zj)

r

with r even. It can be shown that these wavefuction satisfy ψL = J
α1,r

λ0(1,r),
where

• αk,r = −k+1
r−1 ;

• λ0(k, r) is the (k, r, N)-admissible partition which minimizes |λ0(k, r)|,
i.e. for k = 1 (10r−110r−1 . . . ).

The claim that ψL is a Jack is motivated in [BH08], constructing HLB as
a sum of a constant and an operator which annihilates ψL.

This identification is the key observation for the expansion of Laughlin’s
wavefunctions on the monomial basis, i.e. the non interacting N particle
basis.

3.4 Jack antisymmetric functions
Jacks can be useful for the study of bosonic systems, given their symmetry for
the exchange of coordinates. An equivalent class of antisymmetric functions
is to be defined to properly treat fermionic systems.

The simplest (and with most physical meaning) choice for this definition
is (see [TERB11])

Sα
λ′ = Jα

λ

∏
i<j

(zi − zj), (3.10)

i.e., multiplication for a Vandermonde determinant, with λ′i = λi+N−i. This
is justified by the fact that Laughin’s states and bosonic Laughlin’s states
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differ only for the multiplication by a Vandermonde determinant. Relative
angular momenta λ′ are used as sketched in Sec. (3.2.2).

For the following manipulations, it is fundamental to have an operator
similar to the Laplace Beltrami also for antisymmetric Jacks.

The basic idea is to use Eq. (3.9):

Eα
λS

α
λ′ = Eα

λ

⎛⎜⎝∏
k,l
k<l

(zk − zl)

⎞⎟⎠ Jα
λ

=

⎛⎜⎝∏
k,l
k<l

(zk − zl)

⎞⎟⎠Eα
λJ

α
λ =

⎛⎜⎝∏
k,l
k<l

(zk − zl)

⎞⎟⎠Hα
LB(J

α
λ ).

(3.11)

Then, by explicit calculation of (zi∂i)Sα
λ′ and (zi∂i)

2Sα
λ′ and some manipu-

lations (all the details are reported in App. A), one obtains that the right
operator is

Hα
LB,F =

∑
i

(zi∂i)
2 +

1

2

(
1

α
− 1

)∑
i,j
i ̸=j

[
zi + zj
zi − zj

(zi∂i − zj∂j)− 2
z2i + z2j
(zi − zj)2

]
,

(3.12)

with eigenvalues

Eα
λ′ =

∑
λ′i

[
λ′i − 2

(
1

α
− 1

)
i

]
+

(
1

α
− 1

)
((N + 1)|λ′| −N(N − 1)) .

(3.13)

By definition, Hα
LB,F is diagonal on Sα

λ′ with eigenvalue Eα
λ′ .

32



Chapter 4

Recursion Laws

In this chapter, recursion laws for the coefficients of the expansion of Jacks
on the monomial basis are derived. A generalization to antisymmetric Jacks
is then presented.

In the following, an operator H on the symmetric/antisymmetric poly-
nomials will be said to have a triangular action on a particular basis {bλ} if

Hbλ = Cλ
λbλ +

∑
µ<λ

Cλ
µbµ, (4.1)

with Cλ
λ ̸= 0.

An operator H will be said to be a two body operator if it’s sum of opera-
tors acting on all the distinct pairs of variables, i.e. H =

∑
i<j Hi,j(xi, xj, ∂i, ∂j).

H will always be considered symmetric for exchange of coordinate indexes.
The derivation is organized as follows:

• given an operator diagonal on certain functions fλ and triangular on
a basis {bλ}, general recurrence relations for the expansion of fλ on
{bλ} are derived. To be concrete, think of fλ as Jacks and of bλ as the
monomial basis;

• a general form for the action of triangular two body operators on the
N variable basis {bλ} is given as a function of the action of the same
operator on the 2 variables basis;

• explicit calculation for Jacks’expansion on symmetric monomials is pro-
vided;

• explicit calculation for antisymmetric Jacks’expansion on slater deter-
minants is provided.
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4.1 Generic recurrence relations
LetH be an operator triangular on the {bλ} basis for the symmetric/antisymmetric
polynomials (to be concrete, the symmetric monomial basis or the slater de-
terminants basis). Let fλ be an eigenvector of H with eigenvalue Eλ for each
partition λ, i.e. Eλfλ = Hfλ.

Suppose that:

fλ = Xλ
λbλ +

∑
µ<λ

Xλ
µbµ with Xλ

λ ̸= 0, (4.2)

where Xλ
µ and Cλ

µ are suitable sets of coefficients. This hypothesis is re-
dundant, as triangularity and the eigenvector relation suffice to prove it.
Nevertheless, this property is characterizing for Jacks and thus is to be re-
marked.

Then, plugging Eq. (4.2) into the eigenvector relation one obtains (see
explicit calculations at App. B)

Xλ
κ =

1

Eλ − Eκ

∑
µ

κ<µ≤λ

Xλ
µC

µ
κ , (4.3)

whose validity is guaranteed if Eλ’s are distinct for distinct λ’s.
This relation is recursive, and in particular needs an initial condition.

Usually this is given for monic Jacks Pα
λ as Xλ

λ = 1.

4.2 General form for triangular operators
A physical view point suggests that two body operators’ action onN particles
states should be understandable by their action on 2 particles states. In
polynomial spaces, this means that two body operators’ action onN variables
base functions should be understandable by their action on 2 variable base
functions.

Two equivalent approaches can lead to find an expression for the N vari-
ables expression Hbλ as a function of the same 2 variables expression. Both
the derivation rely on the usage of a particular {bλ} as the basis: symmetric
polynomials require the symmetric monomail basis, antisymmetric monomi-
als require the slater determinants basis.

Let H satisfy

Hb(m,n) =

(m−n)/2∑
k=0

F
(m,n)
k b(m−k,n+k) for m > n,

Hb(m,n) = 0 for m = n.

(4.4)
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The first requirement is triangularity in 2 variables; the second requirement
allows for a unified treatment of symmetric and antisymmetric cases. This
further hypotesis is automatically satisfied in the antisymmetric case; for the
symmetric one, in general it is not. If H is a Laplace Beltrami operator and
bλ is the monomial basis, it is satisfied.

The first path relies on explicit computation.
The second one uses a "second quantization" formalism adapted to the

polynomial ring; this construction allows for the usage of physical techniques
and terminology to study polynomials.

4.2.1 First approach

Explicit calculation requires an explicit form for N variables monomials or
slaters, which is given using sums over permutations (± is for symmet-
ric/antisymmetric case respectively)

bλ =
∑
σ∈SN

(±)σz
σ(λ1)
1 . . . z

σ(λN )
N . (4.5)

Thus:

Hbλ =
∑
i<j

Hi,jbλ

=
∑
i<j

∑
σ∈SN

Hi,jz
σ(λ1)
1 . . . z

σ(λN )
N

=
∑
i<j

∑
σ∈SN

(z
σ(λ1)
1 . . . /zσ(λi)

i . . . /z
σ(λj)
j . . . z

σ(λN )
N )Hi,j

[
z
σ(λi)
i z

σ(λj)
j

]
.

(4.6)

The interesting action is:

Hi,j

[
z
σ(λi)
i z

σ(λj)
j

]
=

1

2
Hi,j

[
z
σ(λi)
i z

σ(λj)
j ± z

σ(λj)
i z

σ(λi)
j

]
=

1

2
Hi,jb(σ(λi),σ(λj))

=
1

2

(σ(λi)−σ(λj))/2∑
k=0

F
(σ(λi),σ(λj))
k

×
[
z
σ(λi)−k
i z

σ(λj)+k
j ± z

σ(λi)−k
j z

σ(λj)+k
i

]
=

(σ(λi)−σ(λj))/2∑
k=0

F
(σ(λi),σ(λj))
k z

σ(λi)−k
i z

σ(λj)+k
j ,

(4.7)
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where the second passage was allowed by summing over all the permutation
σ seen as σ′ ◦ si,j (note that the sum is over all the elements of a group).

Recollecting all the pieces one has:

Hbλ =
∑
i<j

∑
σ∈SN

(z
σ(λ1)
1 . . . /zσ(λi)

i . . . /z
σ(λj)
j . . . z

σ(λN )
N )

×
(σ(λi)−σ(λj))/2∑

k=0

F
(σ(λi),σ(λj))
k z

σ(λi)−k
i z

σ(λj)+k
j

=
∑
i<j

∑
σ∈SN

(σ(λi)−σ(λj))/2∑
k=0

F
(σ(λi),σ(λj))
k

× z
σ(λ1)
1 . . . z

σ(λi)−k
i . . . z

σ(λj)+k
j . . . z

σ(λN )
N .

(4.8)

Notice that the second summation implies σ(λi) ≥ σ(λj): this is always
true modulo a minus sign.

The last line can be recognised as the sum over all the partitions µ ≤ λ,
a part from a sign (±)NSW due to restoration of decreasing order of the
partition by Nsw swaps

Hbλ =
∑
µ≤λ

(±)NSWF
(m,n)
k bµ, (4.9)

with µ = (λ1 . . . λi − k . . . λi + k . . . λN)
∗ if λi = m and λj = n.

4.2.2 Second approach

Notations

Let Λ1 be the space of one variable polynomials (with complex coefficients
and variables). Λ1 is to be considered as a one particle Hilbert space. Its
inner product is defined as ⟨r|s⟩ = δr,s, where |r⟩ = zr is the monomial basis
(orthonormal for construction).

The space of k variable polynomials Λk can be seen as the k-particle
Hilbert space associated with Λ1, i.e. the closure of linear combinations of
factored states |r1, . . . , rk⟩ = |r1⟩ ⊗ · · · ⊗ |rk⟩ = zr11 . . . zrkk equipped with
the inner product ⟨r1, . . . , rk|s1, . . . , sk⟩ = ⟨r1|s1⟩ . . . ⟨rk|sk⟩ = δr1,s1 . . . δrk,sk .
Factored states have a clear interpretation: they describe the configuration
in which the i-th particle is in the one particle state |ri⟩.

Some restrictions occur if one chooses the statistics satisfied by particles.
In particular, for bosons (+) or fermions (−), one has to restict Λk to the
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spaces of, respectively, symmetric polynomials Λ+
k or antisymmetric poly-

nomials Λ−k . In this picture, factored states |r1, . . . , rk⟩ and |s1, . . . , sk⟩ are
different states only if {ri} is not a permutation of {si}. It is thus natural
to label factored states by partitions λ. These partition must be such that
l(λ) < k.

Notice that |λ⟩ still describe pure factored states.
A basis for Λ±k is given by, respectively, the symmetric monomials mλ =

|λ+⟩ or the slater determinants slλ = |λ−⟩.
Notice that, due to symmetrization and antisymmetrization procedures,

the states |λ±⟩ are not normalized:

⟨λ+|λ+⟩ = n1(λ)! . . . n∞(λ)!

k!
, (4.10)

⟨λ−|λ−⟩ = 1

k!
. (4.11)

Creation and annihilation operators a†i and ai are introduced, such that in
the occupation number picture:

a†i |n0, n1, . . . , ni, . . .⟩ = |n0, n1, . . . , ni + 1, . . .⟩ ,

ai |n0, n1, . . . , ni, . . .⟩ =
{

|n0, n1, . . . , ni − 1, . . .⟩ for ni ̸= 0
0 for ni = 0

.
(4.12)

Squeezings are written as operators of the form a†m−la
†
n+lanam, with m > n

and 0 < l < m−n
2

for integer m, n, l. Their action on the occupation numbers
basis is (if nn ̸= 0 and nm ̸= 0, otherwise they annihilate the state):

a†m−la
†
n+lanam |. . . , nn, . . . , nn+l, . . . , nm−l, . . . , nm, . . .⟩

= |. . . , nn − 1, . . . , nn+l + 1, . . . , nm−l + 1, . . . , nm − 1, . . .⟩ . (4.13)

The same actions in the usual representation is

a†i |λ⟩ = a†i |. . . , i, . . .⟩ = (±)NSW |. . . , i+ 1, . . .⟩ ,

ai |λ⟩ = ai |. . . , i, . . .⟩ =
{

|. . . , i− 1, . . .⟩ for i ∈ λ
0 for i /∈ λ

,
(4.14)

a†m−la
†
n+lanam |. . . ,m, . . . , n, . . .⟩ = (±)NSW |. . . ,m− l, . . . , n+ l, . . .⟩ .

(4.15)

The (±)NSW is a statistics dependent term due to the fact that construc-
tion operators create a new particle in front of the partition. To restore the
decreasing order, a number of NSW swaps must be performed.
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Notice that the operators just described are not the usual creation and
annihilation operators for the absence of the typical multiplicative factors.
Still, one has the expected bosonic commutation relations[

a†r, a
†
s

]
= 0, (4.16)

and fermionic anticommutation relations{
a†r, a

†
s

}
= 0. (4.17)

Computation

Given a 2 body operator, its second quantization form is

H =
1

2

∑
r,s,m,n

⟨r, s|H |m,n⟩ a†ra†sanam, (4.18)

where a† and a are creation and annihilation operators defined above.
Notice that this formula is defined on factored states, and not on sym-

metrized/antisymmetryzed states. To switch to symmetric/antisymmetric
polynomials, one has to provide some justification. As H is symmetric, one
has:

H =
1

2

∑
r,s,m,n

⟨r, s|H |m,n⟩ a†ra†sanam

=
1

2

∑
r,s,m,n

⟨r, s|S†±S±HS†±S± |m,n⟩ a†ra†sanam

=
1

2

∑
r,s,m,n

⟨r, s|±H |m,n⟩± a†ra†sanam,

(4.19)

where S± are symmetrization/antisymmetrization operators.
From now on the ± exponent of brakets will be dropped, and all brakets

will describe symmetrized/antisymmetrized states.
One has (see detailed computation in App. B):

H |λ⟩ = 1

2

∑
r,s,m,n

⟨r, s|H |m,n⟩ a†ra†sanam |λ⟩

=
∑
µ≤λ

F
(m,n)
k (±)NSW |µ⟩ ,

(4.20)

where:
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• in the last line, µ = [λ1, . . . , λi − k, . . . , λj + k, . . . ] with λi = m and
λj = n, i.e., µ is a generic partition squeezed from λ. NB.: notice
the definition of m and n as the terms of the dominating partition λ
modified by the squeezing. This is the opposite as done by [TERB11];
to compare the results, its convention will be used;

• the factor (±)NSW , where + is for the bosonic case and − for the an-
tisymmetric, is caused by the reordering of µ after it is squeezed from
λ.

4.3 Jacks
Laplace Beltrami operator Hα

LB is defined as:

Hα
LB = K +

1

α
V =

∑
i

(zi∂i)
2 +

1

α

∑
i,j
i<j

zi + zj
zi − zj

(zi∂i − zj∂j). (4.21)

Hα
LB’s action on monomials mλ is calculated as in the following. K is

diagonal onmλ with eigenvalue
∑

i λ
2
i . V is a two body operator. The explicit

calculation of its action on two variables monomials m(n,p), by Eq. (4.9) or
Eq. (4.20), gives its action on generic monomials.
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For this calculation, suppose n > p

V m(n,p) =

[
x+ y

x− y
(x∂x− y∂y)

]
(xnyp + xpyn)

=
x+ y

x− y
(n− p) (xnyp − xpyn)

=
x+ y

x− y
(n− p)xpyp

(
xn−p − yn−p

)
= (n− p) (x+ y)

n−p−1∑
k=0

x(n−1)−kyk+p

= (n− p)

[
n−p−1∑
k=0

xn−kyk+p +

n−p−1∑
k=0

xn−(1+k)y(k+1)+p

]

= (n− p)

[
xnyp +

n−p−1∑
k=1

xn−kyk+p +

n−p−1∑
k=1

xn−kyk+p + xpyn

]

= (n− p)

[
m(n,p) + 2

n−p−1∑
k=1

xn−kyk+p

]

= (n− p)

⎡⎣m(n,p) + 2

(n−p)/2∑
k=1

m(n−k,p+k)

⎤⎦ .

(4.22)

Keeping the notation of the precedent sections, one has Cµ
κ = F

(n,p)
k =

2
α
(n− p) for k ̸= 0 and F (n,p)

0 = 1
α
(n− p).

4.3.1 Jacks’ recursion laws

Using Eq.(4.3) with Cµ
κ = F

(n,p)
k = 2

α
(n− p) one obtains

Xλ
κ =

2
α

Eλ − Eκ

∑
µ

κ<µ≤λ

Xλ
µ((κi + k)− (κj − k)), (4.23)

where κ = [κ1, . . . , κi, . . . , κj, . . . , κN ], µ = [κ1, . . . , κi+k, . . . , κj−k, . . . , κN ].
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4.4 Antisymmetric Jacks
Antisymmetric Laplace-Beltrami operator Hα

F is defined as:

Hα
F = K +

(
1

α
− 1

)
V

=
∑
i

(zi∂i)
2 +

(
1

α
− 1

)∑
i,j
i<j

[
zi + zj
zi − zj

(zi∂i − zj∂j)− 2
z2i + z2j
(zi − zj)2

]
.

(4.24)

Hα
F ’s action on slaters slλ is calculated as in the following. K is diagonal

on slλ with eigenvalue
∑

i λ
2
i . V is a two body operator. The explicit calcu-

lation of its action on two-particles slaters sl(n,p), by Eq. (4.9) or Eq. (4.20),
gives its action on generic slaters.

The full calculation is similar to Eq. (4.22), and is given in App. B.
For this calculation, suppose n > p and let k = n− p:

V sl(n,p) = (n− p− 2)sl(n,p) + 2

(n−p)/2∑
l=1

(n− p− 2l)sl(n−l,p+l). (4.25)

Thus one has Cλ
µ = F

(n,p)
k =

(
1
α
− 1
)
2(n− p− 2k) for k ̸= 0 and F (n,p)

0 =(
1
α
− 1
)
(n− p− 2).

4.4.1 Antisymmetric Jacks’ recursion laws

Using Eq.(4.3) with Cµ
κ = F

(n,p)
k =

(
1
α
− 1
)
2(n− p− 2k) one obtains

Xλ
κ =

2
(
1
α
− 1
)

Eλ − Eκ

∑
µ

κ<µ≤λ

Xλ
µ(κi − κj), (4.26)

where κ = [κ1, . . . , κi, . . . , κj, . . . , κN ], µ = [κ1, . . . , κi+k, . . . , κj −k, . . . , κN ]

4.5 Validity of recursion laws
As stated in Sec. (4.1), recursion laws are valid if different Jacks have different
eigenvalues. Otherwise, the denominator may vanish.

In [Sta89], pg. 85, a lemma is given that solves the problem for positive
α. It states that if two partitions generate the same eigenvalue, the two
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partitions are incomparable in the dominance order, thus they never belong
to the same chain of squeezings.

For negative α, problems arise for the same negative rational values dis-
cussed in Sec. (3.3.2). In [TERB11] it is shown that under a limit prescrip-
tion, every vanishing denominator is coupled with a vanishin numerator, such
that the coefficients are still finite numbers.

4.6 Normalization issues
The recursion laws derived in this chapter describe the decomposition of
Jacks on the pure monomial basis. But LLL is generated by multiples of
monomials. This is not a great issue, nevertheless it is useful to know the
decomposition on normalized N particles wavefunctions.

Jα
λ =

∑
µ≤λ

cµ,λmµ =
∑
µ≤λ

cµ,λ
1

Nµ

Nµmµ =
∑
µ≤λ

_
cµ,λ

_
mµ, (4.27)

where
_
cµ,λ = cµ,λ/Nµ are the coefficients of Jacks’ expansion over a differently

normalized monomial basis. See Sec. (2.3) for the right LLL normalization.
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Appendix A

Explicit calculations for
Chapter 3

In this Appendix explicit calculations for Sec. (3.4) will be performed. In the

following, let V =

(∏
k,l
k<l

(zk − zl)

)
be the Vandermonde determinant.

First, (zi∂i)Sα
λ′ is computed:

(zi∂i)(S
α
λ′) = (zi∂i) [V J

α
λ ] = V (zi∂i)(J

α
λ ) + Jα

λ (zi∂i)V. (A.1)

The first term is already in the required form, the second needs some work:

(zi∂i)

⎛⎜⎝∏
k,l
k<l

(zk − zl)

⎞⎟⎠ =

= zi
∏
k,l

k<l; k,l ̸=i

(zk − zl)∂i

⎡⎣∏
m

m<i

(zm − zi)
∏
m

i<m

(zi − zm)

⎤⎦

= zi
∏
k,l

k<l; k,l ̸=i

(zk − zl)

⎡⎢⎣∑
m

m ̸=i

∏
n<i(zn − zi)

∏
i<n(zi − zn)

zi − zm

⎤⎥⎦

=

⎡⎢⎣∑
m

m ̸=i

zi
zi − zm

⎤⎥⎦
⎛⎜⎝∏

k,l
k<l

(zk − zl)

⎞⎟⎠
=

⎡⎢⎣∑
m

m̸=i

zi
zi − zm

⎤⎥⎦V.

(A.2)
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Collecting and rearranging, one recovers V (zi∂i)J
α
λ as a function of Sα

λ′ :

V (zi∂i)(J
α
λ ) =

⎡⎢⎣(zi∂i)−∑
m

m ̸=i

zi
zi − zm

⎤⎥⎦Sα
λ′ . (A.3)

Another useful relation is prooven form Eq. (A.2):

∑
i,j
i ̸=j

(zi∂i)(S
α
λ′) =

∑
i

∑
j

j ̸=i

⎛⎜⎝V (zi∂i)J
α
λ +

⎡⎢⎣∑
m

m̸=i

zi
zi − zm

⎤⎥⎦Sα
λ′

⎞⎟⎠
=
∑
i

(N − 1)

⎛⎜⎝V (zi∂i)J
α
λ +

⎡⎢⎣∑
m

m̸=i

zi
zi − zm

⎤⎥⎦Sα
λ′

⎞⎟⎠
= (N − 1)

∑
i

(λBi )S
α
λ′ + (N − 1)

∑
i,m
m ̸=i

zi
zi − zm

Sα
λ′

=

(
(N − 1)|λB|+ 1

2
N(N − 1)2

)
Sα
λ′ .

(A.4)

Next, (zi∂i)2Sα
λ′ is computed, keeping in mind that the point is finding

V (zi∂i)
2Jα

λ as a function of Sα
λ′ .

(zi∂i)
2(Sα

λ′) = (zi∂i)((zi∂i)S
α
λ′)

= (zi∂i)

⎡⎢⎣V (zi∂i)J
α
λ +

∑
m

m ̸=i

zi
zi − zm

Sα
λ′

⎤⎥⎦
= (zi∂i)[V ](zi∂i)[J

α
λ ] + V (zi∂i)

2[Jα
λ ]

+ Sα
λ′(zi∂i)

⎡⎢⎣∑
m

m̸=i

zi
zi − zm

⎤⎥⎦+
∑
m

m ̸=i

zi
zi − zm

(zi∂i)[S
α
λ′ ].

(A.5)
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Using also Eq. (A.3) one finds:

V (zi∂i)
2(Jα

λ ) =

⎡⎢⎣(zi∂i)2 − 2
∑
m

m̸=i

zi
zi − zm

(zi∂i)

+ 2
∑
m

i ̸=m

z2i
(zi − zm)2

−
∑
m

m̸=i

zi
zi − zm

+
∑
m,n

i ̸=m ̸=n

z2i
(zi − zm)(zi − zm)

⎤⎥⎦Sα
λ′ .

(A.6)

Then, using the relations just computed:

Eα
λS

α
λ′ = Eα

λV J
α
λ = V Eα

λJ
α
λ = V Hα

LB(J
α
λ )

= V

⎡⎢⎣∑
i

(zi∂i)
2 +

1

α

∑
i,j
i<j

zi + zj
zi − zj

(zi∂i − zj∂j)

⎤⎥⎦ Jα
λ

=

⎡⎢⎢⎣∑
i

(zi∂i)
2 − 2

∑
i,m
m̸=i

zi
zi − zm

(zi∂i) + 2
∑
i,m
i ̸=m

z2i
(zi − zm)2

−
∑
i,m
m ̸=i

zi
zi − zm

+
∑
i,m,n

i ̸=m ̸=n

z2i
(zi − zm)(zi − zn)

⎤⎥⎥⎦Sα
λ′

+
1

α

⎡⎢⎢⎣12∑
i,j
i ̸=j

zi + zj
zi − zj

(zi∂i − zj∂j)

−
∑
i,j
i<j

zi + zj
zi − zj

⎛⎜⎝∑
m

m ̸=i

zi
zi − zm

−
∑
m

m̸=j

zj
zj − zm

⎞⎟⎠
⎤⎥⎦Sα

λ′ .

(A.7)

This is not the simplest form for the fermionic Laplace Beltrami opera-
tor. Using the manipulations described in the following pages, Eq. (A.9) to
Eq. (A.13), and in particular hiding all the constants in the eigenvalue, one
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finds the wanted expressions:

Hα
LB,F =

∑
i

(zi∂i)
2 +

1

2

(
1

α
− 1

)∑
i,j
i ̸=j

[
zi + zj
zi − zj

(zi∂i − zj∂j)− 2
z2i + z2j
(zi − zj)2

]
,

Eα
λ′ =

∑
λ′i

[
λ′i − 2

(
1

α
− 1

)
i

]
+

(
1

α
− 1

)
((N + 1)|λ′| −N(N − 1)) .

(A.8)

Third factor

2
∑
i,m
i ̸=m

z2i
(zi − zm)2

= 2
1

2

⎡⎢⎢⎣∑
i,j
i ̸=j

z2i + z2j
(zi − zj)2

⎤⎥⎥⎦ =

⎡⎢⎢⎣∑
i,j
i ̸=j

z2i + z2j
(zi − zj)2

⎤⎥⎥⎦ (A.9)

Fourth factor

−

⎡⎢⎢⎣∑
i,m
m ̸=i

zi
zi − zm

⎤⎥⎥⎦ = −1

2

⎡⎢⎢⎣∑
i,m
m ̸=i

zi
zi − zm

+
∑
i,m
m ̸=i

zm
zm − zi

⎤⎥⎥⎦

= −1

2

⎡⎢⎢⎣∑
i,m
m ̸=i

(1)

⎤⎥⎥⎦ = −
[
1

2
N(N − 1)

] (A.10)

Fifth factor⎡⎢⎢⎣ ∑
i,m,n

i ̸=m̸=n

z2i
(zi − zm)(zi − zn)

⎤⎥⎥⎦ =

=
1

3

⎡⎢⎢⎣ ∑
i,m,n

i ̸=m ̸=n

z2i (zm − zn) + z2n(zi − zm)− z2m(zi − zn)

(zi − zm)(zi − zn)(zm − zn)

⎤⎥⎥⎦

=
1

3

⎡⎢⎢⎣ ∑
i,m,n

i ̸=m ̸=n

(1)

⎤⎥⎥⎦ =

[
1

3
N(N − 1)(N − 2)

]
(A.11)

47



Seventh factor

− 1

α

⎡⎢⎣∑
i,j
i<j

zi + zj
zi − zj

⎛⎜⎝∑
m

m ̸=i

zi
zi − zm

−
∑
m

m ̸=j

zj
zj − zm

⎞⎟⎠
⎤⎥⎦Sα

λ′

= − 1

2α

⎡⎢⎢⎣∑
i,j
i ̸=j

zi + zj
zi − zj

⎛⎜⎝zi + zj
zi − zj

+
∑
m

m̸=i,j

zm(zj − zi)

(zi − zm)(zj − zm)

⎞⎟⎠
⎤⎥⎥⎦Sα

λ′

= − 1

2α

⎡⎢⎢⎣∑
i,j
i ̸=j

(zi + zj)
2

(zi − zj)2
−
∑
i,j,m

m ̸=i ̸=j

zi + zj
zi − zj

zm(zi − zj)

(zi − zm)(zj − zm)

⎤⎥⎥⎦Sα
λ′

= − 1

2α

⎡⎢⎢⎣∑
i,j
i ̸=j

z2i + z2j
(zi − zj)2

+
∑
i,j
i ̸=j

2zizj
(zi − zj)2

−
∑
i,j,m

m ̸=i ̸=j

zm(zi + zj)

(zi − zm)(zj − zm)

⎤⎥⎥⎦Sα
λ′

= − 1

2α

⎡⎢⎢⎣∑
i,j
i ̸=j

z2i + z2j
(zi − zj)2

+
∑
i,j
i ̸=j

z2i + z2j
(zi − zj)2

−2
∑
i,j
i ̸=j

zi
(zi − zj)

−
∑
i,j,m

m ̸=i ̸=j

zm(zi + zj)

(zi − zm)(zj − zm)

⎤⎥⎥⎦Sα
λ′

= − 1

2α

⎡⎢⎢⎣2∑
i,j
i ̸=j

z2i + z2j
(zi − zj)2

−N(N − 1)− 1

3

∑
i,j,m

m̸=i ̸=j

(−1)

⎤⎥⎥⎦Sα
λ′

= − 1

2α

⎡⎢⎢⎣2∑
i,j
i ̸=j

z2i + z2j
(zi − zj)2

−N(N − 1) +
1

3
N(N − 1)(N − 2)

⎤⎥⎥⎦Sα
λ′

(A.12)
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Second factor⎡⎢⎢⎣−2
∑
i,j
j ̸=i

zi
zi − zj

(zi∂i)

⎤⎥⎥⎦Sα
λ′ = −

⎡⎢⎢⎣∑
i,j
j ̸=i

zi
zi − zj

zi∂i −
∑
i,j
j ̸=i

zj
zi − zj

zj∂j

⎤⎥⎥⎦Sα
λ′

=

⎡⎢⎢⎣−∑
i,j
j ̸=i

zi
zi − zj

zi∂i +
∑
i,j
j ̸=i

zj
zi − zj

zj∂j

+
1

2

∑
i,j
j ̸=i

zizj(∂i − ∂j)

zi − zj
− 1

2

∑
i,j
j ̸=i

zizj(∂i − ∂j)

zi − zj

⎤⎥⎥⎦Sα
λ′

= −1

2

⎡⎢⎢⎣∑
i,j
i ̸=j

zi + zj
zi − zj

(zi∂i − zj∂j)

⎤⎥⎥⎦Sα
λ′

+
1

2

⎡⎢⎢⎣−∑
i,j
j ̸=i

zi
zi − zj

zi∂i +
∑
i,j
j ̸=i

zj
zi − zj

zj∂j +
∑
i,j
j ̸=i

zizj(∂i − ∂j)

zi − zj

⎤⎥⎥⎦Sα
λ′

= −1

2

⎡⎢⎢⎣∑
i,j
i ̸=j

zi + zj
zi − zj

(zi∂i − zj∂j)

⎤⎥⎥⎦Sα
λ′ − 1

2

⎡⎢⎢⎣∑
i,j
j ̸=i

(zi∂i + zj∂j)

⎤⎥⎥⎦Sα
λ′

= −1

2

⎡⎢⎢⎣∑
i,j
i ̸=j

zi + zj
zi − zj

(zi∂i − zj∂j)

⎤⎥⎥⎦Sα
λ′ −

∑
i,j
j ̸=i

(zi∂i)S
α
λ′

= −1

2

⎡⎢⎢⎣∑
i,j
i ̸=j

zi + zj
zi − zj

(zi∂i − zj∂j)

⎤⎥⎥⎦Sα
λ′ −

[
(N − 1)|λB|+ 1

2
N(N − 1)2

]
Sα
λ′

(A.13)
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Appendix B

Explicit calculations for
Chapter 4

B.1 Generic recurrence relations
Follows from Sec. (4.1):

Hfλ = H

[
Xλ

λbλ +
∑
µ<λ

Xλ
µbµ

]
= Xλ

λHbλ +
∑
µ<λ

Xλ
µHbµ

= Xλ
λ

[
Cλ

λbλ +
∑
µ<λ

Cλ
µbµ

]
+
∑
µ<λ

Xλ
µ

[
Cµ

µbµ +
∑
κ<µ

Cµ
κ bκ

]
= Xλ

λC
λ
λbλ +

∑
µ<λ

Xλ
λC

λ
µbµ +

∑
µ<λ

Xλ
µC

µ
µbµ +

∑
µ

µ<λ

∑
κ

κ<µ

Xλ
µC

µ
κ bκ

= Xλ
λC

λ
λbλ +

∑
µ<λ

(
Xλ

λC
λ
µ +Xλ

µC
µ
µ

)
bµ +

∑
κ

κ<λ

∑
µ

κ<µ<λ

Xλ
µC

µ
κ bκ

= Xλ
λC

λ
λbλ +

∑
κ<λ

(
Xλ

λC
λ
κ +Xλ

κC
κ
κ

)
bκ +

∑
κ

κ<λ

∑
µ

κ<µ<λ

Xλ
µC

µ
κ bκ

= Xλ
λC

λ
λbλ +

∑
κ<λ

⎡⎢⎣Xλ
λC

λ
κ +Xλ

κC
κ
κ +

∑
µ

κ<µ<λ

Xλ
µC

µ
κ

⎤⎥⎦ bκ
= Xλ

λC
λ
λbλ +

∑
κ<λ

⎡⎢⎣Xλ
κC

κ
κ +

∑
µ

κ<µ≤λ

Xλ
µC

µ
κ

⎤⎥⎦ bκ,
Eλfλ = Eλ

[
Xλ

λbλ +
∑
µ<λ

Xλ
µbµ

]
= EλX

λ
λbλ +

∑
κ<λ

EλX
λ
κ bκ.

(B.1)
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Matching term by term as bλ is a basis, one obtains the following recur-
rence relations for the X coefficients:

EλX
λ
λ = Xλ

λC
λ
λ ,

EλX
λ
κ = Xλ

κC
κ
κ +

∑
µ

κ<µ≤λ

Xλ
µC

µ
κ . (B.2)

Semplifications lead to the proper recurrence relation

Xλ
κ =

1

Eλ − Eκ

∑
µ

κ<µ≤λ

Xλ
µC

µ
κ . (B.3)

B.2 General form for triangular operators: Sec-
ond approach

Follows from Sec. (4.2.2). First H matrix elements are computed. For r > s
one has:

⟨r, s|H |m,n⟩ = ⟨r, s|
(m−n)/2∑

k=0

F
(m,n)
k |m− k, n+ k⟩

=

(m−n)/2∑
k=0

F
(m,n)
k ⟨r, s|m− k, n+ k⟩

=

(m−n)/2∑
k=0

F
(m,n)
k

1

2
δr,m−kδs,n+k,

(B.4)

and for r = s (only for the symmetric case, otherwise it’s 0):

⟨r, r|H |m,n⟩ = ⟨r, r|
(m−n)/2∑

k=0

F
(m,n)
k |m− k, n+ k⟩ =

(m−n)/2∑
k=0

F
(m,n)
k ⟨r, r|m− k, n+ k⟩

=

(m−n)/2∑
k=0

F
(m,n)
k

2

2
δr,m−kδs,n+k =

(m−n)/2∑
k=0

F
(m,n)
k δr,m−kδs,n+k.

(B.5)
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Now, Eq. (4.19) is computed:

H |λ⟩ = 1

2

∑
r,s,m,n

⟨r, s|H |m,n⟩ a†ra†sanam |λ⟩

=
1

2

∑
m

∑
n<m

∑
r,s

⟨r, s|H |m,n⟩ a†ra†sanam |λ⟩

+
1

2

∑
m

∑
n>m

∑
r,s

⟨r, s|H |m,n⟩ a†ra†sanam |λ⟩

+
1

2

∑
m

∑
r,s

⟨r, s|H |m,m⟩ a†ra†samam |λ⟩

=
1

2

∑
m

∑
n<m

∑
r,s

⟨r, s|H |m,n⟩ a†ra†sanam |λ⟩

+
1

2

∑
n

∑
m<n

∑
r,s

⟨r, s|H |n,m⟩ a†ra†saman |λ⟩

=
∑
m

∑
n<m

∑
r,s

⟨r, s|H |m,n⟩ a†ra†sanam |λ⟩

=
∑
m

∑
n<m

⎧⎨⎩1

2

∑
r>s

(m−n)/2∑
k=0

F
(m,n)
k δr,m−kδs,n+ka

†
ra
†
sanam

+
1

2

∑
s>r

(m−n)/2∑
k=0

F
(m,n)
k δs,m−kδr,n+ka

†
sa
†
ranam

B
+

(m−n)/2∑
k=0

F
(m,n)
k δr,m−kδr,n+ka

†
ra
†
ranam

⎫⎬⎭ |λ⟩

=
∑
m

∑
n<m

⎧⎨⎩∑
r>s

(m−n)/2∑
k=0

F
(m,n)
k δr,m−kδs,n+ka

†
ra
†
sanam

B
+ F

(m,n)
(m−n)/2a

†
ra
†
ranam

⎫⎬⎭ |λ⟩

=
∑
m

∑
n<m

⎧⎪⎨⎪⎩
(m−n)/2∑

k=0
k ̸=(m−n)/2

F
(m,n)
k a†m−ka

†
n+kanam

B
+ F

(m,n)
(m−n)/2a

†
ra
†
ranam

⎫⎪⎬⎪⎭ |λ⟩

=
∑
µ≤λ

F
(m,n)
k (±)NSW |µ⟩ ,

(B.6)

where:
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•
B
+ means that the factor is non zero only for bosons;

• in the second last line, for fermions one has no particular issue: in fact,
k = (m−n)/2 identifies an “improper” squeezing in which 2 particles are
created in the same state, and the additional term is zero. For bosons,
if (m − n)/2 isn’t integer the summation condition is automatically
satisfied and the additonal term is zero; if (m − n)/2 is integer, the
additional term replaces exactly the forbidden one in the summation;

• the last passage is made by recognising that a operators form squeezings
apart from a permutation of NSW exchanges.
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B.3 Antisymmetric Laplace-Beltrami on 2 vari-
ables slaters

Follows from Sec. (4.4). For this calculation, suppose n > p and let k = n−p:

V sl(n,p) =

[
x+ y

x− y
(x∂x− y∂y)− 2

x2 + y2

(x− y)2

]
(xnyp − xpyn)

=
xpyp

x− y

[
k∑

l=1

(x+ y)(xk + yk)− 2(x2 + y2)
k∑

l=1

xk−lyl−1
]

=
xpyp

x− y

[
k∑

l=1

(x+ y)(xk + yk)− (x2 + y2)
k∑

l=1

(
xk−lyl−1 + xl−1yk−l

)]

=
xpyp

x− y

k∑
l=1

[
(xl−1 − yl−1)(xk−l+2 − yk−l+2) + (xl − yl)(xk−ly − xyk−l)

]
= xpyp

k∑
l=1

[
(xk−l+2 − yk−l+2)

l−1∑
t=1

xl−1−tyt−1 + xt−1yl−1−t

2

]

+ xpyp
k∑

l=1

[
(xk−ly − xyk−l)

l∑
t=1

xl−tyt−1 + xt−1yl−t

2

]

=
1

2

k∑
l=1

l−1∑
t=1

[
sl(n−t+1,p+t−1) + sl(n−l+t+1,p+l−t−1)

]
+

1

2

k∑
l=1

l∑
t=1

[
sl(n−t,p+t) + sl(n−l+t−1,p+l−t+1)

]
=

n−p−2∑
l=0

(n− p− 1− l)sl(n−l,p+l) +

n−p∑
l=1

(n− p− 1− l)sl(n−l,p+l)

= (n− p− 2)sl(n,p) + 2

n−p−1∑
l=1

(n− p− l)sl(n−l,p+l)

= (n− p− 2)sl(n,p) + 2

(n−p)/2∑
l=1

(n− p− 2l)sl(n−l,p+l).

(B.7)
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