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1 Introduction

In this paper we will approach the eigenvalue problem of the Laplacian operator
in regular polygons. Apart from the mathematical significance that this problem
might have it is directly applicable to quantum mechanics as the main equation for
the problem is equivalent to the Schrödinger equation for a free particle stripped
of all constants. Such physical applications may find fruition in problems relating
to particle confinement. By imposing the polygonal boundary conditions, we re-
quire that the wave function be null outside the polygonal region, thus obtaining a
confined particle. For future reference, we state our problem to be:

Problem: To find the eigenvalues λN for the equation:

∆ψ = −λNψ (1.1)

restricted to an N sided regular polygon with Dirichlet boundary conditions.
The position and size of the N sided regular polygon is generally irrelevant:

a coordinate transformation will suffice to transform a solution into an other. In
some cases choosing particular polygons will be preferable, as some choices simplify
greatly the solution process. In each case that will be taken into consideration the
choice of polygon will be discussed profusely.

Unfortunately the goal we have set ourselves to solve is too ambitious for the
moment. In the past this problem has surfaced many times and in different contexts
and its solution has proven to be very elusive. Notwithstanding many different and
ingenious attempts no solution has yet been found and only approximations of λN
exist, both in terms of numerical estimates and power series of 1

N or other parame-
ters. It is worth noting that an exact solution has been found in three special cases:
the triangle (necessarily equilateral since we are considering regular polygons), the
square and the circle (which of course is not a polygon but is considered as a lim-
iting case as N → ∞). These exact solutions will also be discussed in detail in the
following pages.

Recent attempts at a solution (starting from the ’90s) have confirmed a pattern
found by many authors which shows a dependency of the coefficients of the series
expansion (in terms of 1

N ) of the eigenvalues on the Riemann Zeta function. What
is most surprising is the specific relationship that has been found between the Zeta
function and the series expansion: when the transformation is from the unit circle
to the polygon with the same area, only powers of 1

N that may be expressed as
the sum prime numbers greater than two are present and each expansion term is
proportional to the product of Zeta functions of those prime numbers that sum up
to the order of the expansion term. Given this relationship, some authors offer a
solution based on the conjecture of continuing regularity in all terms.
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CHAPTER 1. INTRODUCTION

Different solutions have been attempted which have covered several areas of
mathematics but most of them approach this problem perturbatively from the case
of the circle. Two such solutions will be discussed in this paper: one based on
Schwartz-Christoffel Mappings and one on the Calculus of Moving Surfaces. The
former, introduced by L. G. Molinari in 1997 [24], involves the construction of a
complex mapping function through the Schwartz-Christoffel transform, a mathe-
matical tool used to build mappings from certain compact domains in the complex
plane to others (further explanation will be given in due time). By constructing
such a mapping L. G. Molinari is then able to express the eigenvalue as a series
expansion, relating each expansion term to a summation over Bessel functions. By
usage of numerical computations L. G. Molinari is then able to give an approxi-
mate result. The second approach to be discussed is that by P. Grinfeld and G.
Strang, developed between 2004 and 2012 [9,10] and, afterwards also M. Broady [1]
in 2013 which relies on the Calculus of Moving Surfaces. The Calculus of Moving
Surfaces is a subbranch of Differential Geometry which deals with time dependent
imbedded manifolds. This formalism was developed over a century ago in 1903
by French mathematician Jacques Hadamard [11] in the context of fluid dynamics.
Later, in 2012 the theory was improved upon by P. Grinfeld [7] with the definition
of a proper invariant time derivative ∇̇. His solution is based on the construction
of a continuous transformation from the integrable case of the circle to that of a
polygon. P. Grinfeld constructs a homotopy between the circle and the polygons,
after which, by virtue of the Calculus of Moving Surfaces he is able to relate the
variation of the eigenvalue to an expansion of the homotopy in terms of the affine
parameter (corresponding to the time of the Calculus of Moving Surfaces).

Other solutions which are not to be discussed in this paper are based on nu-
merical methods. Such is the solution given by R. S. Jones in 2017 [13] which
instead focuses on the above mentioned conjecture of regularity. Having already
numerically calculated the eigenvalues with great precision [14], R. S. Jones offers
the coefficients for the expansion terms first through a linear regression, after which
he applies the Lenstra Lenstra Lovász algorithm [21] for rational factorization to
compute the closest rational coefficients for his expansion.

As will be discussed, it has been proven that in the case of transformation from
a circle to a polygon with the same area the first terms

(
up to 1

N2

)
in the expansion

are removed. Including R. S. Jones’ work, which adds the seventh and eighth term
to the expansion [13], for polygons with area π the known terms of the series for
the ground state eigenvalue are:

λN = λ0

(
1 +

4ζ(3)

N3
+

(12− 2λ0) ζ(5)

N5
+

(8 + 4λ0) ζ(3)
2

N6
+(

36− 12λ0 − 1
2λ

2
0

)
ζ(7)

N7
+

(
48 + 8λ0 + 2λ20

)
ζ(5)ζ(3)

N8

)
(1.2)

λ0 being the ground state eigenvalue for a circle.
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2 Exact solutions

As anticipated the problem may not in general be solved exactly. There are a few
instructive cases however for which the eigenvalue may be found. Among these
cases, there are those of the equilateral triangle, the square and the circle. One
may try to explain why these cases would be much easier than those not solved.
One of the characteristics that these polygons have is that they are the only ones
(excluding the circle) that may tessellate completely the euclidean plane. Classically
this condition allows for a complete solution, as the particle may be thought of as
moving in a straight line on the tessellated plane. It is important to note that the
hexagon also offers a tessellation of the plane but by reflecting it through all of its
sides one finds two different coverings of the plane. Because of this it is not possible
to find a complete solution for the hexagon. As is the case for the classical problem,
also in the quantum mechanical problem some solutions of the hexagon may be
expressed in terms of the solutions for the equilateral triangle. These solutions
however do not constitute the whole spectrum and in particular, they do not include
the ground state solution. To prove this result the oscillation theorem may come to
mind; this theorem however is not applicable as it requires that the problem be one
dimensional. An extension of this theorem to multiple dimensions exists and may
be applied to this problem. This extension is known as “Courant’s nodal domain
theorem” [3], and is discussed in the next section. Following a brief discussion on the
general properties of the Laplacian solutions, we will discuss the exact solutions for
the above mentioned polygons, in increasing order of complexity: first the square,
then the circle and lastly the triangle. What makes the first two cases considerably
less difficult than the last is the fact that symmetry in the boundary conditions
is directly exploited by the correct choice of coordinates, namely, the Cartesian
coordinates for the square case and the polar coordinates for the circle case. With
these choices the Laplacian eigenvalue equation becomes separable and the solution
may be found directly. The case of the triangle is a little trickier because, for it
to be solved, its symmetry properties must be exploited by other means which are
necessarily less evident and require some ingenuity. A couple of solutions for the
triangle will be reported in the paper.

2.1 General properties of the Laplacian eigenfunctions
and eigenvalues

Two geometrical properties of the Laplacian will be discussed in the following. The
first will be the above mentioned Courant nodal domain theorem. This theorem
will be used to substantiate the claim that it is not possible to build the ground
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CHAPTER 2. EXACT SOLUTIONS

state solution of the Laplacian in a regular hexagon from solutions of an equilateral
triangle. Although in its modern formulation [2] the theorem is very general (I.
Chavel provides a prood for Dirichlet, Von Neumann and mixed boundary eigen-
value problems in Riemannian Manifolds) in this paper we will discuss only the
case relevant to the Dirichlet boundary conditions, and we will assume functions
to be infinitely smooth. The second geometrical property to be discussed will be
the Faber-Krahn inequality, concerning the magnitude of the eigenvalues of the
Laplacian on the basis of the shape of the domain.

2.1.1 Courant’s nodal domain theorem

Courant’s nodal domain theorem is a generalization to higher dimensions of the
oscillation theorem for the Laplacian eigenvalue problem. For future reference, we
recall the oscillation theorem [19]:

Theorem 1 (Oscillation). The function ψn(x) corresponding to the (n+ 1)th eigen-
value En (the eigenvalues being arranged by order of magnitude) vanishes n times
for finite values of x.

The nodal theorem was proved by Richard Courant and first published in the
famous book authored with David Hilbert in 1924 [3] on Mathematical Physics.
While in one dimension it is possible to characterize solutions based on the num-
ber of roots the eigenfunction has, in multiple dimensions the attention is shifted
towards connected subsets of the domain of the eigenfunction, enclosed by nodal
lines. In particular we give the following definition [2]:

Definition 1. Let f : M → R ∈ C0, M being an orientable n-dimensional Rie-
mannian manifold. Then the nodal set of f is the set f−1[0] and a nodal domain is
a connected component of M \ f−1[0].

Generalizing this theorem to higher dimensions inevitably is the source of an
inconvenient drawback: in more than one dimensions it is not possible to uniquely
identify a solution based on the number of nodal domains present. The theorem
only offers an upper limit. This however is sufficient for our intent to prove that
it is not possible to build the ground state solution for the Laplacian in a regular
hexagon by assembling solutions of the equilateral triangle. Specifically the theorem
states [2]:

Theorem 2 (Courant’s nodal domain theorem). Let λ1 ≤ λ2 ≤ λ3 . . . be the
list of eigenvalues of the Laplacian operator and {φ1, φ2, φ3, . . . } be a complete
orthonormal basis of L 2 (M) (M being, as before, an orientable n-dimensional
Riemannian manifold) with each φj eigenfunction of λj for j = 1, 2, 3, . . . . Then
the number of nodal domains of φk is less than or equal to k for all k = 1, 2, 3, . . . .

Since we are looking for the solution with the least possible eigenvalue λ1,
Courant’s theorem states that the eigenfunction will have exactly one nodal domain.
Because any solution for the hexagon derived from a solution of the equilateral tri-
angle will have at least six nodal domains, we can conclude that the ground state
solution of the hexagon may not be built by assembling solutions of the equilateral
triangle.
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CHAPTER 2. EXACT SOLUTIONS

A proof of the theorem will be offered in the following, however a few results must
be recalled before. Most of what follows is taken directly from [2]. The theorem is
very general, however we only need to prove it for manifolds that are subsets of R2

and infinitely continuous functions. Moreover we will focus on: the problem with
Dirichlet boundary conditions and connected manifolds, with compact closures and
nonempty piecewise C∞ boundaries (which we will refer to as normal domains).
There are three main results needed to be recalled for the theorem: Rayleigh’s
theorem, the “max-min” method and the unique continuation theorem. Further
on, unless otherwise noted, scalar products (and norms) will be those of L 2 (Rm).
We start by defining the space of admissible function H (M) as the completion of C∞

functions compactly supported onM . We will restrict our search for eigenfunctions
in this space. We simplify the notation by introducing the Dirichlet integral:

D [f, h] := ⟨∇f,∇h⟩

Theorem 3 (Rayleigh’s theorem). We are given a normal domain with the Dirich-
let eigenvalue problem having the function space H(M) and eigenvalues

λ1 ≤ λ2 ≤ λ3 . . . (2.1)

where each eigenvalue is repeated the number of times equal to its multiplicity. Then
for any f ∈ H(M), f ̸= 0:

λ1 ≤
D [f, f ]

∥f∥2

(where ∥·∥ is the norm in L 2 (M)) with the equality if and only if f is an eigen-
function of λ1. If {φ1, φ2, φ3, . . . } is a complete orthonormal basis of L 2 (M) such
that φj is an eigenfunction of λj for each j = 1, 2, 3, . . . then for f ∈ H (M) , f ̸= 0
such that:

⟨f, φ1⟩ = ⟨f, φ2⟩ = ⟨f, φ3⟩ = · · · = ⟨f, φk−1⟩ = 0 (2.2)

we have the inequality:

λk ≤ D [f, f ]

∥f∥2

with equality if and only if f is an eigenfunction of λk

Proof. For f, h ∈ H (M), by Green’s first identity we have:∫
M

(h∆f + (∇h) (∇f)) dV = 0

⟨h,∆f⟩+ ⟨∇h,∇f⟩ = 0

D [h, f ] = −⟨h,∆f⟩

Let f ∈ H (M), set:

αj = ⟨f, φj⟩
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CHAPTER 2. EXACT SOLUTIONS

for k > 1, (2.2) is equivalent to setting α1 = α2 = · · · = αk−1 = 0. Hence for all
k = 1, 2, . . . and r = k, k + 1, . . . we have:

0 ≤ D

⎡⎣f −
r∑

j=k

αjφj , f −
r∑

j=k

αjφj

⎤⎦
= D [f, f ]− 2

r∑
j=k

αjD [f, φj ] +

r∑
j=k,l

αjαlD [φj , φl]

= D [f, f ] + 2
r∑

j=k

αj ⟨f,∆φj⟩ −
r∑

j=k,l

αjαl ⟨φj ,∆φl⟩

= D [f, f ]−
r∑

j=k

λjα
2
j

Hence
∑r

j=k λjα
2
j is finite. Furthermore we have:

D [f, f ] ≥
r∑

j=k

λjα
2
j ≥ λk

r∑
j=k

α2
j = λk ∥f∥2

which proves the theorem.

When proving the nodal domain theorem, the Rayleigh theorem will be use to
provide a lower bound to the eigenvalue of a function. An upper bound is found by
the “max-min theorem”. The procedure of identifying a function by finding upper
and lower bounds is the “max-min method”.

Theorem 4 (max-min). Given v1, v2, v3, . . . , vk−1 ∈ L 2 (M) let:

µ = inf
f∈H(M)

D [f, f ]

∥f∥2

where f ∈ H (M) and f is orthogonal to vj for j = 1, 2, 3, . . . , k − 1 then for
eigenvalues given by (2.1),

µ ≤ λk

where the equality holds if vj are the first k − 1 orthonormal eigenfunctions.

Proof. Let f ∈ H (M) be:

f =
k∑

j=1

αjφj

where φj for j = 1, 2, 3, . . . , k are the first k eigenfunctions. The orthogonality
conditions implies that:

0 =

k∑
j=0

αj ⟨φj , vl⟩ , l = 1, 2, 3, . . . , k − 1

6



CHAPTER 2. EXACT SOLUTIONS

If we think of αj as the variables and the scalar products as the coefficients, this
condition gives rise to k− 1 equations of k variables, which implies that there must
be nontrivial solutions. Hence:

µ ∥f∥2 ≤ D [f, f ] =

k∑
j=1

λjα
2
j ≤ λk

k∑
j=1

α2
j = λk ∥f∥2

which implies that, µ ≤ λk.

The unique continuation theorem will not be proven, however it states that [12]:

Theorem 5. If any solution f ∈ H (M) of the Laplacian eigenvalue equation van-
ishes on a nonempty open subset of a connected domain, then f is identically zero
on the domain.

We now sum everything up and with a coup de grâce give a proof of Courant’s
theorem.

Proof. We will prove the theorem by a reductio ad absurdum. Let φk be an Laplacian
eigenfunction with eigenvalue λk. Let D1, D2, . . . , Dk, Dk+1, . . . be nodal domains
of φk. Define the functions:

ψj =

{
φk x ∈ Dj

0 x /∈ Dj

j = 1, 2, 3, . . . , k

Again, we look for a function f =
∑k

j=1 αkψj , f ̸= 0 such that f is orthogonal to
the first k − 1 eigenfunctions of the Laplacian. This can be done in the same way
as we did above, by constructing a system of equations with more variables than
conditions. Furthermore each function ψj is itself a solution to the eigenfunction
problem. Because f is orthogonal to the first k − 1 eigenfunctions we may apply
Rayleigh’s theorem. We then have that:

λk ≤ D [f, f ]

∥f∥2

However, by the max-min theorem we have that:

inf
f∈H(M)

D [f, f ]

∥f∥2
≤ λk

These last two inequalities imply that:

D [f, f ]

∥f∥2
= λk

Which is equivalent to stating that f is an eigenfunction of the Laplacian operator
with eigenvalue λk:

D [f, f ] = λk ∥f∥2

⟨∆f, f⟩+ ⟨λkf, f⟩ = 0

⟨∆f + λkf, f⟩ = 0

Because f ̸= 0, and the choice of f is general, the first term in the scalar product
must be zero. However, by its construction f is identically zero in all the nodal sets
Dk+1, Dk+2, . . . , so by the unique continuation theorem f is identically zero. This
contradicts our choice of f .
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CHAPTER 2. EXACT SOLUTIONS

2.1.2 Faber-Krahn inequality

Proved independently by G. Faber an E. Krahn in the same years of the publication
of R. Courant and D. Hilbert’s book, [5,15], the Faber-Krahn inequality states that,
in any number of dimensions, for a fixed volume (or measure), the magnitude of
the ground state eigenvalue of the Laplacian operator will be minimized on a ball.
Specifically [28]:

Theorem 6 (Faber-Krahn inequality). Let D ⊂ Rn be a bounded domain and let
B be the ball centered at the origin with Vol (D) = Vol (B). Let λ1 (B) , λ1 (D) be
the ground state eigenvalues of the Laplacian in the domains B and D respectively.
Then λ1 (B) ≤ λ1 (D) with equality if and only if D = B almost everywhere.

Modern proofs of the theorem (including [28]) rely on Courant’s nodal domain
theorem. We will not provide a proof of this theorem, however, for regular polygons,
the first term of the eigenvalue expansion 1.2 is positive, thus reflecting the Faber-
Krahn inequality. Furthermore, it is known that for any N ∈ N there exists a N
sided polygon minimizing the eigenvalue however it has only been conjectured [27]
that this is the regular one. A few attempts have been made to prove this conjecture
but none have been successful yet. Some, including [26] by Carlo Nitsch however,
have elucidated the problem by finding previously unknown inequalities that may
be used by posterity to prove the full conjecture.

2.2 The square

The square is certainly the easiest of the three exactly solvable cases. The optimum
choice of orientation for the square is with the sides parallel to the axes. This choice
makes equation (1.1) separable, allowing for a solution on each direction (x and y).
The problem becomes one dimensional and its solution is a matter of elementary
quantum mechanics (or elementary differential equations). Imposing the boundary
conditions x, y ∈

[
−L

2 ,
L
2

]
the solution is, for η = x, y:

ψη(η) =

√
2

L
sin

(
kηπ

L

(
η − L

2

))
(2.3)

Where kη is an integer and represents the principal quantum number of the excited
state and L is the side length chosen for the square. Then for each kx, ky the
eigenvalue is:

λkx, ky =
(π
L

)2 (
k2x + k2y

)
Notice that an exchange between the values of kx and ky maintains the same eigen-
value, so our solutions will be at least doubly degenerate if kx ̸= ky. Also in general
the sum of the squares of two different pairs of integers may be the same (e.g.
52 + 52 = 12 + 72) so the degeneracy for some pairs of principal quantum numbers
is even greater.
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CHAPTER 2. EXACT SOLUTIONS

2.3 The circle

The case of a circular boundary requires a little bit more attention. In polar coor-
dinates the Laplacian eigenvalue equation may be expressed as:

∆ψ =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
ψ = −λψ (2.4)

The symmetry in the boundary conditions suggests a possible solution in terms of
a product of eigenfunctions for the angular and radial part, i.e. ψ(r, θ) = R(r)Θ(θ).
With this substitution equation (2.4) becomes:

∆ψ =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
R(r)Θ(θ) = −λR(r)Θ(θ)

Separating the equations by virtue of the introduced constant k we write:⎧⎪⎪⎨⎪⎪⎩
∂2

∂θ2
Θ(θ) + k2Θ(θ) = 0

∂2

∂r2
R(r) +

1

r

∂

∂r
R(r) +

(
λ− k2

r2

)
R = 0

the first equation is elementary and the second is (up to the variable transformation
r → z

ρ , ρ
2 = λ) the well known Bessel equation. It is important to note that k

must be chosen to be an integer. This condition ensures 2π periodicity of ψ (r, θ)
in θ. These functions were first discovered by Daniel Bernoulli (1700-1782) in the
context of hanging chains, but were later generalized and adopted by Friedrich
Wilhelm Bessel (1784–1846) in his studies of planetary motion [30]. Their solution
is well known and may be derived using Frobenius’ method. The solutions are
organized in two categories and are:

Jk(x) =

∞∑
m=0

(−1)m

m!Γ (m+ k + 1)

(x
2

)2m+k

Yk(x) =
Jk(x) cos(kπ)− J−k(x)

sin(kπ)

respectively called Bessel equations of the first and the second kind. Because
the latter are not regular in the origin they must be discarded. The infinitely many
roots of the Bessel functions may be numerically calculated. Let ρ(n,k) be the n-th
root of the k-th Bessel function of the first kind. The general, unnormalized solution
for the eigenfunction to the Laplacian in a unit circle is then:

ψn,k(r, θ) = Jk(ρ
(n,k)r)e±ikθ

Some useful identities that will be used in a later section are now derived. Having
reduced the two-dimensional problem into a one-dimensional one, if we seek the
fundamental solution we may apply the oscillation theorem 1 which imposes that
we take k = 0 as, for k ̸= 0 the radial part of the wave function is zero in the

9



CHAPTER 2. EXACT SOLUTIONS

(a) Bessel functions of the first kind (b) Bessel functions of the second kind

Figure 2.1: First Bessel functions

origin. Obviously then we must also take the first root: ρ(0,0). Hence the ground

state eigenvalue is λ0 =
(
ρ(0,0)

)2
corresponding to the wave function:

ψ0,n(r, θ) = NJ0(ρ
(0,0)r) = N

∞∑
m=0

(−1)m

m!Γ (m+ 1)

(
ρ(0,0)r

2

)2m

(2.5)

Where N is the normalization factor. It can be shown that the normalized ψ0,n is:

ψ0,n(r, θ) =
J0(ρ

(n,0)r)
√
πJ1(ρ(n,0))

Furthermore, using equation (2.5):

∂

∂r
ψ0,n(r, θ) = −ρ

(n,0)J1(ρ
(n,0)r)

√
πJ1(ρ(n,0))

=⇒ ∂

∂r
ψ0,n(1, θ) = −ρ

(n,0)

√
π

(2.6)

∂2

∂r2
ψ0,n(r, θ) = −

(
ρ(n,0)

)2 (
J0(ρ

(n,0)r)− J1(ρ(n,0)r)

(ρ(n,0)r)

)
√
πJ1(ρ(n,0))

=⇒ ∂2

∂r2
ψ0,n(1, θ) =

ρ(n,0)√
π

These last two results will prove to be useful when we will seek an approximation
of the eigenvalue through the Calculus of Moving Surfaces.

2.4 The equilateral triangle

The case of the equilateral triangle is certainly the most interesting among the three
exact solutions. This problem first appeared in the contexts of heat diffusion and
elasticity, and its first solution is accredited to G. Lamé in 1861 [17,18]. There are
many different modern approaches to the solution of the problem, which exploit
different properties of the symmetrical nature of the boundary. The most ingenious
of these is certainly that of H. R. Krishnamurthy, H. S. Mani and H. C. Verna
published in 1982 [16]. Krishnamurthy’s solution is based on a coordinate transfor-
mation mapping the problem of a single particle in an equilateral triangle to that
of three fermionic point masses restricted to a segment. Given that the latter is
easily solvable, a solution for the triangle is obtained. Another elegant solution is
given by B. J. McCartin [23], whose solution is an improvement from the original

10



CHAPTER 2. EXACT SOLUTIONS

by G. Lamé. To fully understand the spectrum of the solutions it is instructive
to consider N. Stambaugh and M. Semon’s work [31], which offers great insight on
the eigenfunctions, and in particular on their classification based on their trans-
formations when acted upon by C3v: the group of transformations that transform
the equilateral triangle into itself. Although it won’t be discussed thoroughly, Li’s
work [22] is notable as he is able to find a complete list of solutions from the sym-
metry properties alone. There are many other possible solutions to the problem,
such as that by W. Gaddah [6] which is based on gauge transformations of the
fundamental equation, however, for brevity’s sake these will not be reported.

2.4.1 Three particles solution

In their paper, Krishnamurthy et al. [16], attempt a solution of the problem of a
free particle in an equilateral triangle in the context of a different similar problem:
that of finding the exact solution for a free particle inside a tetrahedron. In their
solution, which follows from a discussion of the problem of N particles on a segment,
they are able to relate the problem of a single particle in an equilateral triangle to
that of three hard cores (as they call them) on a segment. If these are considered
to be fermionic (in that their wave function is antisymmetric by pair exchange) and
noninteracting, the wave function may be expressed as a Slater determinant of wave
functions such as (2.3). However, to simplify the expression, rather than considering
trigonometric functions, Krishnamurthy suggests considering periodic boundaries
and expressing the wave function as a complex exponential. The segment is also
dilated to a length of 2π. The wave function then becomes:

ψn1, n2, n3 (θ1, θ2, θ3) = N

⏐⏐⏐⏐⏐⏐
exp(in1θ1) exp(in1θ2) exp(in1θ3)
exp(in2θ1) exp(in2θ2) exp(in2θ3)
exp(in3θ1) exp(in3θ2) exp(in3θ3)

⏐⏐⏐⏐⏐⏐ (2.7)

N being the normalizing factor. Furthermore, without loss of generality we can
take: ⎧⎪⎨⎪⎩

θ1 ≥ θ2

θ2 ≥ θ3

θ3 + 2π ≥ θ1

(2.8)

In their paper Krishnamurthy at al. find a transformation which they show maps
the problem of three fermionic particles to one particle confined to an equilateral
triangle. This transformation may follow from the attempt to transform (2.8) into
the boundary conditions for an equilateral triangle. The triangle they choose is

that of vertices (0, 0), (
√
2π,
√

2
3π), (0, 2π). Let Y1, Y2, Y3 be the transformed

coordinates. Let Y1, Y2 span the plane containing the equilateral triangle. Then,
the boundary conditions become:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Y1 ≥ 0

Y1 ≥
√
3Y2

Y1√
2
≤ 2π −

√
3

2
Y2

(2.9)
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Suppose we wish to transform in the order given the boundary equations (2.8)
into the equations (2.9). We wish to impose conditions on a general matrix M ∈
GL(3,R) such that the boundary conditions transform as stated. Specifically, let:⎛⎝ θ1

θ2
θ3

⎞⎠ =

⎛⎝ a b c
d g h
e f i

⎞⎠⎛⎝ Y1
Y2
Y3

⎞⎠
The invertibility of the transformation will be checked after the boundary conditions
are imposed. It is immediate to see, that, for the correct variables to appear in the
transformed equations it must be that b = g, c = h = i. The first equation does not
give any sort of condition on the value of the parameters ofM if not that a−d > 0.
Matching the second and third equations in the boundary conditions we see that:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f − b

d− e
=

√
3

e− a =
1√
2

f − b = −
√

3

2

from which it immediately follows that d − e = − 1√
2
. These conditions do not

uniquely identify a solution so we must impose further conditions. Krishnamurthy
chooses to pick c = 3−

1
3 , b = 6−

1
2 and e = 0. These choices stem from an interme-

diate transformation which he defines for the general case of N cores. With these
choices it follows that:

M =

⎛⎜⎜⎝
1√
2

1√
6

1√
3

− 1√
2

1√
6

1√
3

0 −
√

2
3

1√
3

⎞⎟⎟⎠ , M−1 =

⎛⎜⎜⎝
1√
2

− 1√
2

0

1√
6

1√
6

−
√

2
3

1√
3

1√
3

1√
3

⎞⎟⎟⎠
The wave function (2.7) under such transformation becomes:

ψn1, n2, n3 (Y1, Y2, Y3) =

= N

⏐⏐⏐⏐⏐⏐⏐⏐⏐
exp

(
in1

(
Y1√
2
+ Y2√

6
+ Y3√

3

))
exp

(
in1

(
− Y1√

2
+ Y2√

6
+ Y3√

3

))
exp

(
in1

(
−2Y2√

6
+ Y3√

3

))
exp

(
in2

(
Y1√
2
+ Y2√

6
+ Y3√

3

))
exp

(
in2

(
− Y1√

2
+ Y2√

6
+ Y3√

3

))
exp

(
in2

(
−2Y2√

6
+ Y3√

3

))
exp

(
in3

(
Y1√
2
+ Y2√

6
+ Y3√

3

))
exp

(
in3

(
− Y1√

2
+ Y2√

6
+ Y3√

3

))
exp

(
in3

(
−2Y2√

6
+ Y3√

3

))
⏐⏐⏐⏐⏐⏐⏐⏐⏐

= Ne
i
(
(n1+n2+n3)

Y3√
3

)
⏐⏐⏐⏐⏐⏐⏐⏐

1 1 1

exp
(
i(n2 − n1)

(
Y1√
2
+ Y2√

6

))
exp

(
i(n2 − n1)

(
− Y1√

2
+ Y2√

6

))
exp

(
i(n2 − n1)

(
−2Y2√

6

))
exp

(
i(n3 − n1)

(
Y1√
2
+ Y2√

6

))
exp

(
i(n3 − n1)

(
− Y1√

2
+ Y2√

6

))
exp

(
i(n3 − n1)

(
−2Y2√

6

))
⏐⏐⏐⏐⏐⏐⏐⏐
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We now suppress the coordinate Y3 along with its quantum number. This variable
represents the position of the center of mass of the points. The wave function then
simplifies to:

ψml(Y1, Y2) =

Ñ

⏐⏐⏐⏐⏐⏐⏐⏐
1 1 1

exp
(
im
(

Y1√
2
+ Y2√

6

))
exp

(
im
(
− Y1√

2
+ Y2√

6

))
exp

(
im
(
−2Y2√

6

))
exp

(
i(l +m)

(
Y1√
2
+ Y2√

6

))
exp

(
i(l +m)

(
− Y1√

2
+ Y2√

6

))
exp

(
i(l +m)

(
−2Y2√

6

))
⏐⏐⏐⏐⏐⏐⏐⏐

(2.10)

Which is the desired solution to the eigenfunction problem. The eigenvalue is1:

λ =
4

9

(
l2 +m2 + lm

)
(2.11)

2.4.2 Direct solution

However quick and elegant may the previous solution be, it does not offer much
insight into the solutions of the problem. For this, a more direct solution, like
the one given by B. J. McCartin [23] is useful. He solves the problem directly
and his solution starts from the beginning of G. Lamé’s work. It is interesting
to compare B. J. McCartin’s work to that of N. Stambaugh and M. Semon. [31]
whose paper offers much insight into the symmetrical nature of the solutions. More
specifically, Stambaugh considers the two dimensional representation of C3v the
group associated with the symmetries of the equilateral triangle. Such a group is
often called the dihedral group of order 6 and may also be referred to as D3 or
D6. As the Hamiltonian (inclusive of the boundary conditions) commutes with the
elements of the 2D representation of this group, the action of an element of the
group on a solution of the equation (1.1) produces a solution (possibly the same)
to the same Hamiltonian. The group elements may be represented by operators on
the Hilbert space concerning the problem: if Γ(g) is a representation of an element
g ∈ C3v and ψ(x, y) is an L 2 function in an equilateral triangle then we define
the action of the operator ĝ in ψ to be ĝψ(x, y) = ψ(Γ(g−1)(x, y)). Because these
operatorial representations commute with the Hamiltonian solutions are mapped to
solutions. Stambaugh’s focus is on finding relationships between solutions behaving
differently under the action of the operatorial representation of C3v.

The two dimensional representation of the group C3v may be considered as
generated by three elements: the identity E, a 2π

3 counterclockwise rotation σ and
a reflection through one of the axes of the triangle µ. Without loss of generality
we may consider an equilateral triangle centered in the origin with a vertex on
the positive x axis. We may consider µ to be a reflection about such axis. All
of the other transformations may be constructed from these. All products and
commutators may be constructed from the following equalities:

µσ = σ−1µ, σ3 = E, µ2 = E

1In their paper in the last line of the matrix (2.10) they do not set l+m as a quantum number
in the exponent but rather they leave it as l. We chose to put the sum of the quantum number in
order to make the eigenvalue (2.11) the same as the one calculated in the next section.
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❍❍❍
❍❍❍µ̂
σ̂

Symmetric Asymmetric

Symmetic A1 E1

Antisymmetric A2 E2

Table 2.1: Symmetry classes of the Laplacian eigenfunctions in an equilateral tri-
angle

(a) Symmetric on reflection (b) Antisymmetric on reflection

(c) Symmetric on reflection (d) Antisymmetric on reflection

Figure 2.2: Rotationally symmetric and asymmetric patterns on an equilateral
triangle.

The 2D representations of the elements µ and σ are then:

Γ3(σ) =
1

2

(
−1 −

√
3√

3 −1

)
, Γ3(µ) =

(
1 0
0 −1

)
As anticipated Stambaugh focuses on the operatorial representation. Consider for
example the rotation σ̂. There are three possibilities of outcome when this operator
is applied to a function ψ. It may be that σ̂ψ = ±ψ, in which case we say that
ψ is either symmetric or antisymmetric or that it is not an eigenfunction in which
case we say that ψ is asymmetric. Furthermore, it is possible to eliminate the
antisymmetric case as σ3 = E implies that, given a function f :

f = σ̂3f = −f

hence f must be zero everywhere. In the same way, we may divide the set of
σ̂-symmetric functions by their result when acted upon by µ̂: they can either be
symmetric, antisymmetric or asymmetric. In this case it is possible to remove the

14
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(u, v, w) = (r, r,−2r) (u, v, w) = (r,−2r, r)

(u, v, w) = (−2r, r, r)

Pu

v w

Figure 2.3: Triangular coordinate system

asymmetric case as, if f is µ̂-asymmetric we may define the two functions:

f+ = f + µ̂f

f− = f − µ̂f

Which are µ̂-symmetric and µ̂-antisymmetric respectively, and their sum is 2f . The
same sort of classification may be constructed with σ̂ asymmetric functions. We
then have divided all of the solutions in four categories based on their symmetry
properties when acted upon by C3v. We shall refer to these symmetry classes as
noted in table 2.1.

As a visual aid for the symmetry classes, consider figures 2.2. These do not rep-
resent functions but patterns that respect the symmetric properties of A1, A2, E1

and E2. Once a solution is found, others may be generated. The simplest way to
do so is by tessellation. Stambaugh shows two ways to tessellate the equilateral tri-
angle, resulting in different outcomes. Stambaugh calls these solutions harmonics.

Having categorized the solutions to the equation (1.1) we may start to look for a
solution in algebraic form. Arguing as the original paper by Lamé, McCartin starts
with a coordinate transformation, mapping the Cartesian coordinates (x, y) to what
he calls triangular coordinate (u, v, w). The value of these is defined as the distance
from the center of the projections on the altitudes. Consider figure 2.3 as a reference.
Let the positive direction of each coordinate be assigned as the one directed away
from the vertex. This way, if r is the inradius, each vertex is some permutation
of −2r, r, r. This way the boundary conditions are easily verified. With this
coordinate transformation and with an ansatz of variable separation, McCartin
finds two general solutions to (1.1), one symmetric and one antisymmetric in the
exchange of the pair v ↔ w. He then proceeds to manually impose the boundary
conditions, following which he is able to express the eigenvalue. His expression for
the eigenvalue agrees with that found by Krishnamurthy. His solution, translated

to an equilateral triangle with vertices (0, 1), (−1
2 ,

√
3
2 ), (−1

2 ,−
√
3
2 ) and expressed

15
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in x, y coordinates reads:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ψs
n,m(x, y) = sin

(
1
3πm(2− 2y)

)
cos
(
2πx(m+2n)

3
√
3

)
+ sin

(
1
3πn(2− 2y)

)
cos
(
2πx(−2m−n)

3
√
3

)
− cos

(
2πx(m−n)

3
√
3

)
sin
(
1
3π(2− 2y)(m+ n)

)
ψa
n,m(x, y) = sin

(
1
3πm(2− 2y)

)
sin
(
2πx(m+2n)

3
√
3

)
+ sin

(
1
3πn(2− 2y)

)
sin
(
2πx(−2m−n)

3
√
3

)
− sin

(
2πx(m−n)

3
√
3

)
sin
(
1
3π(2− 2y)(m+ n)

)
Some of the first few eigenfunctions are represented in figures 2.4.

(a) A1, (m,n) = (1, 1) ground state solution (b) A1, (m,n) = (1, 1) ground state solution,
contour plot

(c) A1, (m,n) = (2, 2) first harmonic of
ground state

(d) A1, (m,n) = (2, 2) first harmonic of
ground state contour plot
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(e) A2, (m,n) = (1, 4) lowest A2 solution (f) A2, (m,n) = (1, 4) lowest A2 solution con-
tour plot

(g) A2, (m,n) = (2, 5) (h) A2, (m,n) = (2, 5) contour plot

(i) E1, (m,n) = (2, 1) lowest E1 solution (j) E1, (m,n) = (2, 1) lowest E1 solution con-
tour plot

17
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(k) E2, (m,n) = (1, 2) lowest E2 solution (l) E2, (m,n) = (1, 2) lowest E2 solution con-
tour plot

(m) E1, (m,n) = (2, 4)
(n) E1, (m,n) = (2, 4) contour plot

(o) E2, (m,n) = (2, 4) (p) E2, (m,n) = (2, 4) contour plot

Figure 2.4: Eigenfunctions of (1.1) in an equilateral triangle
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3 Perturbative solutions

3.1 Solution through the Calculus of Moving Surfaces

Recent attempts to the solution of the eigenvalue problem [9, 10] of the Laplacian
in regular polygons have partially shifted their attention to the Calculus of Moving
Surfaces. This mathematical theory offers geometric insight into the problem, which
can be exploited in a straightforward fashion to aide to its solution. Through this
technique a few illuminating results have been proven. It is possible to prove, and
a proof will be offered in this paper, that by rescaling the polygons such that their
area is the same as that of the perturbed circle, the first terms to appear in the
1
N expansion of the eigenvalue disappear. Moreover it is possible to substantiate
analytically the values for the expansion, and to definitively assert their connection
to the Riemann Zeta function. The Calculus of Moving Surfaces is thus a powerful
tool that may be applied to many other boundary perturbation and optimization
problems (M. Boady’s Ph.D. thesis [1] offers more examples, as does P. Grinfeld’s
textbook [8] on differential geometry). In the next few sections a brief account of
the theory will be given, after which it will be applied to the problem in question.

3.1.1 Introduction to the Calculus of Moving Surfaces

Not much has been written to date on the Calculus of Moving Surfaces. Most of
the following discussion is taken from P. Grinfeld’s textbook [8], which offers an
introduction into the subject. The main focus of the Calculus of Moving Surfaces
are imbedded surfaces thought of as moving and stretching in time. The tool used
to study these structures is the invariant time derivative whose definition will be
built in the next few pages. It is worth recalling a few basic definitions of differential
geometry in order to efficiently approach the Calculus of Moving Surfaces. The next
few lines will be dedicated to that purpose.

Topics in imbedded surfaces

In this section we wish now to report the mathematical construction behind the
concept of an imbedding. Let N and M be differentiable manifolds and let the
dimension of N be equal to that of M a less of one. Let (N,φ) , φ : N → M be
an imbedding of N onto M . We shall refer to the function φ as the imbedding
function. Let Sα be a set of coordinates on N , and let the vectors and covectors
be defined on N in the standard way. Further on we shall refer to these objects
as being surface objects (surface coordinates, surface vectors and surface covectors)
and they will be denoted by a Greek lettered superscript. Let Zi be a coordinate
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system on a subset ofM containing a subset of the image of the imbedding function
φ. We shall denote the i-th coordinate of a point p ∈ M as Zi(p). Using the Zi

coordinates and the imbedding map one can parameterize φ(N) in the following
way:

Si(φ(p)) := Zi(φ(p)), p ∈ N

These Rd points are identified by the same letter S (to emphasize that they are to
describe the same geometrical object) with a latin index. One must always keep in
mind that, as Zi are coordinates of M they benefit from an extra component. We
shall call the Zi and all of the derived mathematical constructions ambient objects.

By function composition one may express the ambient coordinates in terms of
the surface coordinates:

Zi(p) = Zi(S(p))

It is a little bit trickier to define an imbedded tangent space. Intuitively, it is clear
that the tangent space of the imbedded manifold will be a subspace of the tangent
space of the larger manifold. Before discussing the tangent space as a whole, the
attention should be shifted to a single vector. There is a natural connection between
functions on surface and ambient coordinates. Let f be a function on N to R. We
can define a “new” function f̃ : φ(N) ⊂ M → R defined implicitly by the relation
f̃ ◦ φ = f . We can view this function as a copy of f on the points which are the
“imbedded versions” of those of N in M . Differentiating with respect to the α-th
surface coordinate we get:

∂αf |p = ∂α(f̃ ◦ φ)
⏐⏐⏐
p
= [dφ (∂α)] f̃

⏐⏐⏐
φ(p)

= Z i
α ∂if̃

⏐⏐⏐
φ(p)

(3.1)

We can identify Z i
α ∂i with a vector-like object in the tangent space of φ(p) ∈ M .

We shall refer to these vectors as the ambient tangent vectors and the space they
span as the ambient tangent space. It is important to notice that this expression is
valid only in the subset φ(N) ⊂ M : no such tangent ambient vectors exist outside
the image of φ. In this sense we have transported the surface vector ∂α to an
ambient vector in an ambient tangent space in M . As all maps used were regular
and linear the mapping of the vector is as well. Also it is important to notice that
the object Z i

α is not really a tensor as the α index has one less component than i.
Naively it can be thought of as a rectangular (as opposed to a square) matrix. We
call Z i

α the shift tensor. With the appropriate metrics (the surface metric for the
first component and the ambient metric for the second), one may raise or lower the
shift tensor’s indices.

Furthermore, as the dimension of the tangent space of N is equal to that of M
less of one, and each vector in the ambient tangent vector space is determined by one
in the tangent space of N we expect there to be another vector in the tangent space
of M orthogonal to all of the ones in the tangent space of the imbedded manifold.
When it is normalized we call such vector the normal vector to the surface. There
is an ambiguity still which is left, for the direction of the normal vector. For two
dimensional closed surfaces imbedded in R3 it is common to take the normal vector
“pointing outwards.”
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Example. Consider a 2-sphere. It is common in topology to parameterize the
sphere as a one by one square by identifying all the points on one side with one
single point, all the points on the opposite with another and identifying all of the
points on each of the remaining sides with the opposite one. This parameterization
is useful as it is intrinsically two dimensional: the sphere is not imbedded in any
larger manifold. By stretching the domain to a [0, π]× [0, 2π] rectangle and naming
the first coordinate θ and the second φ we get the common imbedding in R3:⎧⎪⎨⎪⎩

x(θ, φ) = sin(θ) sin(φ)

y(θ, φ) = sin(θ) cos(φ)

z(θ, φ) = cos(θ)

This coordinate transformation constitutes an imbedding map from N , the sphere,
to M , R3. In this case θ and φ would be the Sα coordinates while x, y and z would
be the ambient coordinates Zi. If f is a function of (θ, φ) we then have:

f(θ, φ) = f̃(x(θ, φ), y(θ, φ), z(θ, φ))

As described in equation (3.1) we can obtain the θ tangent vector as:

∂θf(θ, φ) = ∂θf̃(x(θ, φ), y(θ, φ), z(θ, φ)) = Z i
θ ∂if̃(x(θ, φ), y(θ, φ), z(θ, φ))

Where i = x, y, z and for example Z x
θ = ∂θx(θ, φ). Similarly one can construct

the φ tangent vector. The normal vector in this case would be:

N = sin(θ) sin(φ)∂x + sin(θ) cos(φ)∂y + cos(θ)∂z

Topics in the Calculus of Moving Surfaces

It is common to define moving surfaces as being imbedded manifolds whose imbed-
ding function φ is dependent also on a separate parameter, identified as time. Hence
from now on: φ : N×I →M , where I ⊆ R is a real interval. There is no real reason
to identify this new coordinate with time, however in the spirit of the Calculus of
Moving Surfaces we will do so. Hence, time is not itself a coordinate, it does not
define any point or region on any manifold: time defines a particular imbedding
function. For the purposes of this paper we will not concern ourselves with prob-
lems of regularity and will assume everything to be as continuous and smooth as
necessary. Specifically, from now on we will consider φ(p, t), p ∈ N, t ∈ R to be
smoothly dependent on t.

To clarify the necessity of the Calculus of Moving Surfaces we will now build an
example to illustrate one of the problems that this theory aims to solve. Consider
a function T : N × R → R. Because of the additional time dependence, one may
interpret such a function to be defined on the moving surface in M . Consider
two sets of coordinates of N : Sα and S′α. By composition with the coordinate
system, T (t, p) may be expressed as a function of either of the coordinates of N .
When evaluated with respect to the primed coordinates we denote such function as
T (t, S′) whereas in the other case we omit the prime. Let U(t) and U ′(t) also be
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defined as follows:

U(t) :=
d

dt
T (t, S)

U ′(t) :=
d

dt
T (t, S′)

By function composition we may express one coordinate system in terms of the
other. If one wishes to relate points in the image of the imbedding map such an
expression will be in general time dependent. In an attempt to reduce redundancy
sometimes we will omit the point of which the coordinates we are considering. Hence
sometimes we will write S(t, S′) rather than S(t, S′(p)). We then have:

T (t, S′) = T (t, S(t, S′))

Differentiating with respect to time we get:

U ′(t) = U(t) +
d

dSα
T (t, S(t, S′))

d

dt
Sα(t, S′)

Because of the last term, which in general is nonzero, we cannot say that T evolves
in the same way in the two coordinate systems, i.e. U(t) ̸= U ′(t). It is one of the
goals of the Calculus of Moving Surfaces to clarify such a divergence from intuition.
In what follows, we wish to develop a mathematical formalism which provides tools
for our basic intuition. This is done not by changing anything already established by
differential geometry but rather by introducing a new concept: a new kind of time
derivative. In a sense, just like the covariant derivative was built we wish to build
an “invariant time derivative” (invariant is meant between changes of coordinate
systems). The key to this problem is to construct a purely geometrical derivative
definition, one that depends only on the manifold to be studied rather than the
coordinate system that is chosen. It will be shown that in order to accomplish this
feat we must let the derivative vary as is done for the covariant derivative.

Before introducing the two main results of the Calculus of Moving Surfaces which
will be used for our approach to the solution we must first introduce some kind of
velocity for our moving manifold. Our goal will be to give a purely coordinate
detached definition, in order to ensure it being a property of the object of study
rather than one of the coordinate system of our choosing. Simply taking the time
derivative of a coordinate function will not suffice. It is however the first step to
the solution of this puzzle, hence consider the “coordinate velocity” defined as:

V i(t, p) :=
d

dt
Zi(t, S(p))

where p is a point on the manifold N , S(p) is the set of S coordinates of the point
p and Zi is the i-th coordinate of the point φ(p, t) in the manifold M .

Proposition 1. The coordinate velocity defined above is not invariant with respect
to coordinate changes and in fact it does not even transform as a tensor.

Proof. Let Zi and Z ′i be two ambient coordinate systems in a subset of φ(N) ⊂M
and let Sα, S′α be two surface coordinate systems for N . As defined above we may
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write:

V i(t, p) =
d

dt
Zi(t, S(p))

V ′i(t, p) =
d

dt
Z ′i(t, S′(p))

As we have already done, we relate Sα and S′α to one another. By (many) function
compositions we may write:

V ′i(t, p) =
d

dt
Z ′i(Z(t, S(t, S′)))

And expanding the derivation:

V ′i(t, p) =
dZ ′i

dZj

(
d

dt
Zj(t, S(t, S′)) +

d

dSα
Zj(t, S(t, S′))

d

dt
Sα(t, S′)

)
The first term, outside of the the parenthesis may be identified with the Jacobian
between the Z and Z ′ coordinate systems. The first term in the parenthesis is
exactly V i(t, p) while the last term is the contraction between the shift tensor and
a time derivative of the expression of one surface coordinate system in terms of the
other. As the last term is generally nonzero we have proven our claim.

The last equation in the proof provides a useful clue to the next step needed
to build our definition of a coordinate free velocity. Namely, being proportional to
the shift tensor, it is a linear combination of vectors in the ambient tangent vector
space to the surface under consideration. To get rid of it then we can just contract
it with the normal vector, thus obtaining our final, coordinate free definition:

C := V iNi

The proof of this object being coordinate invariant is the same as that of V i not
being so: the last term simply vanishes. Geometrically C can be thought of as the
velocity of a point on the moving surface in the normal direction to the imbedded
manifold. Because of this it is often called interface velocity.

With this last object we will be able to construct a new type of derivative with
which we will be able to operate in a purely coordinate free manner: a derivative not
dependent on the coordinate functions we use to describe the manifold, and which
preserves the tensor transformation property. One could just state the definition and
show that it is well behaved, however due to its intuitive geometrical interpretation
before doing so it is worth building in a heuristic way. Consider a coordinate
function γ(Sα) in the manifold N . Through the imbedding map this curve will
be mapped to M and subsequently to Rd through a set of coordinates on M :
γ(Sα) → φ(t, γ(Sα)) → Zi(φ(t, γ(Sα))). Let A be a point on the image of the curve
γ through φ and let T be a function on a neighborhood of A. In a small time h the
point A as well as the whole curve φ(t, γ(Sα)) will move a bit, to a new position on
the manifold which we will identify as the point B. Heuristically, one could evaluate
T at B in the following way:

T (B) = T (A) + h
d

dt
T

⏐⏐⏐⏐
A
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Now let D be a point on the time translated coordinate function φ(γ) “close” to B.
Following the coordinate function along the moving surface one might write

T (B) = T (D) + hV iZ α
i ∇αT (D)

Eliminating the point B in the two preceding equations we get:

T (D)− T (A) = h

(
d

dt
T (A)− V iZ α

i ∇αT (D)

)
Motivated by the equation above we define:

∇̇T (t, S) = d

dt
T (t, S)− V iZ α

i ∇αT (t, S) (3.2)

In the following lemma we show that this definition of an invariant time derivative
is coordinate independent and allows for correct tensor transformations.

Lemma 1. The time derivative ∇̇ defined in equation (3.2) is invariant and well
defined.

Proof. Let S and S′ be coordinate systems on the manifold N . Let T (t, S) and
T (t, S′) be as defined above. We wish to prove that:

∇̇T (t, S) = ∇̇T (t, S′)

Hence, applying the definition (3.2):

∇̇T (t, S′) =
d

dt
T (t, S′)− V ′iZ ′ α

i ∇′
αT (t, S

′)

=
d

dt
T (t, S(t, S′))− V ′iZ α

i ∇′
αT (t, S(t, S

′))

=
∂

∂t
T (t, S(t, S′)) +∇βT (t, S(t, S

′))
dSβ

dt
−[

∂

∂t
Zi(t, S(t, S′)) +

d

dSγ
Zi(t, S(t, S′))

dSγ

dt

]
dS′α

dZi
∇βT (t, S(t, S

′))
d

dS′αS
β(t, S′)

=
d

dt
T (t, S)− V iZ β

i ∇βT (t, S) = ∇̇T (t, S)

The reader should keep in mind that the term V iZ α
i represents a sort of pro-

jection of the coordinate velocity onto the surface expressed however using surface
vectors. When this contraction is applied all information regarding velocity in the
normal direction is lost, hence it is not true that Z α

i Z j
α = δ j

i . Geometrical insight
might lead the reader towards the proven result that:

NjN
i + Z α

j Z i
α = δ i

j (3.3)

With this last relation in mind it is possible to simplify the definition of the
invariant derivative on tensors defined on the whole host manifold. Specifically,
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consider a function T : M → R. When evaluated on φ(N) we may consider the
function T = T (p, t) to be defined on the moving surface in M . Furthermore
these may be expressed in terms of the surface coordinates. Hence we have T =
T (Z(φ(p, t))) = T (Z(t, S)). Applying the definition (3.2) we get:

∇̇T =
d

dt
T (Z(t, S))− V iZα

i ∇αT (Z(t, S))

=
(
V j − V iZα

i Z
j
α

) d

dZj
T (Z(t, S))

=
(
V j − V i

(
δ j
i −NiN

j
)) d

dZj
T (Z(t, S))

= CN j d

dZj
T (Z(t, S))

Where, in the last step, we made use of equation (3.3). Which, again, may be
interpreted as a directional derivative of the function, in the direction normal to
the surface and proportional to the interface velocity.

We now get to the last two results of the Calculus of Moving Surfaces, one
of which will be used in the problem. These are the rules for the derivation of
integral relations. One refers to volume integration and is completely analogous to
the fundamental theorem of calculus while the second does not have a very intuitive
meaning. The rules are:

d

dt

∫
Ω
FdV =

∫
Ω

d

dt
FdV +

∫
∂Ω
CFdA (3.4)

Where F is any kind of sufficiently smooth and real function on the imbedded
manifold, Ω is a subset of the manifold and ∂Ω is the boarder of Ω. This formula
can be intuitively interpreted as adding the contribution of a small change in the
volume by integrating on its surface multiplied by its velocity. We will not make
use of this second differentiation rule, however, for completeness’ sake, the second
equation is:

d

dt

∫
S
FdS =

∫
S
∇̇FdS −

∫
S
CB α

α FdS

where everything is as before and B α
α is the curvature tensor. This curvature tensor

may be interpreted as a direct consequence of the metrilinic property:

∇igmn = 0 (3.5)

where gmn is the metric in M . Equation (3.5) implies that, given any two vectors
Sm and Sn tangent to the m-th and n-th surface coordinate function:

⟨Sm,∇iS
n⟩ = 0

Hence ∇iS
n is proportional to the normal vector. The tensor B j

i is then defined
as:

B j
i = ∇iS

j
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3.1.2 Application of the Calculus of Moving Surfaces

We now turn our attention from the theory of the Calculus of Moving Surfaces to
the problem we originally had: that of the solution of the eigenvalue problem for
the Laplacian in regular polygons. The solution reported here is due to P. Grinfeld,
and G. Strang and was originally published in [10]. The goal is to find an analytical
expression for the first few terms of the expansion of the eigenvalue in terms of the
variable 1

N , N being the number of sides of the regular polygon. Of particular use
will be equation (3.4).

General strategy

Before attempting a solution we should first provide an outline of the procedure we
will use. First of all we restate the main equation of the problem:

∆ψ = −λNψ (1.1)

We wish to study this equation perturbatively from the solution of a circle, which
is known and was reported in section 2.3. In particular our objective will be of
finding an expansion of λN , the ground state eigenvalue, such as:

λN = λ0

(
1 +

c1
N

+
c2
N2

+
c3
N3

+ . . .
)

hence our efforts will targeted towards finding an expression for the coefficients ci.
To accomplish this feat we start by looking for a homotopy Φ : I × [0, 1] → R2

(I being an interval in R) such that: Φ (θ, 0) is the parametrization of the circle,
and Φ (θ, 1) is the parametrization of the polygon. The function Φ(θ, t) will be the
imbedding function, from a real interval parametrized by θ to the real plane R2.
Different values for the second parameter (which is the above mentioned time) will
identify different transitional curves between the polygons and the circle. More will
be said on the choice of homotopy in a dedicated section.

Having found the homotopy expression for the boundary we can incorporate it
in the original problem as a boundary condition dependent on t. Our solution ψ will
thus depend on this parameter as well. If our choices are sufficiently well behaved
we will also be able to apply calculus to ψ also in this new variable, hence, hopefully
we are able to construct a Maclaurin expansion of ψ in terms of the variable t.

We will show that not everything however is so simple, as it is not always possible
to express algebraically what we need. In such cases we will Taylor expand over the
appropriate variable in order to better arrive at the solution we are seeking.

Hadamard’s term

Having established how we intend to approach the problem let us start by differenti-
ating with respect to time equation (1.1). Assuming symmetry of second derivatives
we get:

∆∂tψ = −∂t∆ψ = λ′Nψ − λN∂tψ
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Where λ′N indicates the time derivative of λN . It is a remarkable result of the
Calculus of Moving Surfaces that:

λ′N = −
∫
∂Ω
C ⟨∇ψ,∇ψ⟩ dS (3.6)

C being the interface velocity of the boundary. Because this relation was found by
Hadamard we shall refer to λ′N as the Hadamard term. As suggested by Strang
and Grinfeld to remove this leading term one should keep the area constant. It is
intuitive to see why it should be so if only C were inside the integral: the integral
acts as a mediator on all of the small displacements of the curve, thus, if the total
(signed) area difference is null, the integral should be zero. This intuition may be
corroborated by the following argument: suppose we seek to calculate the area at a
time t of the subset Ω enclosed by our curve. This may be expressed as an integral
as:

A(t) =

∫
Ω
dΩ

Deriving through by t, we apply equation (3.4) and find that, because the integrand
is 1:

A′(t) =

∫
∂Ω
CdS

It is a little less obvious to show that this holds also in the case where we include
|∇ψ|2. Recall that we are seeking the first term in a perturbation series of the
eigenvalue solution for the Laplacian in a unit circle. Hence we only need to evaluate
(3.6) in that case. It was shown (2.6) that1:

d

dr
ψ(1) =

ρ√
π

ρ being such that ρ2 = λ0. Hence applying the polar coordinate transformation we
can easily find that:

⟨∇ψ(1),∇ψ(1)⟩ =
(
d

dx
ψ(1)

)2

+

(
d

dy
ψ(1)

)2

=

(
d

dr
ψ(1)

)2

+

(
1

r

d

dθ
ψ(1)

)2

=

(
d

dr
ψ(1)

)2

=
λ0
π

(3.7)

In the last equality the fact that ψ(r) is independent of the angle θ was used. As
that value is constant it can be brought out of integration the integration and we
get yet again the case where only C is to be integrated. We now intend to prove
equation (3.6). Before doing so however it is necessary to demonstrate another
simple result:

Lemma 2. ∫
Ω
ψ
dψ

dt
dΩ = 0

1ψ and ρ refer to the ground state
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Proof. We start with the normalization condition:∫
Ω
|ψ|2 dΩ = 1

We wish to derive this equation now by time. As the boundary is dependent on
time as well as the function calculating this derivative is not so simple and requires
an application of the Calculus of Moving Surfaces. Specifically it is exactly the case
of equation (3.4). ∫

Ω

d

dt
|ψ|2 dΩ+

∫
∂Ω
C |ψ|2 dS = 0

Under the Dirichlet boundary conditions, the second term on the left hand side is

null (x ∈ ∂Ω =⇒ ψ(x) = 0). Expanding the derivative we get that ψ and
dψ

dt
are

orthogonal in L 2(Ω2).

We now proceed to prove the validity of the formula for Hadamard’s term.

Theorem 7.

λ′N = −
∫
∂Ω
C ⟨∇ψ,∇ψ⟩ dS

Proof. We start by expressing λ as a Rayleigh quotient with unit denominator:

λ =

∫
Ω
⟨∇ψ,∇ψ⟩ dΩ (3.8)

This formula may be obtained as follows: multiply the eigenvalue equation by ψ
and integrate over Ω. As we can take ψ to be unitarely normed the equation reads:

λ = −
∫
Ω
(∆ψ)ψdΩ

By applying Green’s first identity we find:

λ =

∫
Ω
⟨∇ψ,∇ψ⟩ dΩ−

∫
∂Ω
ψ∇ψdS

Because of the boundary conditions the second integral on the right side of the
equation is zero. Hence, we have proven equation (3.8). Deriving through by time
we get:

λ′ =
d

dt

∫
Ω
⟨∇ψ,∇ψ⟩ dΩ

which, by application of equation (3.4), can be expanded as:

λ′ = 2

∫
Ω

⟨
∇ψ, d

dt
∇ψ
⟩
dΩ+

∫
∂Ω
C ⟨∇ψ,∇ψ⟩ dS

= 2

∫
Ω

[
∇
(
ψ∇dψ

dt

)
− ψ∆

dψ

dt

]
dΩ+

∫
∂Ω
C ⟨∇ψ,∇ψ⟩ dS

= 2

∫
∂Ω
ψ∇dψ

dt
dS − 2

∫
Ω
ψ∆

dψ

dt
dΩ+

∫
∂Ω
C ⟨∇ψ,∇ψ⟩ dS (3.9)
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(a) Grinfeld’s transformation, non area pre-
serving.

(b) Area preserving transformation.

Figure 3.1: Radial transformations of one side of the equilateral triangle.

The first integral vanishes due to the boundary conditions, and we may express

∆
dψ

dt
=

d

dt
∆ψ = − d

dt
(λψ) = −λ′ψ − λ

dψ

dt

So, plugging this into equation (3.9),

λ′ = 2

∫
Ω
ψ

(
λ′ψ + λ

dψ

dt

)
dΩ+

∫
∂Ω
C ⟨∇ψ,∇ψ⟩ dS

= 2λ′ +

∫
∂Ω
C ⟨∇ψ,∇ψ⟩ dS

λ′ = −
∫
∂Ω
C ⟨∇ψ,∇ψ⟩ dS

Where we used lemma 2 for the first equality.

Homotopy construction

The choice of a correct homotopy is a very delicate a subtle process. In general,
there are a great number of such transformations which might be used, but due
to integration most are prohibitive. In the optimum case, one would like to find a
homotopy which is area conserving at all times, in order to eliminate Hadamard’s
term. It is straightforward to write a homotopy mapping the circle to a polygon
with equal area, however it is challenging to write one conserving the area at all
times, i.e. such that:

A′(t) =
d

dt

∫
Ω
dΩ = 0 ∀ t ∈ [0, 1]

Such a homotopy would have some points moving inward and some points moving
outward in such a way that the total signed area averages out. At the end of the
transformation some of the points of the side of the polygon would be inside the
original circle, while the vertices and some other points would be on the outside
(figure 3.1 shows Grinfeld’s transformation and an area preserving transformation.).
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ϕ =
2π

N

A

θ

d

1

Figure 3.2: Arc of a circle with side of N -gon. The distance traveled by point A is
d.

Grinfeld and Strang leave this problem to be solved by posterity. They consider
a homotopy such that each point moves radially to the inscribed polygon with
constant speed. With reference to figure 3.2 one can write:

d(θ,N) = 1−
cos
(
π
N

)
cos (θ)

As each point is moving with constant speed, the speed of each point is proportional
to the distance traveled. We set the proportionality constant equal to minus one.
Hence, each point moves with speed V (θ,N) = −d(θ,N). One can parametrize the
homomorphism as:

Φ (θ,N, t) = (1 + tV (θ,N))

(
cos(θ)
sin(θ)

)
This way, for t = 0 we return to a parametrization of the circle and for t = 1 we get
that of the polygon. It should be noted that this function is not valid for all θ; it is
only valid for θ ∈

[
− π

N ,
π
N

]
. To get a complete curve one must extend this result.

Interface velocity calculation

We now seek to calculate C(θ,N, t) in order to use Hadamard’s formula to get the
first variation. The normal N(θ,N, t) to the curve is obtained from the tangent
T(θ,N, t) which is easily calculated as a θ derivative of Φ(θ,N, t). Furthermore,
the coordinate velocity V(θ,N, t) vector can be calculated as the time derivative
of Φ(θ,N, t). We remind the reader that this point-wise velocity is not C(θ,N, t),
as C(θ,N, t) is the interface velocity. To get the expression for C(θ,N, t) we must
project V(θ,N, t) onto N(θ,N, t). Such operation yields:

C (θ,N, t) =
sec2(θ)

(
cos
(
π
N

)
− cos(θ)

) (
cos(θ) + t cos

(
π
N

)
− t cos(θ)

)√(
cos(θ) + t sec2(θ) cos

(
π
N

)
− t cos(θ)

)2
+ (t− 1)2 sin2(θ)

As expected, this rather complicated expression reduces to V (θ,N) for t = 0. Be-
cause our expansion is about t = 0 this will be instrumental to our solution.
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First expansion term

Having calculated C(θ,N, t) we now continue in our intent to calculate the first
term in the expansion λ′ for which we will use Hadamard’s formula (3.6). Using
(3.7) we get:

λ′ = −
∫
∂Ω
C ⟨∇ψ,∇ψ⟩ dS = −λ0

π

∫
∂Ω
C(θ,N, 0)dS

= −Nλ0
π

∫ π
N

− π
N

(
cos
(
π
N

)
cos (θ)

− 1

)
dθ = −λ0

π

∫ π

−π

(
cos
(
π
N

)
cos
(
θ
N

) − 1

)
dθ (3.10)

Expressing the above equation in terms of ξ = 1
N and Taylor expanding the inte-

grand about ξ = 0 we get:

λ′ = −λ0
π

∫ π

−π

(
1

2

(
θ2 − π2

)
ξ2 +O

(
ξ4
))

dθ

= λ0

(
2π2

3
ξ2 +O(ξ4)

)
Direct integration of (3.10) would have shown that the result is true to O

(
ξ6
)
[10].

Recalling that: ζ(2) = π2

6 , we get:

λ′ = λ0
(
4ζ(2)ξ2 +O(ξ4)

)
This provides the first term in the expansion of λ2:

λN = λ0

(
1 +

4ζ(2)

N2
+ . . .

)
To compute further terms it is necessary to also include the successive terms in the
time expansion of λ. These calculations are similar to what was done above and
are in [10]. A further expansion yields:

λN = λ0

(
1 +

4ζ(2)

N2
+

4ζ(3)

N3
+

28ζ(4)

N4
+ . . .

)
In his Ph.D. thesis Boady [1], working with Grinfeld, is able to derive, applying
symbolic computation methods to the Calculus of Moving Surfaces, two other terms
in this expansion. His expansion is still referred to the inscribed polygon and is:

λN = λ0

(
1 +

4ζ(2)

N2
+

4ζ(3)

N3
+

28ζ(4)

N4
+

12ζ(5) + 16ζ(2)ζ(3)− 2λ0ζ(5)

N5
+

8ζ(3)2 + 124ζ(6) + 4ζ(3)2λ0
N6

+O

(
1

N7

))
(3.11)

2Please note that the following expression is not true up to O
(

1
N6

)
. In order to assess the

correct expansion order it is necessary to find λ′′ and verify its first term in the 1
N

expansion.
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Rescaling

By rescaling it is possible to convert the solution obtained for the inscribed polygon
to that of the polygon with area π. The expression for this eigenvalue is much
simpler and shows a surprising degree of regularity. In particular, by rescaling, all
known terms proportional zeta functions of even numbers disappear. The solution
for the eigenvalue of a polygon with area π was reported in equation (1.2). To obtain
this result one may compose the function ψ with an appropriate coordinate dilation.
By evaluating the Laplacian on this function composition one may then find the
correct eigenvalue. Specifically, it is useful to think in terms of polar coordinates
as the ratio of the area of a circle and the inscribed N sided polygon is the same.
In the case we approached, the radius of the circumscribing circle is 1. In the case
where the area of the polygon is chosen to be π it is a matter of simple trigonometry
to assess that the radius should be:

νN =
√
ξ csc(ξ) sec(ξ)

Where ξ = π
N . The rescaling will then be simply done by a multiplication by νN .

Let ρ̃ = νρ. Equation (1.1) then becomes:

1

ρ

d

dρ

(
ρ
d

dρ
ψ(ρ̃)

)
=
ν2

ρ̃

d

dρ̃

(
ρ̃
d

dρ̃
ψ(ρ̃)

)
= ν2∆ψ = −λNψ

Hence we get a rescaling factor for the eigenvalue of ν−2. A series expansion to the
sixth term of 1

N of the eigenvalue rescaling factor offers:

ν−2 = 1− 2π2

3N2
+

2π4

15N4
− 4π6

315N6
+O

((
1

N

)8
)

=

1− 4ζ(2)

N2
+

12ζ(4)

N4
− 12ζ(6)

N6
+O

((
1

N

)8
)

Which, when multiplied by the left hand side of equation (3.11) gives the first line
in equation (1.2).

3.2 Solution through Schwartz-Christoffel Mapping

Lastly we report the perturbative solution given in terms of Schwartz-Christoffel
mappings. This kind of solution has been successful in the elucidation of the prob-
lem and the construction of the first few terms in the expansion.

The Schwartz-Christoffel transform is a set of conformal transformations of the
complex plane mapping the upper plane (ℑ(z) > 0) or the centered unit circle
(|z| < 1) to a large set of possible domains (to be discussed below). The solution will
make use of particular Schwartz-Christoffel mappings from the circle to inscribed
polygons. In recent times this theory has had a fruitful renaissance as computational
methods have become more advanced and readily available. This theory has found
applications in fluid dynamics and electrostatics, and many other areas of physics.
In general, Schwartz-Christoffel mappings constitute a versatile tool which may
simplify some problems which are made complex by their boundary conditions.
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3.2.1 The Schwartz-Christoffel transform

Our goal for this section is to provide the intuition behind Schwartz-Christoffel
mappings. These transformations represent the crown jewel of the study of confor-
mal transformations of the complex plane that took place in Europe in the early to
mid 1800s. The roots of the Schwartz-Christoffel transform lay in the studies of C.
Gauss and those of B. Riemann. Of particular relevance is the Riemann Mapping
Theorem, which was published in Riemann’s Ph.D. thesis [29] delivered in 1867,
stating [20]:

Theorem 8 (Riemann Mapping Theorem). Let U be a simply connected open set
which is not the whole plane. Then U is analytically isomorphic to the disc of radius
1. More precisely, given z0 ∈ U , there exists an analytic isomorphism

f : U → D(0, 1)

of U to the unit disc, such that f(z0) = 0. Such an isomorphism is uniquely
determined up to rotation, i. e. multiplication by eiθ for some real θ, and is therefore
uniquely determined by the additional condition:

f ′(z0) > 0.

This theorem provides the grounds for what we are doing. In particular it states
that our search for a map connecting two simply connected regions of the complex
plane is not in vain. The proof of this theorem is not constructive, hence further
investigation is needed in order to provide a useful transformation. A necessary
result, given by Schwartz in order to prove the final formula is the Schwartz reflection
principle. This principle is useful for the construction of analytical continuations of
functions across their boundary. It has very few restrictions and its result may be
applied to most well behaved functions. In particular the principle states that [25]:

Theorem 9 (Schwartz Reflection Principle). Let D1 and D2 be two adjacent do-
mains whose common boundary is a smooth arc α. If the analytic functions f1(z)
and f2(z) are regular in D1 and D2 respectively and if the limits for z → α of
both functions coincide and are continuous on α, then f1(z) and f2(z) are analytic
continuations of each other.

It can be shown [25] that this result is equivalent to stating that, if f(z) is an
analytic function on the upper half plane, extending to a continuous function on
the real axis then f(z) may be analytically continued to the lower half plane by
complex conjugation ℑ(z) < 0, =⇒ f(z) = f(z). We now turn to the main result:
the Schwartz-Christoffel mapping formula. This formula is often proved in its form
with the upper half plane as its domain. This choice, however, is arbitrary as by
composition it is possible to construct more general transformations. We will focus
on transformations to generalized polygons, for which we take T. Driscoll and L.
Trefethen’s [4] definition:

Definition 2. We define a generalized polygon to be a collection of vertices {wi}Ni=0 ,

wi ∈ C ∪ {∞} and real interior angles {αiπ}Ni=0. In addition we require that the
polygon make a total turn of 2π and hence the sum of the exterior angles {µiπ}
defined to be such that µi + αi = 1 be equal to 2.
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For simplicity we treat just the case where all preimages of the vertices (the pre-
vertices, for further reference) are finite. The map we are looking for will transform
each point of the upper half plane into a corresponding point in the interior of a
polygon D. The vertices of the polygon will be images of points on the real axis.
Because of the Riemann Mapping Theorem we are sure that such a transformation
exists and is analytical everywhere except at the prevertices. Let f(z) be such a
transformation. Let the points {ai}Ni=0 be the prevertices. These points divide the
real axis into N parts each of which is mapped by f(z) to a side of the polygon.
By the Schwartz reflection principle f(z) may be analytically continued across each
one of these segments. The image of the continuation will be a mirror image D′ of
D with respect to one of its sides will thus be the conformal map of the lower half
plane. By further reflection of the domain one returns to the original domain, the
upper half plane. If the second reflection is done through a different side however
the image will be congruent, but shifted and in general also rotated. Hence, if f(z)
is twice reflected to the function f1(z) it will be true that:

f1(z) = af(z) + b

g(z) =
f ′′1 (z)

f ′1(z)
=
f ′′(z)

f ′(z)

furthermore g(z) can be defined by continuation as a single valued analytic function
everywhere in the closure of the upper half plane except at the prevertices, where
the derivatives might fail to exist. The main idea now it to express f(z) and more
precisely its derivatives in terms of products of simpler functions. This intuition
stems from the geometric result that the argument of products of complex number
is the sum of the argument of the multiplied numbers. Hence by correctly choosing
the product functions as step functions on the real axis we are able to guide the
image of f(z) along the border of the desired polygon. In particular the optimal
choice for the step function is: fk(z) = (z − ak)

−µk , as:

f ′(z) =
n∏

k=0

(z − zk)
−µk ,

f ′′(z) =
n∑

h=0

(−µh) (z − zh)
−µh−1

n∏
k=0

[
(z − zk)

−µk
]1−δh,k ,

f ′′(z)

f ′(z)
=

d

dz
ln
(
f ′(z)

)
=

n∑
h=0

− µh
z − zh

Where δh,k is the Kronecker symbol. Integrating twice one gets the result:

f(z) = A+B

∫ z n∏
k=0

(ζ − zk)
−µ dζ

When composed with the map from the unit circle to the upper half plane this
becomes:

f(z) = A+B

∫ z n∏
k=0

(
1− ζ

zk

)−µk

dζ (3.12)
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CHAPTER 3. PERTURBATIVE SOLUTIONS

In most cases the Schwartz-Christoffel mapping formula (3.12) is found to be of
difficult application with analytical methods. The main difficulty is in finding the
correct prevertices values zk to fit into the equation. While the angles are simply
encoded into the transform through the exponents µk the side lengths are given by
the distances among the zk. The search for the prevertices is a parameter problem
that may be solved by use of computers and numerical methods. In our case of
interest however, due to the regularity of the image of the maps these may be easily
found as will be explained further on.

Schwartz-Christoffel mappings to polygons

Mappings from the circle to the inscribed polygons are among the simplest to be
found. In these cases, the outer angle πµk is 2π

n . This is a widely known result
of elementary euclidean geometry. Furthermore, as all the points in the image are
evenly spaced, it is natural to pick the prevertices to be evenly spaced across the
unit circle. Without initially concerning ourselves with side length and correct
overall proportions, we take as prevertices the roots of unity. By Ruffini’s theorem,
because each and only n-th root of unity is a zero of the polynomial P (x) = xn − 1
then:

P (x) = xn − 1 =

n−1∏
h=0

(
x− ωh

)
, ω = exp

(
2πi

n

)
however:

n−1∏
h=0

(
x− ωh

)
= (−1)n

n−1∏
h=0

(
1− x

ωh

)
Hence we can the express the integrand in the Schwartz-Christoffel formula as:

n−1∏
k=0

(
1− ζ

zk

)−µk

=
n−1∏
h=0

(
1− ζ

ωh

)− 2
n

= (1− ζn)−
2
n

As noted by Molinari [24], the integral of this function is the well known Gaussian
Hypergeometric function with coefficients:∫ z (

1− ζ
n)− 2

n dζ = z 2F1

(
1

n
,
2

n
, 1 +

1

n
, zn
)

(3.13)

Furthermore, as we wish that the polygon be circumscribed by the unit circle, and
as z = 1 due to our choice of prevertices, is always a vertex, we multiply by a
normalizing term, given by:

cn = 2F1

(
1

n
,
2

n
, 1 +

1

n
, 1

)−1

=
Γ
(
1− 1

n

)
Γ
(
1− 2

n

)
Γ
(
1 + 1

n

)
Thus obtaining a final result of:

wn (z) = cnz 2F1

(
1

n
,
2

n
, 1 +

1

n
, zn
)
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3.2.2 Application of the Schwartz-Christoffel transform

The map derived above is used by Molinari [24] to generate the ground state eigen-
values for the free particle in the polygonal domain. More specifically it is the basis
for the expansion which is done over a fictitious parameter λ. To accomplish this
feat the Laplacian eigenvalue equation (1.1) is expressed by complex coordinates
and rewritten as:

−4
∂2

∂z∗∂z
ψ (z, z∗) = ε2

⏐⏐w′
n(z)

⏐⏐2 ψ (z, z∗) (3.14)

Molinari then proceeds to introduce in the equation above the expansion parameter
λ and, through perturbation theory is then able to derive the first few terms in the
expansion.

Introduction of the perturbation parameter and solution procedure

The introduction of the λ parameter is done through a manipulation of the series
decomposition of the Hypergeometric function. It is established that:

2F1 (a, b, c, z) =
∞∑
k=0

(a)k (b)k
(c)k

zk

k!

With (a)k being the rising Pochhammer symbol evaluated on a. As noted by Moli-
nari, insertion of the parameters given by equation (3.13) leads to:

w(z) = cnz

∞∑
k=0

fkz
nk, fk =

(
2
n

)
k

k! (nk + 1)

Hence, as f0 = 1 the parameter λ is introduced as:

wn, λ(z) = cnz

(
1 + λ

∞∑
k=1

fkz
kn

)
(3.15)

With this choice, when λ is put to equal 0 the map becomes a dilation cn; when
λ = 1 the function becomes the desired transformation. The expansion greatly
benefits from the use of a polar coordinate system. Insertion of equation (3.15) into
(3.14) gives:

H0ψ (r, θ) = (εcn)
2

⏐⏐⏐⏐⏐1 + λ
∞∑
k=1

fk (kn+ 1)
(
reiθ

)kn⏐⏐⏐⏐⏐
2

ψ (r, θ)

As the solutions in the circle are the Bessel functions, Molinari’s perturbation ap-
proach is based on the perturbation of an established integral expression for these
functions. In particular, it is well known that:

Jn(z) =
1

2π

∫ 2π

0
ei(nt−z sin(t))dt (3.16)
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Hence Molinari looks for a solution of the form:

ψ(z, z∗) =
1

2π

∫ 2π

0
h (α) e

ε
2(e

iαw(z∗)−e−iαw(z))dα

The explicit values of the eigenvalue ε and the weight function h(α) are obtained
by imposing the boundary condition on z:

0 =

∫ 2π

0
h(α)e

ε
2(e

iαw(e−iθ)−e−iαw(eiθ))dα

As h(α) is periodic, these last expressions may be further simplified by expressing
h(α) in terms of its Fourier transform:

h(α) =
∞∑

k=−∞
hke

ikα

Recalling equation (3.16), we can thus get rid of the integral expression:

ψ(r, θ) =
∞∑

k=−∞
hke

ikθJ−k(εr)

After having expressed the Fourier transform of the weight function h (α) in terms
of the perturbative parameter λ, by virtue of the boundary condition ψ (1, θ) = 0
Molinari proceeds to explicitly find the first three such expansion, leading to a
solution:

εn =
1

Cn
ε0
[
1− λ2δ2 − λ3δ3 + . . .

]

where ε0 is what before was called λ0, the ground state eigenvalue of the free particle
restricted to a circle, and:

δ2 =
ε0
2

∞∑
k=1

f2k
Jkn+1 (ε0)

Jkn (ε0)

δ3 =
ε20
4

∞∑
k=2

fk

k−1∑
s=1

fk−sfs
Jsn+1 (ε0)

Jsn (ε0)

[
2
Jkn+1 (ε0)

Jkn (ε0)
+
J(k−s)n+1 (ε0)

J(k−s)n (ε0)

]

− ε20
4

∞∑
k=2

fk
Jkn+2 (ε0)

Jkn (ε0)

k−1∑
s=1

fk−sfs
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4 Conclusion

We have covered many aspects of the eigenvalue problem of the Laplacian in polyg-
onal domains. We showed solutions for the integrable cases of the square, the circle
and the equilateral triangle. These solutions were reported in detail and some as-
pects of the eigenfunctions were studied as well. We focused in particular on the
equilateral triangle case as it has proved to be the hardest of the three.

A brief account was also given of the Calculus of Moving Surfaces and the
invariant time derivative was constructed. We recalled some of the problems and
main results of the theory. Following this we were able to apply the Calculus
of Moving Surfaces to fruition to the problem of the ground state eigenvalue for
the Laplacian in an n-sided polygon. The first term was calculated explicitly and
full known result was reported. We also presented a solution method in terms of
Schwartz-Christoffel mappings, which were also discussed in detail.

The main nuances of the problem were shown and some solutions, and their
mathematical background were explained in detail.

Table 4.1: Numerical results for the eigenvalue in polygons with area π, calculated
using Grinfend, Strang and Broady’s and Jones’ expansion formulae. These are
compared to the numerical results obtained by Jones, correct until the 51st digit.

N λExact λG. S. B. λG. S. B. − λExact λJones λJones − λExact
3 4π√

3
≈ 7.25519746 7.18063883 −7.46× 10−2 7.22405394 −3.11× 10−2

4 2π ≈ 6.28318531 6.28372255 5.37× 10−4 6.28360915 4.24× 10−4

5 6.02213793 6.02312309 9.85× 10−4 6.02235583 2.18× 10−4

6 5.91741783 5.91783196 4.14× 10−4 5.91747950 6.17× 10−5

7 5.86644931 5.86662158 1.72× 10−4 5.86646819 1.89× 10−5

8 5.83849143 5.83856804 7.66× 10−5 5.83849791 6.48× 10−6

9 5.82182680 5.82186339 3.66× 10−5 5.82182927 2.47× 10−6

10 5.81126036 5.81127900 1.86× 10−5 5.81126139 1.03× 10−6

11 5.80423064 5.80424068 1.00× 10−5 5.80423110 4.61× 10−7

12 5.79936980 5.79937548 5.68× 10−6 5.79937003 2.21× 10−7

13 5.79590027 5.79590361 3.35× 10−6 5.79590038 1.12× 10−7

14 5.79335701 5.79335905 2.04× 10−6 5.79335706 5.92× 10−8

15 5.79145001 5.79145130 1.29× 10−6 5.79145004 3.27× 10−8

Circle λ0 = 5.78318596 5.78318596 0 5.78318596 0
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