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Introduction

A black hole is a region of spacetime where the gravitational field is so strong that not even
light can escape. Objects like this have already been supposed in 1784 by John Michell
and, a few years later, by Pierre-Simon Laplace: they noticed the possibility of having
a body that would not allow the light to escape. In fact, from the classical concept of
escape velocity, that is the minimum velocity of an object to escape from the gravitational
attraction of a massive body, we find

vescape =

√︃
2GM

R
,

where M is the mass of the massive body and R its radius. We know that the speed of light
is c; thus we can find a condition on the radius of the object given its mass by reversing the
above formula

Rs =
2GM

c2
. (1)

If the mass of the object is concentrated within a radius Rs, the light cannot emerge from
regions within that radius. Objects like this were initially called dark stars. However
this idea was soon abandoned since light was found to have zero mass. Consequently, for
Newton’s theory of gravity, light is not affected by the gravitational attraction of a massive
body: light can therefore escape from any massive object and such a dark star cannot exist
in the universe.

In 1915 Einstein developed the theory of General Relativity, showing that gravity in-
fluences light’s motion. In this theory the spacetime is a four-dimensional differentiable
manifold with a Lorentzian metric gµν ; the latter is related to the distribution of matter,
described by the energy-momentum tensor, by the Einstein field equations

Rµν −
1

2
Rgµν = 8πGTµν , (2)

where Rµν is the Ricci tensor and R is the scalar curvature: they are both determined by
the metric gµν . A few months after, Schwarzschild found the homonym solution, noting
that it became singular for a radius value equal to that in (1), which was thereafter called
Schwarzschild radius. It took several years to discover that this singularity was not physical,
but was only related to the chosen coordinate system. Only in 1958, thanks to David
Finkelstein, the surface given by the Schwarzschild radius was identified as an event horizon:
matter and light are trapped inside and cannot escape. Thus the event horizon can only be
crossed from the outside to the inside. Since the Schwarzschild solution describes only the
space outside the massive body, the question arises whether it is really possible to enclose
the mass of the body within the Schwarzschild radius starting from the gravitational collapse
of a star.

Meanwhile in astrophysics, in 1931 Chandrasekhar discovered that a non rotating body
in equilibrium on the degenerate electron pressure, commonly called white dwarf, has no
stable solutions for Mwd > 1, 4M⊙: the white dwarf will then collapse into a neutron
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star, a body in equilibrium on the degenerate neutron pressure. In 1939 Oppenheimer
and others discovered that a star whose mass exceeds the TOV (Tolman-Oppenheimer-
Volkoff) limit continues to collapse: gravity overcomes any kind of pressure and a neutron
star is not formed as the degenerate neutron pressure is not sufficient to keep the star in
equilibrium. This happens for bodies such that Mnucleus ∼ 3M⊙ (or equivalently for initial
masses M > 15M⊙), but this limit is still very uncertain. At this point in known physics
there is no other phenomenon that can stop the collapse: we therefore refer to it as black
hole, since the mass M of the collapsing body will be within the radius Rs.

Thus in the 1960s the golden age of General Relativity, began also thanks to the dis-
covery of pulsars, that are rotating neutron stars. Until that time, neutron stars, like black
holes, were regarded as theoretical curiosities: the discovery of pulsars showed their physical
relevance and spurred a further interest in all types of compact objects that might be formed
by gravitational collapse. Therefore black holes become mainstream subjects of research.
In this period Kerr found the solution for a rotating black hole, while Newman found the
solution for a rotating and electrically charged black hole. Through the work of Werner
Israel, Brandon Carter and David Robinson the no-hair theorem emerged: a stationary,
asymptotically flat black hole solution to general relativity coupled to electromagnetism is
fully characterized by the parameters mass, electric charge and angular momentum. Thanks
to Komar, a way to calculate such quantities has been found, leading to the formulation of
black hole thermodynamics in the early 1970s through to the work of James Bardeen, Jacob
Bekenstein, Carter, and Hawking.

In recent years the question of how the thermodynamics of a black hole is formulated
in the presence of magnetic charge or NUT (Newman-Unti-Tamburino) charge has arisen,
since they are part of the family of solutions representing stationary and axisymmetric black
holes. We then try to better understand these solutions which present line singularities on
the axis and we will also analyze the various methods that have emerged in recent literature
in the case of the NUT charge.
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Chapter 1

Introductory concepts

In this chapter some basic concepts will be introduced to deal with the calculation of the
conserved charges of a black hole. First of all, we will recall two fundamental notions:
the Einstein field equations, with its general stationary and axisymmetric solution and
the notion of Killing vector. Secondly, we will deal with the concept of hypersurfaces: in
particular we will focus on the notions of normal vector and volume element and we will
state the Stokes’ theorem in the context of differential geometry. Finally, we will show some
important features of the event horizon.
In this work we will use the Planck units, where c = G = ℏ = kB = 4πε0 = 1.

1.1 Solutions of Einstein equations

Let M be a four-dimensional differentiable manifold and g the metric on M , we call space-
time the couple (M, g). The Einstein field equations relates the metric of spacetime with
the matter distribution, expressed by the energy-momentum tensor Tµν :

Rµν −
1

2
Rgµν = 8π Tµν , (1.1)

where Rµν is the Ricci tensor and R is the scalar curvature: they are both determined by
the metric gµν . Exact solutions of such equations can be found in the electrovacuum case:
it means that the energy-momentum tensor in (1.1) is only the electromagnetic one, given
by

TE
µν =

1

4π

(︃
F ρ
µ Fνρ − 1

4
gµνF

ρσFρσ

)︃
, (1.2)

where Fµν is the electromagnetic Faraday tensor, defined, as usual, from the electromagnetic
four-potential Aµ, Fµν := ∂µAν − ∂νAµ. In this case the Einstein equations must be couple
with the Maxwell equations for the four-potential, that in vacuum takes the form:

∂µ
(︁√

−gFµν
)︁
= 0 . (1.3)

For a stationary and axisymmetric spacetime, that has two commuting vector fields k =
∂t and m = ∂φ, associated respectively with time translations and rotations around the
symmetry axis, the most general solution representing a single source and asymptotically
flat black hole regular outside the horizon is the dyonic Kerr-Newman metric, that in Boyer-
Lindquist coordinates is given by

ds2 =− ∆− a2 sin2 θ

Ξ
dt2 − 2a sin2 θ

r2 + a2 −∆

Ξ
dtdφ+

+

(︁
r2 + a2

)︁2 − a2 sin2 θ∆

Ξ
sin2 θdφ2 +

Ξ

∆
dr2 + Ξdθ2 ,

(1.4)
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where
∆ = r2 − 2mr + a2 + q2 + p2 , Ξ = r2 + a2 cos2 θ .

The parameters q, p, m and a are respectively the electric charge, the magnetic charge, the
mass and the rotational parameter.
The electromagnetic four-potential for this solution is

A =

[︄
qr − pa cos θ

Ξ
, 0, 0,

p cos θ
(︁
r2 + a2

)︁
− aqr sin2 θ

Ξ

]︄
. (1.5)

The metric is singular for the r-values such that ∆(r) = 0. This equation has two solutions

r± = m± σ , (1.6)

where
σ =

√︁
m2 − a2 − q2 − p2 . (1.7)

The values r = r+ and r = r− are coordinate singularities: they define two surfaces that are
called event horizons, but only the first horizon is physically relevant. Note that σ can also
be a complex number: in this case the function ∆(r) has no real zeroes and the solution
describes a naked singularity, since there is only the curvature singularity Ξ = 0, without
any event horizon. This is a problematic situation because it would open to the possibility
of observing the curvature singularity, and the spacetime will fail to be a smooth manifold as
requested by General Relativity. The presence of an event horizon is precisely what allows
us not to interact with that singularity. Therefore, from now on, we will consider σ to be
real, i.e. the parameters m, a, q and p must satisfy

m2 ≥ a2 + q2 + p2 . (1.8)

1.2 Killing vector

Consider the spacetime (M, g) and the diffeomorphism ϕ : M →M . If this diffeomorphism
leaves the metric unchanged then it is called isometry. If there is an isometry, we can
construct orbits along which the metric remains unchanged: the vector tangent to these
orbits is called the Killing vector. So a Killing vector characterizes the symmetries of the
metric and it is defined by the Killing equation

∇µξν +∇νξµ = 0 (1.9)

or similarly
∇(µξν) = 0 . (1.10)

An important consequence of the Killing equation (1.9) is the following lemma

Lemma 1.2.1. For a Killing vector field ξ

∇ρ∇µξ
ν = Rν

µρσξ
σ . (1.11)

Proof. From the definition of the Riemann tensor

[∇µ,∇ν ]ξρ = −Rσ
ρµνξσ .

Using the Killing equation (1.9) and making cyclic permutations of the indices (µνρ), we
can write

∇µ∇νξρ +∇ν∇ρξµ = −Rσ
ρµνξσ ,
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∇ν∇ρξµ +∇ρ∇µξν = −Rσ
µνρξσ ,

∇ρ∇µξν +∇µ∇νξρ = −Rσ
νρµξσ .

Adding the first equation to the second and subtracting the third, we obtain

2∇ν∇ρξµ = (−Rσ
ρµν −Rσ

µνρ +Rσ
νρµ)ξσ .

Recalling the Bianchi identity
Rσ

[ρµν] = 0 ,

it is obvious to find
∇ν∇ρξµ = Rσ

νρµξσ .

By renaming the indices and raising the index ν

∇ρ∇µξ
ν = Rσ µ

νρ ξσ = Rν
µρσξ

σ ,

where the properties of the Riemann tensor were used in the last equality. ■

We also report another lemma that will be used in the next chapter

Lemma 1.2.2. For a Killing vector field ξ

∇ν∇µ∇νξµ = 0 . (1.12)

Proof. Recall the definition of the Riemann tensor

[∇ν ,∇µ]u
ρ = Rρ

σνµu
σ .

Setting uρ = tρλvλ, the definition becomes

[∇ν ,∇µ] t
ρλvλ = Rρ

σνµt
σλvλ .

Applying the Leibniz rule to the left member

vλ [∇ν ,∇µ] t
ρλ + tρλ [∇ν ,∇µ] vλ⏞ ⏟⏟ ⏞

−Rσ
λνµvσ

= Rρ
σνµt

σλvλ .

This equation is true for any v, so

[∇ν ,∇µ] t
ρλ = Rρ

σνµt
σλ +Rλ

σνµt
ρσ .

Contracting the index ρ with ν and the index λ with µ

[∇ν ,∇µ] t
νµ = Rν

σνµt
σµ +Rµ

σνµt
νσ = Rσµt

σµ −Rσνt
νσ = 2Rσµt

[σµ] = 0 ,

where in the last step we used the symmetry of the Ricci tensor.
Now choose tνµ = ∇νξµ, from the last equation we have

∇ν∇µ∇νξµ = ∇µ∇ν∇νξµ ,

but, for the Killing equation (1.10), ∇νξµ is completely antisymmetric, therefore

∇ν∇µ∇νξµ = 0 .

■



1.3. Hypersurfaces 4

1.3 Hypersurfaces

Let M be an four-dimensional manifold with metric g, a hypersurface is a three-dimensional
submanifold Σ on M . A hypersurface can be defined by setting single function to a constant
value:

Φ (xα) = Φ∗ . (1.13)

This constraint can be written in parametric equations of the form

xα = xα (ya) , (1.14)

where {ya} is a coordinate system on the hypersurface Σ. Therefore, equation (1.13) can
be viewed as a restriction on the coordinates.
The vector field

ηµ = gµν∇νΦ (1.15)

is normal to the hypersurface, since the value of Φ changes only in the direction orthogonal
to Σ. If the vector η is timelike, then the hypersurface is said to be spacelike; if η is
spacelike, the hypersurface is timelike; if η is null, the hypersurface is also null. Any vector
field proportional to the normal vector field η,

ξµ = Ψ(xα) ηµ (1.16)

for some function Ψ, will itself be a normal vector field.
If the hypersurface is not null, a unit normal vector n can be defined as

nµ = ε
ηµ

|ηµηµ|1/2
, (1.17)

where ε is a number that can be either 1 or -1. Such a normal vector field is unique except
for a global sign, which changes its orientation. We require that the normal vector field n
points in the direction of increasing Φ, that is

nµ∇µΦ > 0 . (1.18)

From (1.17), the request (1.18) takes the form

|gµν∇µΦ∇νΦ|−1/2 ε gµν∇µΦ∇νΦ = |gµν∇µΦ∇νΦ|1/2 ε nµnµ > 0 ,

⇒ ε nµnµ > 0 ,

but nµnµ = −1 for spacelike hypersurfaces and nµnµ = 1 for timelike hypersurfaces, then

ε =

{︃
−1 if Σ is spacelike,
+1 if Σ is timelike, (1.19)

therefore: ε = nµnµ. Because of this choice, if Σ is the hypersurface defined by t = const,
then the unit normal vector n is future-directed.

If the hypersurface Σ is null, the unit normal vector n is not defined because gµν∇µΦ∇νΦ =
0. In this particular case we consider the normal vector field η defined in (1.17): this vector
is also tangent to Σ, since null vectors are orthogonal to themselves; in fact ηµηµ = 0. It
can be also shown that η is tangent to null geodesics contained in Σ: consider the integral
curves Cµ(α) of the vector field η, which satisfy

dCµ

dα
= ηµ . (1.20)
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These curves will be contained in Σ, because η is tangent to the hypersurface. Then we
calculate

ηµ∇µην = ηµ∇µ∇νΦ = ηµ∇ν∇µΦ = ηµ∇νηµ =
1

2
∇ν (η

µηµ) =
1

2
∇ν

(︁
η2
)︁
,

where in the second equality we used the torsion-free condition, so covariant derivatives
acting on scalars commute. Since η2 is constant on Σ, its derivative will be normal to the
hypersurface. Therefore we must have

∇ν

(︁
η2
)︁
= f ην ⇒ ηµ∇µην =

f

2
ην (1.21)

for some scalar function f(xα). The above equation is equivalent to the geodesic equation
(in non-affine parameterization), so the integral curves Cµ(α) are geodesics. At this point we
are free to re-parameterize the curve Cµ(α) with an affine parameter λ(α), or equivalently,
since the normal vector field η is defined up to a scalar function Ψ(x), we can scale that
normal vector field such that ξµ∇µξν = 0, with ξ given by (1.16). The null geodesics Cµ(λ),
with λ affine parameter, whose union is the null hypersurface Σ, are called the generators
of Σ. In other words, a null hypersurface is generated by null geodesics.

It is often convenient to use a coordinate system on a manifold such that it naturally
adapts to some hypersurface Σ. One way is to use the so-called Gaussian normal coordinates:
choose coordinates {ya}, a = 1, 2, 3 on the hypersurface Σ; now, at each point p ∈ Σ, take
the geodesic for which nµ is the tangent vector at p. Let z be the affine parameter on
each geodesic. For any point q in a neighborhood of Σ, we then assign the coordinates
{z, y1, y2, y3}, where {ya} are the coordinates of the point p connected to q by the geodesic
constructed as illustrated above. The coordinates {z, y1, y2, y3} are known as Gaussian
normal coordinates.

The induced metric on the hypersurface Σ is obtained by restricting the action of the
metric gµν on M to the tangent vectors to Σ. By the equation (1.14), we can defined the
vectors

eαi =
∂xα

∂yi
(1.22)

that are tangent to curves contained in Σ. Then the induced metric on Σ can be calculated
as

hij = gµν (x
α (ya))

∂xµ

∂yi
∂xν

∂yj
= gµν (x

α (ya)) eµi e
ν
j . (1.23)

In Gaussian normal coordinates the metric of the spacetime can be written as

ds2 = εdz2 + hijdy
idyj , (1.24)

where hij is the induced metric on Σ.
Along with an induced metric, hypersurfaces inherit an induced volume element from

the manifold M . For the manifold the volume element is given by

dV =
√︁
|g| d4x , (1.25)

where g = det (gµν). Similarly, in the case of a non-null hypersurface, the volume element
on Σ will be

dΣ =
√︁
|h| d3y , (1.26)

where h = det (hij), with hij the same of (1.24). Since the hypersurface is embedded in
the manifold M , we can defined an oriented volume element dΣµ by the combination of the
unit normal vector nµ and dΣ. Of course, as for n, the oriented volume element can have
two different orientations; we choose the convention

nµdΣµ > 0 , (1.27)
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which implies
dΣµ = εnµdΣ . (1.28)

In fact
nµdΣµ = ε nµnµ dΣ = ε2 dΣ = dΣ > 0 .

Therefore it is necessary not to include the null case because if Σ is null h = 0 and nµ does
not exist.
Another way to write the oriented volume element is

dΣµ = ϵµαβγe
α
1 e

β
2e

γ
3d

3y , (1.29)

where ϵµαβγ are the components of the Levi-Civita tensor and are related to the components
ϵ̃µαβγ of the Levi-Civita symbols by the following equations

ϵµαβγ =
√︁
|g| ϵ̃µαβγ . (1.30)

Because the Levi-Civita tensor is completely antisymmetric, as for (1.28), the sign of dΣµ

as defined in (1.29) would depend on the ordering of the coordinates y1, y2 and y3, which is
arbitrary; note that from the convention in (1.27) follows that the scalar f ≡ ϵµαβγ n

µeα1 e
β
2e

γ
3

must be a positive quantity.: this sets the conventional ordering.
We now demonstrate that (1.28) and (1.29) are equivalent. First of all, note that

εfnµ = εϵµαβγ e
α
1 e

β
2e

γ
3n

µnµ = ϵµαβγ e
α
1 e

β
2e

γ
3 ,

As f is a scalar, it has the same value in every coordinate system: then, without lost of
generality, we can consider the Gaussian normal coordinates. From (1.24) it is obvious to
find that

√︁
|g| =

√︁
|h|, because g = ε h, where ε can be either 1 or −1. Therefore, since

eα1 = δα1 , eβ2 = δβ2 , eγ3 = δγ3 and n = (1, 0, 0, 0) in this particular coordinate system, we find
f =

√︁
|h|. Thus we get

ϵµαβγ e
α
1 e

β
2e

γ
3 = ε

√︁
|h|nµ .

This equality concludes the proof.
Let’s take an example: consider the Schwarzschild spacetime: the metric is given by

(1.4) setting a = p = q = 0 (non-charged and non-rotating black hole). It can be rewrite as

ds2 = −
(︃
1− 2m

r

)︃
dt2 +

(︃
1− 2m

r

)︃−1

dr2 + r2
(︁
dθ2 + sin2 θdφ2

)︁
. (1.31)

Let Σ be the hypersurface defined by t = const, or, using the above notation, Φ (t, r, θ, φ) =
t, that is constant on Σ. Obviously, the tangent vectors to Σ are

er = eαr ∂α = δαr ∂α = ∂r ,

eθ = eαθ ∂α = δαθ ∂α = ∂θ ,

eφ = eαφ ∂α = δαφ ∂α = ∂φ .

Then {r, θ, φ} is a good set of coordinates on Σ; the induced metric on Σ is

hijdy
idyj =

(︃
1− 2m

r

)︃−1

dr2 + r2
(︁
dθ2 + sin2 θdφ2

)︁
. (1.32)

Now we calculate the unit normal vector from (1.17). For a function f , ∇νf = ∂νf , so ∇νΦ
is non-vanishing only for ν = t. Therefore the normal vector field η, defined in (1.15), has
only one non-null component

ηt = gtt∇tΦ = gtt = −
(︃
1− 2m

r

)︃−1

.
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The normal vector field is timelike, then the hypersurface is spacelike and the normal vector
n, choosing ε = −1, becomes

n = nµ ∂µ =

[︄(︃
1− 2m

r

)︃−1/2

, 0, 0, 0

]︄
. (1.33)

In the null case the oriented surface element can be written as in (1.29), where eα1 = ξα,
where

ξα =
dCα

dλ
is the tangent vector to the generators of Σ.

Later we will consider two-dimensional surfaces S as the boundary of an hypersurface
Σ on the manifold M . The surface S is a submanifold of Σ and is described by an equation
ψ (ya) = ψ∗ or similarly by the parametric equations ya = ya

(︁
wA

)︁
, where {wA} is a

coordinate system on S. Since Σ is defined by xα (ya), we can combine this relation with
the one of the surface S to obtain the equations xα

(︁
wA

)︁
, which describe S as embedded in

M .
The surface element on S has two equivalent expressions

dSµν = ϵµνβγe
β
2e

γ
3 d

2w , (1.34)

dSµν = −2n[µσν]

√︂
|h(2)| d2w , (1.35)

where h(2) is the determinant of the induced metric on S, h(2)ij , n is the unit normal vector
to Σ and σ is the unit normal vector to S; σ is also normal to n. The equivalence of the
above equations is guaranteed by the same arguments used for the equality between (1.28)
and (1.29).

1.4 Gauss-Stokes Theorem

Let R be a region of the spacetime manifold M bounded by a closed three-dimensional
hypersurface ∂R, then for any vector field V defined within R∫︂

R
∇µV

µ
√︁
|g| d4x =

∫︂
∂R
V µ dΣµ . (1.36)

This result is known as Gauss’ theorem 1. The theorem is valid also for hypersurfaces that
have segments that are timelike, spacelike or null.

Let now Σ be an hypersurface on the manifold M with boundary ∂Σ, a closed surface.
Then for any antisymmetric tensor field Xµν∫︂

Σ
∇νX

µνdΣµ =
1

2

∮︂
∂Σ
XµνdSµν . (1.37)

This result is another version of Gauss’ theorem, usually called Stokes’ theorem. Instead of
dSµν , we will often use the following surface element

dΣµν ≡ 1

2
dSµν . (1.38)

Therefore the Stokes’ theorem becomes∫︂
Σ
∇νX

µνdΣµ =

∮︂
∂Σ
XµνdΣµν . (1.39)

1For a proof of Gauss’ theorem and Stokes’ theorem see [2], section 3.3
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1.5 Killing horizons and surface gravity

The horizon of a black hole has a particular feature: it is a null hypersurface, especially it
is a Killing horizon. So let’s define what a killing horizon is.

Definition 1.5.1. A null hypersurface Σ is called a Killing horizon if there is a Killing
vector field ξ normal to Σ.

Therefore the notion of Killing horizon is independent from that of an event horizon: a
Killing horizon need not necessarily to be an event horizon. However, there is an essential
link between event horizons and Killing horizons. In particular, there are two independent
results, usually referred to as rigidity theorems. The first, due to Carter, states that for a
static black hole, the static Killing vector field k = ∂t must be normal to the event horizon,
whereas for a stationary and axisymmetric black hole, with the property that the planes
spanned by k and the rotational Killing vector field m = ∂φ are orthogonal to a family of
two dimensional surface (this is the orthogonality property), there exists a Killing vector
field ξ = ∂t+ΩH∂φ which is normal to the event horizon; ΩH is a constant called the angular
velocity of the horizon. This result is a purely geometric fact: it holds without invoking the
Einstein field equations. The second result, due to Hawking, directly proves that in vacuum
or electrovac spacetimes, the event horizon of any stationary black hole must be a Killing
horizon. Hawking’s theorem makes no assumptions of symmetries beyond stationarity, but
it does rely on the properties of the Einstein field equations.
To every Killing horizon we can associate a quantity called surface gravity. Consider the
Killing horizon Σ with normal vector η. As shown in section 1.3 it satisfies the geodesic
equation ∇ηη = 0 in affine parameterization. The Killing vector ξ normal to Σ will be
proportional to η on Σ: ξ = Ψ(xα) η, for some function Ψ. Therefore it follows that ξ
satisfies the geodesic equation in non affine parameterization

∇ξξ = κ ξ , on Σ , (1.40)

where κ is a function called surface gravity.
This formula for the surface gravity is quite difficult to apply, but we can find a direct
relation between κ and the Killing vector field ξ. In fact, from the Frobenius’ theorem
follows that the necessary and sufficient condition that ξ be hypersurface orthogonal is

ξ[µ∇νξρ]
⃓⃓
Σ
= 0 . (1.41)

We can rewrite this condition as

ξµ∇νξρ + ξν∇ρξµ + ξρ∇µξν − ξν∇µξρ − ξρ∇νξµ − ξµ∇ρξν = 0 .

By the Killing equation (1.9) follows that

ξµ∇νξρ = − (ξν∇ρξµ + ξρ∇µξν) = − (ξν∇ρξµ − ξρ∇νξµ) .

By contraction with ∇νξρ we find

ξµ (∇νξρ) (∇νξρ) = − (∇νξρ)
(︁
ξ[ν∇ρ]ξµ − ξ[ρ∇ν]ξµ

)︁
= −2 (∇νξρ) ξν∇ρξµ =

= −2κξρ∇ρξµ = −2κ2ξµ ,

where in the first step we noticed that equation (1.10) implies the antisymmetrization in
the indices ν, ρ in the second factor; then we used (1.9) renaming the indices if necessary;
finally we used (1.40) twice.
Dividing both sides by ξµ we finally get

κ2 = −1

2
(∇µξν) (∇µξν) , (1.42)
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where the expression on the right-hand side is to be evaluated at the horizon.
Note that the surface gravity associated with a Killing horizon is in principle arbitrary. In
fact, if Σ is a Killing horizon of ξ with surface gravity κ, then it is also a Killing horizon
of c ξ, for any real constant c: the corresponding surface gravity will be |c|κ. There is no
natural normalization of ξ on Σ since ξ2 = 0 there, but in an asymptotically flat spacetime
there is a natural normalization at spatial infinity. For example for the time translation
Killing vector field k we choose

kµk
µ = −1, for r → ∞ . (1.43)

This in turn fixes the surface gravity of any associated Killing horizon.
Why κ is called surface gravity? The reason is clear when we consider a static and

asymptotically flat spacetime. In that case the surface gravity is the acceleration of a
static observer near the horizon as measured by a static observer at infinity. Consider for
example the Schwarzschild spacetime, whose metric is given by (1.31). A static observer
has four-velocity u proportional to the time translation Killing vector field k

kµ = V (xα)uµ . (1.44)

Since the four-velocity is normalized, that is uµuµ = −1, the function V is

V =
√︁
−kµkµ . (1.45)

In this case

V =

√︃
1− 2m

r
⇒ u =

(︃
1− 2m

r

)︃− 1
2

∂t .

Note that V = 1 for a static observer at infinity. The four-acceleration a is given by

a = ∇uu . (1.46)

In components

aµ = uν∇νu
µ = uνΓµ

νσu
σ = ututΓµ

tt =

(︃
1− 2m

r

)︃−1

Γµ
tt .

The only non null component is ar = m/r2, because the Christoffel symbols for the metric
(1.31) are null if µ ̸= r. The acceleration norm is

|a(r)| =
√
grrarar =

m

r2

(︃
1− 2m

r

)︃− 1
2

.

Consider now a particle that is moving along static trajectories: |a(r)| is the acceleration
required to hold the particle at constant r. The acceleration diverges for r = 2m: thus it
will take an infinite acceleration to keep an object on a static trajectory at the horizon. Now
suppose that the particle is held in place by an observer at infinity through an infinitely
long and massless string; this situation is different since the particle and it can be shown
that the force exerted by the observer at infinity to hold a unit test mass in place, that
we will call F∞, differs from the force exerted locally by the redshift factor V . In formula:
F∞ = V F . Therefore the acceleration of the particle measured by the observer at infinity
a∞ is the force applied by this observer per unit mass: it turns out to be a∞(r) = V (r)a(r).
For r = 2m we find the acceleration measured at infinity of a particle on a static trajectory
at the horizon: this is exactly what we usually refer to as surface gravity. Then we define
the surface gravity κ = a∞(r = 2m) for the Schwarzschild spacetime. Thus we find

κ =
1

4m
. (1.47)
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This is the same result we would find starting from (1.42).
In the case of a stationary, but not static, spacetime the surface gravity loses this interpreta-
tion because is no longer possible to consider static observers very close to the horizon of the
black hole. In fact, if we consider observers that do not move with respect to hypersurfaces
of constant t, they rotate around the black hole. This effect is known as frame-dragging.



Chapter 2

Energy, angular momentum and
charge

In this chapter we will present the Komar integral, a way to calculate the conserved charges
in General Relativity starting from a symmetry of the spacetime. We then apply this method
to the simplest black holes, in order to understand the parameters present in the metric
of these solutions. Finally, we will see a decomposition of the Komar integral, in order to
distinguish the various contributions of the spacetime to the conserved charges.

2.1 Komar Integral

From classical mechanics we know that there is a constant of motion for each symmetry of
the system. In GR the concept of symmetry of a spacetime is related to the Killing vector
fields; then we look for a way to define a conserved quantity starting from these symmetries.
In particular we are interested in mass, charge and angular momentum of spacetime, since,
for the no-hair theorem, they are the parameters that fully characterize stationary black
hole solutions in asymptotically flat GR. One way to define these conserved charges is the
Komar integral.

To understand the Komar integral, it is instructive to start from the definition of the
electric charge: this conserved charge is not linked to a Killing vector field, but rather to
the symmetry group U(1) of Maxwell equations. Consider a generic spacetime (M, g), not
necessarily a black hole: Maxwell’s equations relate the electromagnetic field strength tensor
Fµν to the electric current four-vector Jµ

e

∇νF
µν = 4πJµ

e , (2.1)

∇[νFµλ] = 0 . (2.2)

A direct consequence of Maxwell equations is that Jµ is a conserved current, that is

∇µJ
µ
e = 0 . (2.3)

Let Σ be a spacelike hypersurface on M , generally defined as the hypersurface at constant
t. We define the total electric charge on Σ to be

Q =

∫︂
Σ
Jµ
e dΣµ =

1

4π

∫︂
Σ
∇νF

µνdΣµ , (2.4)

where in second last step we used (2.1). This definition is nothing more than the definition
of charge in classical electromagnetism readjusted to curved spacetimes in covariant form.

11
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Since Fµν is an antisymmetric tensor, for the Stokes’ theorem (1.39) we can express the
charge as an integral over the boundary ∂Σ of Σ

Q =
1

4π

∮︂
∂Σ
Fµν dΣµν . (2.5)

By the antisymmetry of Fµν

FµνdΣµν = −1

2
Fµν (nµσν − nνσµ)

√︂
|h(2)| d2w = −Fµνnµσν

√︂
|h(2)| d2w ,

so we can write the charge in the following way

Q = − 1

4π

∮︂
∂Σ
nµσνF

µν
√︂
|h(2)| d2w . (2.6)

Previously we said that Jµ
e is a conserved current as it satisfies equation (2.3). For the

Gauss’ theorem this divergenceless current implies that Q is a conserved charge. In fact,
let R be a region of the spacetime manifold M defined as the region between two spatial
hypersurfaces, Σ1 and Σ2, extending all the way to infinity; its boundary ∂R is a closed
hypersurface composed of Σ1, Σ2 and a hypersurface at infinity connecting them. The latter
hypersurface can be ignored, since the four-vector Jµ

e vanishes at infinity. Therefore, using
(2.3) and the Gauss’ theorem (1.36), we can write

0 =

∫︂
R
∇µJ

µ
√︁
|g|d4x =

∫︂
∂R
Jµ dΣµ =

∫︂
Σ1

Jµ dΣ̂µ +

∫︂
Σ2

Jµ dΣ̂µ =

=

∫︂
Σ2

Jµ dΣµ −
∫︂
Σ1

Jµ dΣµ = Q (Σ2)−Q (Σ1) ,

where on each hypersurface dŜµ = −nα
√︁

|h| d3y, where nα is the outward normal vector
to the closed hypersurface. To get the conventional volume element dSµ used in the charge
definition (2.4), let n1α and n2α be the conventional unit normal vectors respectively to
Σ1 and Σ2, as shown in figure 2.1: they are both future directed. It is clear that for Σ2

Σ2

nα2

Σ1

nα1

Figure 2.1: Normal vectors to spacelike hypersurfaces

the normal vector nα inherited from R coincides with n2α, whereas for Σ1 the inherited
normal vector has the opposite direction of the conventional one: nα = −n1α. For this
reason a minus sign appears in front of the conventional integral over Σ1. Then we see that
Q (Σ1) = Q (Σ2): the charge is independent of the hypersurface Σ on which is evaluated.

Therefore it is necessary to find conserved currents J associated with a Killing vector
field ξ in order to define a conserved charge. We will now show that such a current can be
constructed from any Killing vector field. Consider the current

Jµ = Rµνξν = Rµ
νξ

ν . (2.7)
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From Einstein’s equations (1.1) it follows that

Rµν = 8π

(︃
Tµν − 1

2
Tgµν

)︃
, (2.8)

so we can write the current through the energy-momentum tensor as

Jµ = 8πξν

(︃
Tµν − 1

2
Tgµν

)︃
. (2.9)

We now note that J can be written in term of the covariant derivative of an antisymmetric
tensor thanks to the following lemma

Lemma 2.1.1. For a Killing vector field ξ

∇ν∇µξ
ν = Rµνξ

ν . (2.10)

Proof. By contracting (1.11)

∇ν∇µξ
ν = Rν

µνσξ
σ = Rµσξ

σ = Rµνξ
ν .

■

Therefore (2.7) becomes
Jµ = ∇ν∇µξν . (2.11)

Proposition 2.1.2. For a Killing vector field ξ the current defined in (2.7) is a conserved
current, that is: ∇µJ

µ = 0.

Proof. It follows from Lemma 1.2.2
■

We can thus associate the following conserved charge to this current

Qξ = −
cξ
8π

∫︂
Σ
Jµ dΣµ = −

cξ
8π

∫︂
Σ
∇ν∇µξν dΣµ =

cξ
8π

∮︂
∂Σ

∇µξνdΣνµ . (2.12)

where the minus sign has been introduced in order to have the same constant of [1] and
[12] before the integral; cξ is a constant determined in the limit of "weak" gravity. The last
member of the equation is the Komar integral associated with the Killing vector field ξ.
We can now define the total energy and the total angular momentum of spacetime.

Energy is the conserved quantity associated with the invariance of a system by time
translation; in General Relativity we can define the energy as the conserved charge associated
with a timelike Killing vector field k

M =
1

4π

∮︂
∂Σ

∇µkν dΣνµ =
1

4π

∮︂
∂Σ

∇µkνnµσν

√︂
|h(2)| d2w , (2.13)

where we choose ck = 2. To determine this constant we consider the weak field limit where
gµν ∼ ηµν and a distribution of dust with energy-momentum tensor Tµν = diag(ρ, 0, 0, 0).
Starting from the first equality in (2.12) combined with (2.9), we obtain

E = −ck
∫︂
Σ

(︃
Tµ

ν − 1

2
δµνT

)︃
kν dΣµ .

Choose now Σ to be the spacelike hypersurface of constant t; in a coordinate system
{t, x1, x2, x3} where xi are coordinates on Σ, from (1.29) it is easy to find that dSµ =
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δtµ
√︁
|g| d3x, where

√︁
|g| ∼

√︁
|η| = 1. The timelike Killing vector field has components

kν = δνt , so

E = −ck
∫︂
Σ

(︃
T t

ν − 1

2
δtνT

)︃
δνt d

3x = −ck
∫︂
Σ

(︃
−Ttt +

1

2
T

)︃
d3x =

ck
2

∫︂
Σ
ρ d3x ,

where in the second step we lowered the index t of the energy-momentum tensor through
the Minkowski metric. Comparing this result with the energy of the energy density ρ in the
Minkowski spacetime we find ck = 2.

Angular momentum is the conserved charge associated with a rotational Killing vector
field m = ∂φ

J = − 1

8π

∮︂
∂Σ

∇µmν dΣνµ = − 1

8π

∮︂
∂Σ

∇µmνnµσν

√︂
|h(2)| d2w , (2.14)

where we choose cm = −1. To determine this constant consider again the weak field limit
and let Σ be the same hypersurface as before, then

J = −cm
∫︂
Σ

(︃
Tµ

ν − 1

2
δµνT

)︃
mν dΣµ .

In the coordinate system {t, x1, x2, x3}, where now xi are the Cartesian coordinates, the
rotational Killing vector field is m = −x2∂x1 + x1∂x2 , we obtain

J = −cm
∫︂
Σ
x1T t

2 − x2T t
1 d

3x = −cm ε3ij
∫︂
Σ
xiT jt d3x ,

which for cm = −1 this is the result for the third component of angular momentum in
Minkowski spacetime with energy-momentum tensor Tµν .

For a black hole solution, in order to consider the contribution of the horizon to the
conserved charges, the latter are defined by an integral over a two-sphere at spatial infinity

M =
1

4π

∮︂
Σ∞

∇µkνdΣνµ , (2.15)

J = − 1

8π

∮︂
Σ∞

∇µmνdΣνµ , (2.16)

Q =
1

4π

∮︂
Σ∞

FµνdΣµν . (2.17)

Finally, note that a Killing vector is defined up to multiplication by a constant: if ξ satisfies
the Killing equation, also ζ = c∗ ξ satisfies that equation. This would make the energy
and the angular momentum of spacetime change according to the value of c∗. Actually the
constant in front of the Komar integral is determined for asymptotically flat spacetimes by
imposing that ξ2 = −1 asymptotically if ξ is timelike, while ξ2 = 1 asymptotically if ξ is
spacelike (already for asymptotically (A)dS spacetimes the normalization is not trivial). If
ξ is not correctly normalized, then the constant in front of the Komar integral will change
accordingly.

2.2 Energy of Schwarzschild black hole

The Schwarzschild metric is given by (1.31). We already calculated the unit normal vector
n to the spacelike hypersurface Σ of constant t: the result is in equation (1.33). Given the
symmetry of the solution, we choose the boundary of ∂Σ as the surface of constant r: in
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particular it is a two-sphere at spatial infinity. The unit normal vector to ∂Σ, normalized
as in (1.17), and orthogonal to n is

σ =

(︃
1− 2m

r

)︃1/2

∂r .

Starting from (2.15) and rewriting the surface element using (1.38) and (1.35), we find the
term

nµσν∇µmν = nµσνgνρ∇µm
ρ = ntσrgrr∇tk

r = ntσrgrrΓ
r
tνk

ν = ntσrgrrΓ
r
tt =

= −1

2
ntσrgrrg

rr∂rgtt =
1

2

∂

∂r

(︃
1− 2m

r

)︃
=
m

r2
.

From the induced metric on the two-sphere at spatial infinity follows that
√︁
|h(2)| = r2 sin θ;

therefore the energy of the Schwarzschild black hole is

M = lim
r→∞

1

4π

∫︂ 2π

0
dφ

∫︂ π

0
dθ r2 sin θ

m

r2
=
m

2

∫︂ π

0
dθ sin θ = m .

Note that this integral is equal to m for each two-sphere of radius r > 2m: all the energy
is enclosed within the event horizon and the parameter m is interpreted as the mass of the
black hole.

2.3 Energy and charge of Reissner-Nordström black hole

The Reissner-Nordström black hole is an exact solution of Einstein-Maxwell equations rep-
resenting a non-rotating and electrically charged black hole. The metric is given by (1.4)
setting a = p = 0; thus we find

ds2 = −
(︃
1− 2m

r
+
q2

r2

)︃
dt2 +

(︃
1− 2m

r
+
q2

r2

)︃−1

dr2 + r2dθ2 + r2 sin2 θdφ2 , (2.18)

with the four-vector electromagnetic potential

A =
[︂q
r
, 0, 0, 0

]︂
. (2.19)

Let Σ be the usual spacelike hypersurface of constant t and ∂Σ its boundary, that is a
surface of constant r. In the same way of Schwarzschild black hole, the unit normal vectors
to ∂Σ are

n =

(︃
1− 2m

r
+
q2

r2

)︃−1/2

∂t , σ =

(︃
1− 2m

r
+
q2

r2

)︃1/2

∂r .

Starting from (2.6), consider the following term

nµσνF
µν = ntσrFtr = −ntσr∂rAt =

q

r2
.

Therefore we find that the charge is

Q = − 1

4π

∫︂ 2π

0
dφ

∫︂ π

0
dθ r2 sin θ

q

r2
= −q

2

∫︂ π

0
dθ sin θ = −q .

The minus sign in front of q is due to the fact that we considered the vector potential of
a negative charge of modulus q. Anyway, note that the metric remains unchanged by the
transformation q → −q since it depends on q2: there will be no difference in considering a
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charge q or −q.
In order to find the energy, same steps to those seen in the previous section are made

nµσν∇µmν = −1

2
ntσrgrrg

rr∂rgtt =
1

r2

(︃
m− q2

r

)︃
,

M = lim
r→∞

1

8π

∫︂ π

0
dθ

∫︂ 2π

0
dφ r2 sin θ

(︃
2m

r2
− 2q2

r3

)︃
= lim

r→∞

(︃
m− q2

r

)︃
= m .

Note that the Komar integral is not equal for each sphere outside the horizon because of
the term q/r. As we will clarify in section 2.5 the parameter m is the total energy of the
spacetime, but it does not coincide with the mass of the black hole.

2.4 Energy and angular momentum of Kerr black hole

The Kerr solution describes a rotating, non-charged, black hole. In Boyer-Lindquist coor-
dinates the metric is given by (1.4) setting q = p = 0. We do not rewrite the metric as it
would remain identical to (1.4), except for the metric function ∆, that now is

∆ = r2 − 2mr + a2 .

In the same coordinates the metric can be written in the so-called canonical form

ds2 = −N2dt2 + γ (dφ− Ωdt)2 +
Ξ

∆
dr2 + Ξdθ2 , (2.20)

where

N2 =
∆Ξ

R2
, R2 =

(︁
r2 + a2

)︁2 − a2∆sin2 θ ,

Ω =
2mar

R2
, γ =

R2 sin2 θ

Ξ
.

Let’s now turn our attention to the calculation of energy. The Kerr metric is not diagonal
because of the presence of the term gtφ, so the unit normal vector n to the spacelike hy-
persurface Σ of constant t will generally be a linear combination of the two basis vectors
∂t and ∂φ: n = α∂t + β∂φ. By imposing the orthogonality with the basis tangent vectors
{∂r, ∂θ, ∂φ} to Σ, we find the relation β = Ωα. Finally, asking for n2 = −1 since it is
timelike, the unit normal vector takes the form

n = N−1 (∂t +Ω∂φ) .

The boundary ∂Σ of Σ is a surface of constant r; since the induced metric on Σ is diagonal,
the unit normal vector to ∂Σ and tangent to Σ is

σ =

√︃
Ξ

∆
∂r .

Starting from (2.15), noting that
√︁

|h(2)| = R sin θ and that

nµσν∇µmν = nµσνgνρ∇µm
ρ = ntσrgrr∇tm

r + nφσrgrr∇φm
r ,

the energy is given by

M =
1

4π

∫︂ 2π

0
dφ

∫︂ π

0
dθ sin θ

[︁
R
(︁
ntσrgrr∇tk

r + nφσrgrr∇φk
r
)︁]︁

, (2.21)
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where

∇tk
r = Γr

tt = −1

2
grrgtt,r =

m∆
(︁
r2 − a2 − cos2 θ

)︁
Ξ3

,

∇φk
r = Γr

tφ = −1

2
grrgtφ,r =

am∆

Ξ3
sin2 θ

(︁
a2 cos2 θ − r2

)︁
.

We have not written the limit r → ∞ in (2.21) because the result would be the same on
each sphere outside the horizon. However we can solve the integral only in the limit r → ∞;
in this case we can develop in series of 1/r the term in square brackets in (2.21). By the
following asymptotic behaviors

∆ ∼ r2 , Ξ ∼ r2 , N ∼ 1 , Ω ∼ 2am

r3 ,
R ∼ r2 ,

Γr
tt ∼

m

r2
, Γr

tφ ∼ −am sin2 θ

r2
.

the term in square brackets takes the form

m+O
(︃
1

r

)︃
,

so the energy is

E =
m

4π

∫︂ 2π

0
dφ

∫︂ π

0
dθ sin θ = m .

As in Schwarzschild, the parameter m coincides with the mass of the black hole.
Similarly for the angular momentum, starting from (2.16), we can write

J = − 1

8π

∫︂ 2π

0
dφ

∫︂ π

0
dθ sin θ

[︁
R
(︁
ntσrgrr∇tm

r + nφσrgrr∇φm
r
)︁]︁

, (2.22)

where
∇tm

r = Γr
tφ ,

∇φm
r = Γr

φφ = −1

2
grrgφφ,r = −∆sin2 θ

Ξ

[︃
r − ma2 sin2 θ

Ξ2

(︁
r2 − a2 cos2 θ

)︁]︃
.

Using the above asymptotic behaviors together with the following

Γr
φφ ∼ −r sin2 θ ,

the term in square brackets in (2.22) takes the form

−3ma sin2 θ +O
(︃
1

r

)︃
,

so the angular momentum is

J =
3ma

8π

∫︂ 2π

0
dφ

∫︂ π

0
dθ sin3 θ = ma .

Therefore the parameter a in (1.4) is the ratio between angular momentum and energy of
the black hole.
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2.5 Energy and angular momentum decomposition

Mass and angular momentum are defined respectively by (2.15) and (2.16) in a coordinate-
independent manner. For a black hole solution, the hypersurface Σ of constant t as two
boundaries: a two-sphere at spatial infinity and the black hole horizon. Therefore, by Stokes’
theorem (1.39), for a timelike Killing vector field k

− 1

4π

∫︂
Σ
Rµ

νk
ν dΣµ =

1

4π

∮︂
Σ∞

∇µkν dΣνµ − 1

4π

∮︂
H
∇µkν dΣνµ . (2.23)

Then we can write the Komar energy as the sum of two contributions

M =MGS + ˆ︂MH , (2.24)

where
MGS = − 1

4π

∫︂
Σ
Rµ

νk
ν dΣµ = −2

∫︂
Σ

(︃
Tµ

ν − 1

2
δµνT

)︃
kν dΣµ (2.25)

is the energy contribution of spacetime outside the black hole due to external sources, while

ˆ︂MH =
1

4π

∮︂
H
∇µkν dΣνµ (2.26)

is the horizon contribution. The energy-momentum tensor can be decomposed into a mate-
rial part, indicated by a suffix M and an electromagnetic part, indicate by a suffix E, that
is

Tµ
ν = T µ

M ν + T µ
E ν ,

where the electromagnetic part is given by (1.2). Consequently MGS is divided into two
terms: an external contribution of material sources MM

MM = −2

∫︂
Σ

(︃
T µ
M ν − 1

2
δµνTM

)︃
kν dΣµ (2.27)

and an external contribution ME due to an electromagnetic field

ME = −2

∫︂
Σ
T µ
E ν k

ν dΣµ , (2.28)

where we used that the electromagnetic energy-momentum tensor has null trace. Similarly
for the angular momentum

J = JGS + ˆ︁JH , (2.29)

where

JGS =
1

8π

∫︂
Σ
Rµ

νm
ν dΣµ =

∫︂
Σ

(︃
Tµ

ν − 1

2
δµνT

)︃
mν dΣµ =

=

∫︂
Σ

(︃
T µ
M ν − 1

2
δµνTM

)︃
mν dΣµ⏞ ⏟⏟ ⏞

JM

+

∫︂
Σ
T µ
E νm

ν dΣµ⏞ ⏟⏟ ⏞
JE

,
(2.30)

and ˆ︁JH = − 1

8π

∮︂
H
∇µmν dΣνµ . (2.31)

We will deal with solutions of the vacuum Einstein-Maxwell equations, where T µν
M =

0; so the external material contributions MM and JM vanish and the Komar integral’s
decomposition becomes

M = ˆ︂MH +ME , (2.32)
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J = ˆ︁JH + JE . (2.33)

We now use this decomposition to calculate the energy contribution of the black hole and
that of the external spacetime for the Reissner-Nordström solution. The horizon contribu-
tion ˆ︂MH is identical to the Komar integral, except that the integration surface is not at
spatial infinity, but at r = rH . Therefore, performing the same steps as those in section 2.3,
we find ∮︂

H
∇µkνdΣνµ =

1

8π

(︃
2m− 2q2

rH

)︃∫︂ π

0
dθ sin θ

∫︂ 2π

0
dφ = m− q2

rH
.

Let’s now calculate the electromagnetic contribution ME : since Σ is the spacelike hyper-
surface of constant t, the index µ of the volume element in (2.28) must be equal to t (this
is clear from formula (1.29)). Moreover, the timelike Killing vector fields has components
kν = δνt , so the only component of the energy-momentum tensor that contributes in the
integral is

T t
t =

1

4π

[︃
F trFtr − 1

4

(︁
F trFtr + F rtFrt

)︁]︃
=

1

8π
F trFtr =

1

8π
gttgrr (∂rAt)

2 .

Consequently the electromagnetic contribution becomes

ME =
q2

4π

∫︂ π

0
dθ sin θ

∫︂ 2π

0
dφ

∫︂ ∞

rH

dr

r2
= lim

r→∞
−q

2

r

⃓⃓⃓⃓x
rH

=
q2

rH
.

The two contributions add up to M = m.
In conclusion the total energy of the Reissner-Nordström black hole is the sum of two
contributions: the energy of the black hole and the energy due to the presence of a non-null
electromagnetic energy-momentum tensor. So there is a contribution of the outer space
outside the black hole. For this reason the Komar integral is not the same on every two-
sphere outside the horizon, as happens in the Schwarzschild case, and the parameter m is
not the mass of the black hole.

2.6 Dual Komar integrals: magnetic and NUT charges

Komar charges can be written in a more compact form using forms. Let’s consider the
energy as an example: we can define a 1-form k̂ associated to the timelike Killing vector
field k of components k̂µ = gµνk

ν . We can then construct a 2-form by taking its exterior
derivative. The Komar mass (2.15) is then given by the surface integral over the Hodge
dual of dk̂

M = − 1

8π

∮︂
Σ∞

∗dk̂ . (2.34)

In fact, since the 2-form dk̂ has components (dk̂)µν = 2∇µkν , its Hodge dual reduces to
expression (2.15) when restricted to the surface.
Similarly for the electric charge we can write

Q =
1

4π

∮︂
Σ∞

∗F , (2.35)

where F is the 2-form constructed from the Faraday tensor.
We can now define the magnetic charge through the dual of the electric charge

P =
1

4π

∮︂
Σ∞

F =
1

8π

∮︂
Σ∞

Fµν dx
µ ∧ dxν = − 1

16π

∮︂
Σ∞

ϵµναβFαβdSµν . (2.36)
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These three expressions are equivalent to each other. In particular the second one shows
that the magnetic charge can be calculated without introducing the metric, which gives
local information about spacetime: the magnetic charge describes actually a topological
characteristics of the solution, in fact it is associated with Dirac strings1. Quite the opposite,
the computation of the electric charge depends on the metric, in fact it is not a topological
characteristic of the solution.
In section 5.1 we will define the NUT charge: such a charge is interpreted as a sort of
magnetic mass. Therefore, similarly to the magnetic charge, we can define the NUT charge
as the dual of the Komar mass

M̃ = − 1

8π

∮︂
Σ∞

dk̂ = − 1

8π

∮︂
Σ∞

∇µkν dx
µ ∧ dxν =

1

16π

∮︂
Σ∞

ϵµναβ∇αkβdSµν . (2.37)

Note that these charges are also conserved; however they are not linked to any symmetry.
We computed the values of P and M̃ for the Reissner-Nordström-NUT spacetime, whose
metric can be found from (1.4) by setting a = 0 and adding the NUT charge, which will
be defined in section 5.1. The computation of (2.36) returns the parameter p up to a sign,
which depends on the choice of the vector potential but does not affect the metric. The
computation of (2.37) returns the NUT parameter n.
The dual Komar integrals P and M̃ are standard formulas employed for the computation
of the magnetic charge and the NUT charge respectively. In section 6.2 we will present two
alternative approaches for the computation of the Smarr formula which make use of these
definitions.

1we will talk about Dirac strings in section 5.1



Chapter 3

Rod Structure

We already said that the coupled vacuum Maxwell-Einstein equations simplify considerably
for stationary and axisymmetric solutions. We now focus our attention on this particular
class of solutions, analyzing their general structure. This chapter, together with the next,
will be very useful in finding an elegant way to calculate the conserved charges in presence
of line singularities 1.

3.1 Stationary and axisymmetric solutions

Consider a four-dimensional manifold M with two commuting and linearly independent
Killing vector fields ξ(i), i = 1, 2, where one of the two Killing vector fields is timelike for the
stationary condition, while the other one is spacelike and it is related to the axisymmetry
of the spacetime. The following results can be extended to the case of a d-dimensional
manifold with d− 2 commuting and linearly independent Killing vector fields, where d− 3
spacelike Killing vector fields gives the so-called axisymmetry of the spacetime.
We can find coordinates xi, i = 1, 2 such that

ξ(i) =
∂

∂xi
.

Under certain conditions that we assume to be verified 2, the two planes orthogonal to
the two Killing vector fields are integrable: this means that for any given point of the
spacetime there is a two-dimensional submanifold that includes this point and have the
property that its two-dimensional tangent space is orthogonal to all of the Killing vector
fields. By choosing coordinates on one of these two-dimensional submanifolds and dragging
them along the integral curves of the two Killing vector fields, we obtain two coordinates
y1 and y2 such that the vector ∂

∂yj
are orthogonal everywhere to all the Killing vector fields

for all j = 1, 2. Basically the metric can be divided into two blocks.
Through changes of the coordinates y1, y2, the metric can be written in the form

ds2 = Gabdx
adxb + e2γ

(︁
dρ2 + dz2

)︁
, (3.1)

where the coordinate ρ is related to the matrix G of components Gab via

ρ =
√︁

|detG| . (3.2)

The latter relations is a consequence of the vacuum Maxwell-Einstein equations. Clearly all
the metric functions γ and gab, with a, b = 1, 2, are functions of (ρ, z).

1the references for this chapter are [7] and [8].
2for more detail see Theorem 2.1 in [7].

21



3.1. Stationary and axisymmetric solutions 22

Since the coordinate ρ satisfies (3.5), the G matrix is always invertible when ρ ̸= 0, while for
ρ = 0 we see that detG(0, z) = 0. Therefore the eigenvalues of G(0, z) include the eigenvalue
zero for a given z and

dim [ker(G(0, z))] ≥ 1

In order to avoid curvature singularities on the axis a necessary condition is that

dim [ker(G(0, z))] = 1

except for isolated values of z. In fact having two zero eigenvalues in a an interval [z1, z2]
leads to the divergence of the curvature invariant RµνρσR

µνρσ for a given z in that interval:
therefore we get a curvature singularity.
Naming the isolated z-values z1, ...., zN , the z-axis splits up into N + 1 intervals [−∞, z1],
[z1, z2], ....., [zN−1, zN ], [zN ,∞] called rods.
Consider now a specific rod [zn, zn+1]: the vector vn ∈ R2 such that

Gab(0, z)v
a
n = 0 for z ∈ [zn, zn+1] (3.3)

is called direction of the rod [zn, zn+1].
The rod structure of a solution is the specification of the rod intervals [zn, zn+1] with the
corresponding direction vn.
Note that the direction of a rod is a linear combination of the two Killing vector fields ξi
and therefore it defines a Killing vector field of the spacetime. In particular the Killing
vector field vn vanishes along the associated rod: the rod will be a Killing horizon for the
corresponding direction.
In order to characterize the rods, consider the limit where ρ goes to zero. Since we can
always make a constant coordinate transformation of the coordinates xi such that G1i = 0
for i = 1, 2 and z ∈ [zn, zn+1]

3, to leading order, we can write

G =

[︃
±a(z)ρ2 0

0 ± 1
a(z)

]︃
for ρ→ 0

where the signs in front of the two matrix elements are not correlated, while the exponent
of ρ is determined by the condition (3.5). In this new coordinates the direction of the rod
[zn, zn+1] becomes the two-dimensional vector vn = (1, 0), and its norm goes to zero as ρ2,
in fact

v2n = Gabv
a
nv

b
n ∼ ±a(z)ρ2 for ρ→ 0

Therefore, since from Einstein equations it follows that e2γ ∼ c2a(z) for ρ → 0 where c is
a positive number, the quantity ρ−2e−2γv2n has a finite limit on the polar axis and will be
constant along the corresponding rod. If this quantity is negative, positive or zero for ρ→ 0
we say the rod is respectively timelike, spacelike or null: we will consider only timelike
and spacelike rods. Finite timelike rods correspond to horizons, while the semi-infinite ones
correspond to acceleration horizons; finite spacelike rods potentially correspond to conical
singularities.
For the horizon rod we can calculate the associated surface gravity, since a rod is a Killing
horizon. In particular, starting from (1.42) and using the constrain (3.2), we find

κH = lim
ρ→0

(︂
−ρ−2e−2γGabv

a
Hv

b
H

)︂1/2
(3.4)

where vH is the horizon rod direction.
We can define a surface gravity for each rod through a similar formula, since they are Killing
horizons; however, surface gravity assumes a physically relevant role only for the black hole
horizon.

3for more details see theorem 3.1 in [7]
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3.2 Rod structure of the Kerr black hole

Let us now give an example of how to determine the rod structure of a solution starting
from a metric, not necessarily in Weyl coordinates. Consider the Kerr metric that in Boyer-
Lindquist coordinates is given by (1.4) setting q = p = 0. To find the matrix G it is not
necessary to be in Weyl coordinates: it is simply a 2 × 2 matrix of components G11 = gtt,
G12 = G21 = gtφ and G22 = gφφ. From detG = −∆sin2 θ we find the coordinate

ρ =
√
∆ sin θ (3.5)

while the z coordinate, which can be determined in such a way that the metric fits into the
ansatz (3.1), is given by

z = (r −m) cos θ (3.6)

Using this, we can in principle write the Kerr metric in the canonical form (3.1); however,
it is useful to write the Kerr metric in the prolate spherical coordinates by using (A.5). In
this coordinates the components of the matrix G becomes

G11 = −(σx+m)2 − 2m (σx+m) + a2y2

(σx+m)2 + a2y2

G12 = −
2am

(︁
1− y2

)︁
(σx+m)

(σx+m)2 + a2y2
= G21

G22 =
G2

12 − ρ2

G11

To find the rod structure of such a metric, we search the isolated z-values for which the
kernel of G has dimension greater than one are easily find. In fact, since G is a 2 matrix, we
must have dim (ker(G(0, z))) = 2 for this points: G must therefore be the null matrix. This
happens only when x = 1 and y = 1 or x = 1 and y = −1, that from (A.5) corresponds to
z = ±σ and ρ = 0.

Consequently there are two semi-infinite rods [−∞,−σ] and [σ,∞] and one finite rod

z

y = 1, x ∈ [1,∞]

y = −1, x ∈ [∞, 1]

x = 1, y ∈ [−1, 1]

Figure 3.1: Rod structure for the Kerr metric

[−σ, σ]. For z ∈ [−∞,−σ] and ρ = 0, from (A.6) we see that y = −1 and x = −z/σ, while
for z ∈ [σ,∞] and ρ = 0 we have that y = 1 and x = z/σ. For z ∈ [−σ, σ] and ρ = 0 we have
that x = 1 and y = z/σ. The z-axis is then divided into three zones in (x, y) coordinates,
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as shown in figure 3.1.

For both the intervals of the semi-infinite rods we see that G12 = G22 = 0 while G11 ̸= 0:
this means that the two rods have direction v = (0, 1), so they are in the ∂φ direction and
therefore spacelike.
For the finite rod: we search for the direction of components v = (v1, v2) such that∑︁

j=1,2Gijv
j = 0, that gives two equivalent equations for i = 1, 2. Without lost of general-

ity we can set v1 = 1: it follows that v2 = −G11/G12 evaluated in x = 1. It is easy to find
from the above expressions that

v = (1,ΩH) (3.7)

where
ΩH =

a

2m(σ +m)
=

a

r2H + a2
, rH = σ +m

is the angular velocity of the event horizon. Note that the direction v precisely is the null
Killing vector for the event horizon: in fact it is null along that rod. In other words, for a
Killing horizon the null Killing vector is the same as the direction of the timelike rod, as we
discussed before.



Chapter 4

Ernst Potentials

In this chapter 1 we will define the Ernst potentials of a stationary and axisymmetric
solution to the coupled Einstein-Maxwell equations in vacuum. They are two complex
potentials for which the Einstein-Maxwell equations assume a very compact form in terms
of three dimensional differential operators.
As mentioned in the previous chapter, a stationary and axisymmetric spacetime has two
commuting Killing vectors k = ∂t and m = ∂φ associated with time translations and
rotations around the symmetry axis. The most generic solution for such a spacetime in
Weyl coordinates can be written, in the Lewis-Weyl-Papapetrou form, as

ds2 = −f (dt− ωdφ)2 + f−1
[︁
e2γ

(︁
dρ2 + dz2

)︁
+ ρ2dφ2

]︁
, (4.1)

where the three metric functions f , ω and γ depends only on the non-Killing coordinates
(ρ, z).
We consider the following electromagnetic potential compatible with the spacetime symme-
tries

A = Atdt+Aφdφ , (4.2)

where the components At and Aφ depends only on the coordinates (ρ, z).
In term of the metric (4.1) the gravitational field equations (1.1) becomes

∇⃗ ·
[︂
ρ−2f2∇⃗ω + 4ρ−2fAt

(︂
∇⃗Aφ + ω∇⃗At

)︂]︂
= 0 , (4.3)

f∇2f =
(︂
∇⃗f

)︂2
− ρ−2f4

(︂
∇⃗ω

)︂2
+ 2f

[︃(︂
∇⃗At

)︂2
+ ρ−2f2

(︂
∇⃗Aφ + ω∇⃗At

)︂2
]︃
, (4.4)

while the Maxwell field equations (1.3) becomes

∇⃗ ·
[︂
ρ−2f

(︂
∇⃗Aφ + ω∇⃗At

)︂]︂
= 0 , (4.5)

∇⃗ ·
[︂
f−1∇⃗At − ρ−2fω

(︂
∇⃗Aφ + ω∇⃗At

)︂]︂
= 0 , (4.6)

where the differential operators ∇⃗ and ∇2 are respectively the standard flat gradient and
Laplacian in cylindrical coordinates (ρ, z, φ), given by (A.2) and (A.3).
Equation (4.5) suggests the definition of a magnetic scalar potential Aφ̃ as

ρ−1f
(︂
∇⃗Aφ + ω∇⃗At

)︂
= φ̂× ∇⃗Aφ̃ , (4.7)

1the references for this chapter are [5].
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such that the equation will be automatically satisfied for the integrability condition: in fact
equation (4.5) takes the form

∇⃗ ·
(︂
ρ−1φ̂× ∇⃗Aφ̃

)︂
= 0 ,

which using (A.4) together with the fact that the functions do not depend on the coordinate
φ is automatically verified because derivatives along different directions commute.
From the following vector calculus identity

φ̂× (φ̂× ∇⃗Aφ̃) = φ̂ (φ̂ · ∇⃗Aφ̃)− ∇⃗Aφ̃ (φ̂ · φ̂) = −∇⃗Aφ̃ ,

equation (4.7) can be written as

∇⃗Aφ̃ = −ρ−1f φ̂×
(︂
∇⃗Aφ + ω∇⃗At

)︂
, (4.8)

which is the standard definition for the scalar potential Aφ̃.
Now it is advantageous to define the electromagnetic complex Ernst potential

Φ = At + iAφ̃ . (4.9)

Noting that ∇⃗ · (ρ−1 φ̂× At∇⃗Aφ̃) = −∇⃗ · (ρ−1 φ̂× Aφ̃∇⃗At), equation (4.3) can be written
in the form

∇⃗ ·
(︂
ρ−2 + f2∇⃗ω + 2ρ−1Im

(︂
Φ̄∇⃗Φ

)︂)︂
= 0 , (4.10)

which suggest the definition of a new potential χ as

− ρ−1f2∇⃗ω − 2 φ̂× Im
(︂
Φ̄∇⃗Φ

)︂
= φ̂× ∇⃗Aφ̃ , (4.11)

such that equation (5.15) is automatically satisfied for the integrability condition.
Again, from the above vector calculus identity follows that

∇⃗χ = ρ−1f2 φ̂× ∇⃗ω − 2Im
(︂
Φ̄∇⃗Φ

)︂
, (4.12)

which is the standard definition for the function χ.
If we define the gravitational complex Ernst potential as

E = f − Φ̄Φ+ iχ , (4.13)

therefore it can be shown that equations (4.4) and (4.6) becomes respectively(︁
ReE + |Φ|2

)︁
∇2E = ∇⃗E ·

(︂
∇⃗E + 2Φ̄∇⃗Φ

)︂
, (4.14)

(︁
ReE + |Φ|2

)︁
∇2Φ = ∇⃗Φ ·

(︂
∇⃗E + 2Φ̄∇⃗Φ

)︂
. (4.15)

Note that in all the equations written up to now the metric function γ(ρ, z) does not appear:
it is completely decoupled from the other functions, as seen in the previous chapter. Once
we know the Ernst potentials, γ(ρ, z) fully determined by an integral.
A minus sign may appear in the definition of the two functions Aφ̃ and χ depending on the
ordering of the three spatial coordinates. In our discussion we will use the ordering (ρ, z, φ).
Once this ordering has been set, the equations (4.8) and (4.12) can be rewritten in a more
explicit form by noting that for a generic function h(ρ, z)(︂

φ̂× ∇⃗h(ρ, z)
)︂
ρ
= ϵ̃φzρ∂zh(ρ, z) = −∂zh(ρ, z) ,(︂

φ̂× ∇⃗h(ρ, z)
)︂
z
= ϵ̃φρz∂ρh(ρ, z) = ∂ρh(ρ, z) .
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Then introducing the two-dimensional Levi-Civita symbol, we obtain

∂iAφ̃ = ρ−1f ϵ̃ij (∂jAφ + ω∂jAt) , (4.16)

∂iχ = −ρ−1f2ϵ̃ij∂jω + 2
(︂
Aφ̃∂iAt −At∂iAφ̃

)︂
, (4.17)

where i, j label the coordinates ρ, z, with x1 = ρ and x2 = z.
Given a particular metric, the Ernst potentials E and Φ can be calculated not necessarily

in Weyl coordinates. In fact, the definitions of the functions Aφ̃ and χ, respectively (4.8)
and (4.12), depend on the flat gradient operator in cylindrical coordinates, so, if the metric
is in a different coordinate system from that of Weyl, we simply modify the differential
operators for the three dimensional flat space in the new coordinate system. Let’s make
an example: consider the metric (1.4) of the dyonic Kerr-Newman black hole. The metric
is expressed in Boyer-Lindquist coordinates {t, r, θ, φ}, but the metric functions f and ω
can be found anyway: this is the first step necessary to calculate the Ernst potentials.
First of all, we note that the transformation from the Boyer-Lindquist coordinates to the
Weyl coordinates does not involve the coordinates associated with the Killing vector fields,
therefore the metric block associated with the t, φ coordinates remains unchanged. Thus
the function f is simply given by f = −gtt. Then we find

f(r, θ) =
∆(r)− a2 sin2 θ

Ξ(r, θ)
= 1 +

q2 + p2 − 2mr

r2 + a2 cos2 θ
. (4.18)

The function ω can be found by requiring that fω = gtφ. Then we get

ω(r, θ) =
a sin2 θ(q2 + p2 − 2mr)

r2 + a2 cos2 θ + q2 + p2 − 2mr
. (4.19)

Starting from the component gφφ of the metric we can find the transformation for the Weyl
coordinate ρ by requiring that ρ2 = fgφφ + f2ω2. From this condition we get

ρ =
√︁
∆(r) sin θ ,

which is the same relation find out in (3.5) from the condition (3.2). From this relation
together with (3.6) we can find the metric in Weyl coordinates. However, it is easier to find
the Ernst potentials using the coordinate r and y := cos θ. What we need to know now is
the divergence operator in the flat space of coordinates {r, y, φ}. In order to do this, it is
convenient to write the metric (1.4) in the following way

ds2 = −f (dt− ωdφ)2 + f−1
{︂
e2γ

[︁
(r −m)2 − σ2y2

]︁ (︂
dr2

∆ + dy2

1−y2

)︂
+ (1− y2)∆dφ2

}︂
,

(4.20)
where the metric function γ can be determined by requiring that

e2γf−1
[︁
(r −m)2 − σ2y2

]︁
= Ξ

from this we get

e2γ(r,y) =
r2 − 2mr + q2 + p2 + a2y2

(r −m)2 − σ2y2
,

Using (A.12) and (A.5), it is easy to find that the above metric fit the ansatz (4.1). Therefore
the gradient operator in the flat space (r, y, φ) becomes

∇⃗h(r, y) = 1√︁
(r −m)2 − σ2y2

(︃
r̂
√︁
∆(r)

∂h

∂r
+ ŷ

√︁
1− y2

∂h

∂y

)︃
. (4.21)
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where we omitted the φ component since the metric functions do not depend on that
coordinate.
We can now calculate the Ernst potentials: starting from (4.16) with (4.21), we find the
following equations for the three components⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂rAφ̃ = f
∆(r) (∂yAφ + ω∂yAt) ,

∂yAφ̃ = − f
1−y2

(∂rAφ + ω∂rAt) ,

∂φAφ̃ = 0 .

(4.22)

From the first equation we arrive at

∂rAφ̃ =
pr2 − a2py2 + 2aqry

(r2 + a2y2)2
⇒ Aφ̃ = − aqy + pr

r2 + a2y2
. (4.23)

Therefore the electromagnetic Ernst potential, using (1.5), becomes

Φ =
q − ip

r + iay
. (4.24)

Note that, using only the first equation in (4.22), the Ernst potential could also have a second
contribution that depends only on y: we see that this contribution is zero by integrating the
second equation in (4.22). Eventually integration constants can be absorbed by rescaling
the coordinates.
Similar steps lead to the gravitational Ernst potential: starting from (4.17), we find the
following equations ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂rχ = − 42

∆(r)∂yω + 2
(︂
Aφ̃∂rAt −At∂rAφ̃

)︂
,

∂yχ = 42

1−y2
∂rω + 2

(︂
Aφ̃∂yAt −At∂yAφ̃

)︂
,

∂Aφ̃χ = 0 .

(4.25)

From the first equation we arrive at

∂rχ = − 4mrax

(r2 + a2y2)2
⇒ χ =

2amy

r2 + a2y2
. (4.26)

Knowing the electromagnetic Ernst potential and the function f , we can write

E = 1− 2m

r + iay
. (4.27)

The same previous observations on any additional contributions can be made.
The Ernst potentials for other metrics obtained by canceling some parameter in (1.4) can
be calculated in a similar manner to that shown now, or by canceling the same parameters
in (4.24) and (4.27).



Chapter 5

Komar charges in presence of line
singularities

In this chapter we show a method for calculating the conserved charges in the presence of
line singularities. The latter can be described as string-like defects on the symmetry axis in
the case of stationary and axisymmetric spacetimes. In Weyl coordinates, both black holes
and defects can be described as rods located on the axis, so that conserved charges can be
expressed only by integral on a cylinder surrounding that rod. Then, introducing the Ernst
potentials, we find and expression involving only the potentials evaluated in the so-called
isolated z-values plus a term whose presence will be discussed.
This method is subsequently applied first to the same cases considered in chapter 2 and
then to black holes with Dirac and Misner strings, analyzing the contribution of the latter
to the conserved charges.

5.1 Line singularities

In the following we will deal with two different types of line singularities: the Dirac string
and the Misner string, respectively related to the magnetic charge and the NUT (Newman-
Unti-Tamburino) charge. Another line singularity is the cosmic string, related to angular
defects. We now show how Dirac and Misner strings emerge from the corresponding charge.

The magnetic charge can be thought as the end of a line of dipoles as shown in figure 5.1.
This fictitious line of dipoles that stretches off to infinity is the so-called Dirac string. The
Dirac string is the only way to incorporate magnetic monopoles into Maxwell’s equations.
In fact the vector potential of the magnetic monopole has a curl that is directed radially

Figure 5.1: Magnetic monopole p and the Dirac string

outward for all points except on the string, generating a non null flux p. On the string itself
the vector potential is singular: this singular behavior is equivalent to an intense magnetic

29
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field inside the string that brings a return contribution to the flux (-p) to cancel the pole’s
outward flow. Another important feature is that the string is not a physical observable,
it is just a theoretical artifact; in fact its location is arbitrary: a choice of different string
positions is equivalent to different choices of gauge for the vector potential. Consequently,
the string can be moved to other locations but can never be removed.
Therefore the Dirac string emerges when there is a discontinuity in the vector potential.
Consider for example the Reissner-Nordström black hole with magnetic charge p: the elec-
tromagnetic four-potential is given by (1.5), setting a = 0. Thus it becomes

A =
[︂q
r
, 0, 0, p cos θ

]︂
.

For the vector potential to be well defined the boundary conditions must be

Aφ

⃓⃓
θ=0

= 0 ,

Aφ

⃓⃓
θ=π

= 0 .
(5.1)

In our case the φ component of the vector potential does not satisfy these conditions, since
Aφ

⃓⃓
θ=0

= p and Aφ

⃓⃓
θ=0

= −p: thus there would be two symmetrically distributed Dirac
strings on the z-axis. But taking advantage of the gauge invariance of the vector potential,
we can consider the component Aφ = p cos θ + b0, where b0 is a constant gauge parameter;
then the boundary conditions become

Aφ

⃓⃓
θ=0

= p+ b0 ,

Aφ

⃓⃓
θ=π

= −p+ b0 .

Therefore we can choose a value for b0 in order to eliminate one Dirac string. In presence
of the magnetic charge, however, it is never possible to eliminate the Dirac string.

Consider now the NUT charge. If a metric of the type (4.1) is such that asymptotically

ω ∼ −2n cos θ ,

then the solution describes an object with NUT charge n. We discuss the meaning of this
new charge, for which there is no Newtonian analog, by considering the simplest vacuum
solution with this charge: the Taub-NUT solution, whose metric is

ds2 = −f(r) (dt+ 2n cos θdφ)2 + f−1(r)dr2 +
(︁
r2 + n2

)︁ (︁
dθ2 + sin2 θdφ2

)︁
, (5.2)

where

f(r) =
∆

Ξ
=
r2 − 2mr − n2

r2 + n2
. (5.3)

This spacetime has some peculiar properties. The first concerns the interpretation of the
parameter n: in the Newtonian limit we know that the diagonal components of the metric
are related to the gravitostatic Newtonian potential; however, the Taub–NUT solution has
non diagonal non-vanishing components in this limit; these off-diagonal components gti can
be related to a gravitomagnetic potential A, whose only non vanishing component is

Aφ = 2n cos θ .

This is essentially the electromagnetic field of a magnetic monopole of charge proportional
to n. Thus the NUT parameter n is interpreted as a sort of magnetic mass. Note that
this is a possible interpretation of the NUT charge related to the introduction of a fictitious
potential in the Newtonian limit.
The metric is not asymptotically flat because the off-diagonal components gtφ does not
vanish at infinity. Moreover, the metric is perfectly regular at r = 0: it does not have
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curvature singularities; however, for θ = 0 and θ = π the metric is no more invertible, since
g = det(gµν) = 0. These points are not coordinate singularity as for the Schwarzschild
black hole: it is precisely the metric function ω that has a singular behavior, since it takes
different values on the symmetry axis passing from the south pole axis to the north pole
axis. This behavior is the same that happens for the electromagnetic potential in the case
of the Dirac string. The solution has then line singularities at θ = 0 and θ = π, called
Misner strings. Similarly to the magnetic potential, we can introduce a constant s such
that asymptotically

gtφ ∼ 2n(cos θ + s) .

This parameter allow us to eliminate one of the two Misner strings: if s = n there is only
one Misner string n the north pole axis (cos θ = 1), while the south pole axis (cos θ = −1)
is perfectly regular; the choice s = −n corresponds to the opposite situation. Therefore
the parameter s regulates the distribution of both Misner strings and, as we will later see,
regulates also their strength: thus changing the value of s corresponds to a physical trans-
formation of the system.
Misner proposed a way to remove these singularities and make the metric regular everywhere
by introducing a time periodical identification condition; however, the metric becomes phys-
ically problematic due to the presence of closed timelike curves and this led him to declare
the NUT parameter as nonphysical. In the last few years, it has been noted that such a
spacetime is less physically problematic if the Misner strings are left. In fact, the Misner
strings are transparent to geodesics, making the spacetime geodesically complete 1 : this
feature arises from purely geometric considerations. Moreover, the condition |s/n| ≤ 1 guar-
antees the absence of closed timelike and null geodesics, preserving the principle of causality.
This raised a possibility that the NUT charge may actually be relevant for astrophysics: al-
ready in 1997 astrophysicists probed the possibility of detecting the NUT parameter by
microlensing.
Therefore we will study solutions with NUT charge without removing the line singularities.
The NUT parameter introduces also angular defects. In fact, consider a small circle around
the symmetry axis, assuming fixed t and r: if the ratio between the circumference and the
radius of the circle in the limit θ → 0 or θ → π is different from 2π then the axis has
a conical singularity. The string associated to this line singularity is called cosmic string.
In order to avoid such a singularity we can introduce a parameter C in the range of the
angular coordinate φ, such that φ ∈ [0, 2πC) and set it so that the ratio is equal to 2π. The
invariant length of the circumference of the circle is

C =

∫︂ 2πC

0

√︂
|gφφ| dφ , (5.4)

while its radius is

R =

∫︂ θ

0

√︁
|gθθ| dθ . (5.5)

Therefore we have to calculate

lim
θ→0,π

circumference
radius

= lim
θ→0,π

2πC
√︁
|gφφ|

θ
√︁
|gθθ|

. (5.6)

From the metric (5.2) we find

lim
θ→0,π

2πC

θ

√︄⃓⃓⃓⃓
sin2 θ − 4n2∆

Ξ2
cos2 θ

⃓⃓⃓⃓
.

1a spacetime is said to be geodesically complete if every geodesic is complete, that is, if the geodesic has
affine parameter λ, the definition domain of that parameter can be extended to −∞ < λ < ∞
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This limit is divergent in both cases since the term cos θ in the circumference does not
approach zero for θ → 0, π. Consequently both north and south pole axes has a divergent
angular defect for any value of the constant C, that we will keep equal to one so that the
angular coordinate φ has the "standard" range [0, 2π).
In order to check this result, we can make the same calculations in Weyl coordinates, where
the above ratio (5.6) is given by

lim
ρ→0

circumference
radius

= lim
ρ→0

2πC
√︁
|gφφ|

ρ
√︁
|gρρ|

. (5.7)

In this coordinate system we have to distinguish the two cases:

• North pole axis: z > σ
Starting from (A.16) and (A.17) for ρ→ 0 to leading order we find

gφφ = − 4n2(σ2 − z2)

z2 + σ2 + 2mz
+O

(︁
ρ2
)︁
, gρρ =

z2 + σ2 + 2mz

z2 − σ2
+O

(︁
ρ2
)︁
.

Therefore the quantity (5.7) is divergent because of the presence of ρ in the denomi-
nator.

• South pole axis: z < −σ
Starting from (A.16) and (A.17) for ρ→ 0 to leading order we find

gφφ = − 4n2(σ2 − z2)

z2 + σ2 − 2mz
+O

(︁
ρ2
)︁
, gρρ =

z2 + σ2 − 2mz

z2 − σ2
+O

(︁
ρ2
)︁
.

Also in this case the quantity (5.7) is divergent.

Finally the NUT charge carries both Misner and cosmic strings. In section 5.5.3 we will
see that the NUT charge causes the presence of a Dirac string also in the case p = 0.

When line singularities are present, apart from the standard boundary on the event
horizon and the two-sphere at spatial infinity, there are two small cylinders surrounding
the strings, as shown in figure 5.2. In both cases the line singularities are located on the

Figure 5.2: Boundaries in presence of line singularities

north or south pole, that is, on the z-axis in Weyl coordinates. In particular they are in
correspondence of the spacelike semi-infinite rods, for a rod structure like the one shown in
section 3.2. So the semi-infinite spacelike rods account for defects.
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5.2 Komar charges decomposition for the rod structure

Consider a stationary and axisymmetric spacetime, where the two Killing vector fields k = ∂t
and m = ∂φ. The total energy, angular momentum and charge of the spacetime are given
by an integral over a two-sphere at spatial infinity respectively by equations (2.15), (2.16)
and (2.17).
In presence of line singularities, the spacetime is bounded by the two-sphere at spatial
infinity Σ∞ and by cylinders Σn around each rod in Weyl coordinates. Therefore using the
decomposition presented in section 2.5, the Komar energy can be written as a sum of an
electromagnetic contribution and a rod contributions

M =
∑︂
n

1

4π

∮︂
Σn

∇νkµdΣµν +ME , (5.8)

where ME is given by (2.28). Note that the integral over the cylinders surrounding the rods
reduces to (2.26) in absence of line singularities because the only rod that contributes to the
conserved charges is the horizon rod; the two semi-infinite spacelike rod becomes important
only in presence of line singularities. This decomposition can also be done in coordinates
other than those of Weyl, by suitably varying the integration surfaces around the horizon
and the defects; the Weyl coordinates are suitable since all event horizons and defects are
represented by rods on the axis ρ = 0.
Let Σ be the spacelike hypersurface of constant t, then by (1.29) it is clear that necessarily
µ = t in (2.28). Therefore, denoting the electromagnetic energy-momentum tensor TE with
T , the electromagnetic contribution to the energy is

ME = −2

∫︂
Σ

√︁
|g|T t

ν δ
ν
t d

3y = −2

∫︂
Σ

√︁
|g|T t

t d
3y . (5.9)

Because of the ansatz (4.2) the only non vanishing components of the field strength tensor
Fµν are Fit, Fiφ, where i labels other coordinates different from the ones associated to the
two Killing vector fields, which are t, φ. Therefore from (1.2) follows that

T t
t =

1

8π

(︁
FitF

it − FiφF
iφ
)︁
.

Replacing it in the previous equation we have

ME = − 1

4π

∫︂
Σ

√︁
|g|

(︁
FitF

it − FiφF
iφ
)︁
d3y =

= − 1

4π

∫︂
Σ

√︁
|g|

[︁
(∂iAt)F

it − (∂iAφ)F
iφ
]︁
d3y .

The Maxwell equations are given by (1.3): for ν = t and ν = φ we can write respectively

∂i

(︂√︁
|g|F it

)︂
= 0 ,

∂i

(︂√︁
|g|F iφ

)︂
= 0 ,

so that the electromagnetic contribution becomes

ME = − 1

4π

∫︂
Σ
∂i

[︂√︁
|g|

(︁
AtF

it −AφF
iφ
)︁]︂
d3y . (5.10)

We can now think of the quantity that multiplies the square root of the determinant of the
metric as the ti component of a completely antisymmetric tensor field Xνµ; for the latter
holds:

∇µX
νµ =

1√︁
|g|
∂µ

(︂√︁
|g|Xνµ

)︂
. (5.11)
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Consequently (5.10) can be written as

ME = − 1

4π

∫︂
Σ

√︁
|g| ∇i

(︂√︁
|g|Xti

)︂
d3y = − 1

4π

∫︂
Σ
∇i

(︁
Xti

)︁
dSi .

We can now use the Stokes’ theorem (1.37): pay attention that the indices present in the
two sides of the equation, as saturated indices, are not correlated. The boundary ∂Σ of
Σ is the union of the two-sphere at spatial infinity and the small cylinders around the
rods; its surface element, since Σ is the hypersurface of constant t, has only non vanishing
components dSi ≡ dSti = −dSit. Taking into account that the conventional orientation of
the surface element is different from the one that ∂Σ inherits from Σ, we find∫︂

Σ
∇iX

tidSt =

∮︂
∂Σ
XtidSi =

∮︂
Σ∞

XtidSi −
∑︂
n

∮︂
Σn

XtidSi .

Replacing the tensor X, we can write the magnetic contribution as a sum over rod contri-
butions

ME =
∑︂
n

1

4π

∮︂
Σn

(︁
AtF

it −AφF
iφ
)︁
dSi , (5.12)

where we have implicitly assumed that

− 1

4π

∮︂
Σ∞

(︁
AtF

it −AφF
iφ
)︁
dSi = 0 . (5.13)

However, this condition is not always satisfied. On one hand, it depends on the properties of
the electric and magnetic fields, which fall off at infinity as 1/r2 for the solutions considered
in this work. On the other hand, it depends on the Gauge choice of the four-vector potential
because of the presence of both At and Aφ. We will discuss in more detail the contribution
of such a term in section 5.5.1. Therefore, when condition (5.13) is not satisfied, the result
(5.12) should also include a surface integral at infinity.
Returning to (5.8), the first term can be rewritten only as a function of the metric compo-
nents. In fact

∇νkµ = gνλ∇λk
µ = gνλΓµ

λt ,

because the Killing vector k has constant components, so that their partial derivative is
equal to zero, and the only one non vanishing is the t component. The contraction with the
surface element gives

gνλΓµ
λt dΣµν = gijΓt

jtdΣti + gtaΓi
at dΣit =

(︃
1

2
gijgta∂jgta +

1

2
gtagij∂jgta

)︃
dΣti =

= gijgta∂jgta dΣi =
1

2
gijgta∂jgta dSi ,

where in the last step we used the relation (1.38); the index a labels only the coordinates
t, φ.
Note that we are not necessarily in Weyl coordinates: the results obtained so far are valid
for any solution whose metric is a block matrix, that is gai = 0.
Therefore, if the assumption (5.13) is valid, the total energy of the spacetime can be de-
composed as a sum on rod contributions

M =
∑︂
n

1

8π

∮︂
Σn

[︁
gijgta∂jgta + 2

(︁
AtF

it −AφF
iφ
)︁]︁
dSi , (5.14)

where the first term may be viewed as the gravitational contribution to the source mass,
and the second term as the electromagnetic contribution. it is remarkable that even the
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bulk contribution, that is ME (the contribution of all the spacetime outside the rods), can
be expressed in terms of the data on the axis.

Similarly, the total angular momentum can be written as a sum of a rod contributions
and an electromagnetic contribution

J =
∑︂
n

− 1

8π

∮︂
Σn

∇µmνdΣνµ + JE , (5.15)

where JE is reported in (2.30). Following similar steps to those made for ME , the electro-
magnetic contribution JE can be transformed into a sum of rod integrals. In fact in (2.30),
for the same previous reasons, necessarily µ = t, then, since the Killing vector field m as
components mν = δνφ, the only term that contributes to the bulk integral is

T t
φ =

1

4π
FiφF

it .

Consequently the electromagnetic contribution becomes

JE =
1

4π

∫︂
Σ
∂iAφF

itd3y =
1

4π

∫︂
Σ
∂i

(︂√︁
|g|AφF

it
)︂
d3y =

∑︂
n

− 1

4π

∮︂
Σn

AφF
itdSi ,

where we made the same steps illustrated for the energy contribution ME . The last step is
valid under the assumption

1

4π

∮︂
Σ∞

AφF
it dSi = 0 . (5.16)

The same observations previously exposed for (5.13) also apply to the latter assumption.
Returning to (5.15), we can write the first term in function of the metric components in
the same way as seen for energy, with the only difference due to the different Killing vector.
From the contraction of the covariant derivative with the surface element we obtain

gνλΓµ
λφdΣµν = gijgta∂jgφadΣi =

1

2
gijgta∂jgφadSi .

Therefore, the angular momentum is decomposed into a sum of rod integrals

J =
∑︂
n

− 1

16π

∮︂
Σn

(︁
gijgta∂jgta + 4AφF

it
)︁
dSi . (5.17)

Even the electric charge can be decomposed into a sum of the fluxes through the cylinders
Σn. In fact, by Stokes theorem (1.37)

1

4π

∮︂
Σ∞

FµνdΣµν =
1

4π

∫︂
Σ
∇νF

µνdSµ +
∑︂
n

1

4π

∮︂
Σn

FµνdΣµν , (5.18)

but ∇νF
µν = 0 for the Maxwell equations in vacuum, so the first integral in the second

member is equal to zero; from the fact that the only two non-null components of the surface
element are dΣti = −dΣit = dSi/2 and using the antisymmetry of the Faraday tensor, the
charge becomes

Q =
∑︂
n

1

4π

∮︂
Σn

F tidSi . (5.19)
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5.3 Komar charges in terms of Ernst potentials

Consider now the Lewis-Weyl-Papapetrou metric in (4.1): in matrix form, the metric and
its inverse, obtained through the cofactors matrix, are given by

gµν =

⎡⎢⎢⎣
−f fω 0 0
fω f−1ρ2 − fω2 0 0
0 0 f−1e2γ 0
0 0 0 f−1e2γ

⎤⎥⎥⎦ , (5.20)

gµν =

⎡⎢⎢⎣
−f−1 + ρ−2fω2 ρ−2fω 0 0

ρ−2fω ρ−2f 0 0
0 0 fe−2γ 0
0 0 0 fe−2γ

⎤⎥⎥⎦ . (5.21)

Recall the definition of the complex Ernst potentials defined by (4.16) and (4.17) in Weyl
coordinates. Since Σn is a cylindrical surface characterized by constant t and ρ = 0, the
index i in the energy formula (5.14) must be equal to ρ (this is clear from the formula
(1.34)). Therefore the rod gravitational contribution to the energy is

MG
n =

1

8π

∫︂ 2π

0
dφ

∫︂ zn+1

zn

dz
√︁

|g| gρρ
(︁
gtt∂ρgtt + gtφ∂ρgtφ

)︁
,

where from the above matrix is obvious to find√︁
|g| = ρe2γ

f
⇒

√︁
|g| gρρ = ρ .

Integrating over the cyclic coordinate φ, since no function depends on this coordinate, we
get

MG
n =

1

4

∫︂ zn+1

zn

dz ρ
[︁(︁
ρ−2fω2 − f−1

)︁
∂ρ(−f) + ρ−2fω2∂ρf + ρ−2f2ω∂ρω

]︁
=

=
1

4

∫︂ zn+1

zn

dz
(︁
ρf−1∂ρf + ρ−1f2ω∂ρω

)︁
=

=
1

4

∫︂ zn+1

zn

dz ω
[︂
∂zχ+ 2

(︂
At∂zAφ̃ −Aφ̃∂zAt

)︂]︂
+

1

4

∫︂ zn+1

zn

dz ρf−1∂ρf ,

where in the last step we used the definition (4.17) of χ = ImE . We will see that the term
in the second integral vanishes in the limit ρ → 0 when the black hole is rotating. So we
will keep that term in order to include all the possible cases.
The rod electromagnetic contribution to the energy is

ME
n =

1

4π

∫︂ 2π

0
dφ

∫︂ zn+1

zn

dz
√︁

|g|
(︁
AtF

ρt −AφF
ρφ
)︁
=

=
1

2

∫︂ zn+1

zn

dz
√︁
|g| gρρ

(︁
gttAt∂ρAt + gtφAt∂ρAφ + gφφAφ∂ρAφ + gφtAφ∂ρAt

)︁
.

By the inverse of the matrix metric (5.21) we obtain

ME
n =

1

2

∫︂ zn+1

zn

dz
[︁
ρ−1f (∂ρAφ + ω∂ρAt) (ωAt −Aφ)− ρ−1fAt∂ρAt

]︁
=

= −1

2

∫︂ zn+1

zn

dz (ωAt −Aφ) ∂zAφ̃ − 1

2

∫︂ zn+1

zn

dz ρf−1At∂ρAt ,
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where in the last step we used the definition (4.16) of Aφ̃ = ImΦ. Also in this case the
second integral vanishes in the limit ρ→ 0 only when the black hole is rotating. Now, it is
important to note that the metric function ω takes a constant value ωn along each rod (this
is a consequence of the constancy of the rod directional vectors on each rod), and the same
for the angular velocity along a rod Ωn = 1/ωn and for the corotating electric potential

Φn = −Aµξ
µ
n

⃓⃓
n
= −At − ΩnAφ . (5.22)

Equally constant on each rod is the quantity

− ωnΦn = Aφ + ωAt . (5.23)

We can therefore add to the above integral the null quantity Aφ̃∂z(−Aφ − ωAt) in order to
get

ME
n = −1

2

∫︂ zn+1

zn

dz
[︂
ω(At∂zAφ̃ −Aφ̃∂zAt)− ∂z(Aφ̃Aφ)

]︂
− 1

2

∫︂ zn+1

zn

dz ρf−1At∂ρAt .

Adding the two gravitational and electromagnetic contributions we find

Mn =MG
n +ME

n =
1

4

∫︂ zn+1

zn

dz [ω∂zImE + 2∂z(AφImΦ)] +M∗ ,

where

M∗ =
1

4

∫︂ zn+1

zn

dz ρf−1 (∂ρf − 2At∂ρAt) . (5.24)

Using again the constancy of ω along each rod, the rod contribution to the total energy
becomes

Mn =
ωn

4
ImE

⃓⃓zn+1

zn
+

1

2
(AφImΦ)

⃓⃓zn+1

zn
+M∗ . (5.25)

The term M∗ is necessary to include the non-rotating case, in which ω = 0.
Similarly for the angular momentum, starting from (5.17), the rod gravitational contribu-
tion, after the integration over φ, is

JG
n = −1

8

∫︂ zn+1

zn

dz
√︁

|g| gρρ
(︁
gtt∂ρgφt + gtφ∂ρgφφ

)︁
=

= −1

8

∫︂ zn+1

zn

dz
(︁
2ω − ρ∂ρω − 2ρf−1ω∂ρf − ρ−1f2ω2∂ρω

)︁
=

= −1

8

∫︂ zn+1

zn

dz
{︂
2ω

(︁
1− ρf−1∂ρf

)︁
− ω2

[︂
∂zχ+ 2

(︂
At∂zAφ̃ −Aφ̃∂zAt

)︂]︂}︂
,

where the second addend of the integral vanishes in the limit ρ→ 0 for rotating black holes.
The rod electromagnetic contribution is

JE
n = −1

2

∫︂ zn+1

zn

dz
√︁

|g|Aφ

(︁
gρρgta∂ρAa

)︁
= −1

2

∫︂ zn+1

zn

dz Aφωρ
−1f (∂ρAφ + ω∂ρAt) +

1

2

∫︂ zn+1

zn

dz ρf−1Aφ∂ρAt =

=
1

4

∫︂ zn+1

zn

dz ω
[︂
(Aφ + ωAt) ∂zAφ̃ − ω

(︂
At∂zAφ̃ −Aφ̃∂zAt

)︂
+ ∂z

(︂
AφAφ̃

)︂]︂
+

+
1

2

∫︂ zn+1

zn

dz ρf−1Aφ∂ρAt ,
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where in the last step we added the null term Aφ∂z(Aφ+ωAt) because of the constancy on
each rod of (5.23). The second integral term is null for ρ → 0 in the case of rotating black
holes.
The total rod contribution to the spacetime angular momentum becomes

Jn =
1

8

∫︂ zn+1

zn

dz ω [−2 + ω∂zImE + 2∂z (AφImΦ) + 2 (Aφ + ωAt) ∂zImΦ] + J∗ ,

where
J∗ =

1

4

∫︂ zn+1

zn

dzρf−1 (ω∂ρf + 2Aφ∂ρAt) . (5.26)

Using the constancy of ω and (5.23) we find

Jn =
ωn

4

{︄
−(zn+1 − zn) +

[︃
ωn

(︃
ImE
2

− ΦnImΦ

)︃
+AφImΦ

]︃ ⃓⃓⃓⃓zn+1

zn

}︄
+ J∗ . (5.27)

Note that for semi-infinite rods, if ωn ̸= 0, the length term in the above formula will give
an infinite rod angular momentum, but we will see that this contribution cancels out with
that of the opposite rod for particular choices.
We can also express the charge in terms of the complex Ernst potentials: starting from
(5.19), we obtain

Qn = −1

2

∫︂ zn+1

zn

dz
√︁

|g|F ρt =

= −1

2

∫︂ zn+1

zn

dz ωρ−1f (∂ρAφ + ω∂ρAt) =

=
1

2

∫︂ zn+1

zn

dz ω ∂zAφ̃ ,

where in the last step we used the definition (4.16). By the constancy of ω on each rod we
get

Qn =
ωn

2
ImΦ

⃓⃓zn+1

zn
. (5.28)

5.4 Schwarzschild, Reissner-Nordström and Kerr black holes

Now let’s quickly analyze the three simplest cases for which, in chapter 2, we have already
calculated the conserved charges by directly evaluating the Komar integral on a two-sphere
at spatial infinity. This section is important to better understand the role of the quantities
M∗ and J∗ introduced in the previous section.
Let’s start from the Schwarzschild black hole: the rod structure of this solution is the same
as that of the Kerr black hole seen in section 3.2. Since we have no line singularities, the
only rod contribution is that of the horizon. First of all, we change the coordinate system,
passing from the Schwarzschild coordinates to the prolate spherical coordinates through
(A.12), where from (1.7) follows that σ = m since the parameters a, q and p are set to zero.
In this coordinate system the metric takes the form 2

ds2 = −x− 1

x+ 1
dt2 +

m2(x+ 1)

x− 1
dx2 +

m2(x+ 1)2

1− y2
dy2 +m2(x+ 1)2(1− y2)dφ2 . (5.29)

2Note that m is an overall conformal factor if we define a new time coordinate t′ = t/m, and can therefore
be removed from the metric
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The horizon rod corresponds to x = 1 and y ∈ [−1, 1], therefore, starting from (5.14) and
integrating over the cyclic coordinate φ, we find

M =
1

4

∫︂ 1

−1
dy

√︁
|g| gxxgtt∂xgtt where

√︁
|g| = m3(x+ 1)2 ⇒ M =

m

2

∫︂ 1

−1
dy = m .

We can also calculate the contributions of the two semi-infinite spacelike rods (where y is
constant) and see that they are null since ∂ygtt = 0. Actually we have done nothing but
use the decomposition described in the section 2.5 in order to rewrite the boundary integral
over the two-sphere at spatial infinity as a boundary integral over the event horizon; we just
used a different coordinate system. However this simple case is useful for understanding
the expression (5.25). In fact, the Ernst potential for the Schwarzschild solution is given by
(4.27) setting a = q = p = 0; thus we find

E = 1− 2m

r
. (5.30)

Consequently the first term in (5.25) depending explicitly on Ernst potential is null since
the complex gravitational potential is real. The contribution to the energy of the spacetime
is therefore enclosed in M∗; in particular it is due precisely to the term ρf−1∂ρf , that is
nothing but the integrand in the above calculation in the prolate spherical coordinates. If
we want to see it explicitly in Weyl coordinates, starting from (A.6), we can write the metric
in the following way

ds2 = −fdt2 + f−1
[︁
e2γ

(︁
dρ2 + dz2

)︁
+ ρ2dφ2

]︁
, (5.31)

where

f(ρ, z) =

√︂
(m+ z)2 + ρ2 −m− z√︂
(m− z)2 + ρ2 +m− z

.

This metric fits the ansatz (4.1) with ω = 0. Then it is quite easy to find that

lim
ρ→0

ρ

f
∂ρf = 2 ̸= 0 .

Then M∗ just gives the parameter m as a result.
Consider now the Reissner-Nordström black hole. The gravitational Ernst potential is

the same as the Schwarzschild black hole, while the electromagnetic one is given by (4.24)
setting a = p = 0; thus we find

Φ =
q

r
= At . (5.32)

Also in this case the contribution to energy is due only to the horizon and is totally contained
in M∗, since the Ernst potential are real and the metric function ω is zero. The term M∗

has now two contributions since the electromagnetic four-potential is non null. We will not
illustrate the steps, but, writing the metric (2.18) in prolate spherical coordinates through
(A.12), we find M = MH = m: the subscript H means that it is the contribution of the
integral around the horizon rod. Note that it does not coincide with the black hole’s con-
tribution to energy, as there is also a volume contribution (5.9), due to the electromagnetic
energy-momentum tensor, which has been transformed as an integral around the horizon
rod. Therefore MH contains both the contribution of the black hole, due to the first term
in (5.24) and that of outer spacetime, due to the second term in (5.24).

Finally, we consider the Kerr black hole: the gravitational Ernst potential is given by
(4.27), setting q = p = 0; thus we find

E = 1− 2m

r + iay
⇒ ImE =

2amy

r2 + a2y2
. (5.33)



5.5. Rotating black holes 40

In this case the total energy of the spacetime is only given by the first term in (5.25). The
metric function ω for the Kerr metric is given by (4.19), setting to zero the electric and
magnetic charges; we simply rewrite it in prolate spherical coordinates through (A.12) and
evaluate it on the horizon, that is x = 1. Then we get

ωH = ω|x=1 =
2m(σ +m)

a
.

The Ernst potential dependent term remains unchanged in prolate spherical coordinates:
we just have to evaluate it in the y interval corresponding to z ∈ [−σ, σ]. Therefore, using
that r2H + a2 = 2mrH , the total energy is

M =MH =
ωH

4
ImE

⃓⃓y=1

y=−1
= ωH

ma

2m(σ +m)
= m .

Why the contribution M∗ is null for the Kerr solution? Let’s write that contribution in
(x, y) coordinates for the horizon rod; the integrand becomes√︁

|g| gxx⏞ ⏟⏟ ⏞
σ(x2 − 1)

f−1∂xf .

From here we see that the first term goes to zero for x → 1, while, from (4.18) (always
setting q = p = 0), the metric function f and its derivative have no singular behaviors for
x = 1. Therefore this term is null when x = 1. This happens because for rotating black
holes the horizons occur when ∆(r) = 0, while the function f is non null on the horizons;
for non-rotating black holes, the zeroes of ∆ coincide with the same values for which f = 0
(in fact they are the same function), so on the horizon the term contained in M∗ does not
go to zero. The same remarks apply to the term J∗ in (5.27).

5.5 Rotating black holes

We now turn our attention on rotating black holes. As noted in the previous section,
formulas (5.25) and (5.27) respectively takes the more elegant form

Mn =
ωn

4
ImE

⃓⃓zn+1

zn
+

1

2
(AφImΦ)

⃓⃓zn+1

zn
(5.34)

and

Jn =
ωn

4

{︄
−(zn+1 − zn) +

[︃
ωn

(︃
ImE
2

− ΦnImΦ

)︃
+AφImΦ

]︃ ⃓⃓⃓⃓zn+1

zn

}︄
. (5.35)

Using (5.28), we can rewrite the rod contribution to the angular momentum as

Jn =
ωn

2

(︃
−zn+1 − zn

2
+Mn − ΦnQn

)︃
. (5.36)

This formula is applicable both to timelike rods and spacelike ones.
Consider now a finite timelike rod, which describes a horizon, and suppose it matches the
interval [z1, z2]. We need now to know the entropy and the temperature of a black hole,
in order to write the Smarr formula, that is a formula which relates the conserved charges
with other quantities evaluated at the horizon. The black hole entropy is usually known as
the Bekenstein-Hawking entropy and it is given by SH = AH/4, where AH is the horizon
area

AH =

∫︂
H

√︂
|h(2)| d2w . (5.37)
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In Weyl coordinates the horizon is reduced to a rod of length LH = z2 − z1 on the z-axis.
However, the horizon still has an area, that is given by

AH =

∫︂ 2π

0
dφ

∫︂ z2

z1

dz
√︂
|gzzgφφ| = 2π eγ |ωH |LH .

The black hole temperature is given by the Hawking temperature TH = κH/2π, where κH
is the surface gravity of the horizon defined in (1.42). In section 3.1 we see that in Weyl
coordinates for the ansatz (3.1) the surface gravity reduces to (3.4). We can therefore cal-
culate the surface gravity starting from the latter equation for the Lewis-Weyl-Papapetrou
metric. Note that the ansatz (4.1) is a little different from (3.1): to find the correct results
we have to made the transformation e−2γ → e−2γf in (3.4). Therefore we get

κH =
e−γ

|ωH |
.

Consequently we have

THSH =
κHAH

8π
=
LH

4
. (5.38)

Then, from the latter equation, using (5.36) and recalling that ΩH = 1/ωH , it follows that
for the horizon rod

MH = 2THSH + 2ΩHJH +ΦHQH , (5.39)

that is the usual Smarr formula: it does not contain information on the Dirac and Misner
strings, associated with the magnetic charge and the NUT charge.
The global Smarr formula will in principle have additional terms due to the strings. We
now discuss some examples of spacetimes with line singularities.

5.5.1 Dyonic Kerr-Newman black hole

Consider the dyonic Kerr-Newman black hole: the metric in Boyer-Lindquist coordinates is
given by (1.4). The electromagnetic fields for this solution are given by (1.5). In particular,
observe that the φ component of the four-potential can be written as

Aφ = p cos θ − a sin2 θAt + b0 , (5.40)

where b0 is a constant related to the distribution of the two Dirac strings.
First of all, note that the two assumptions (5.13) and (5.16) are satisfied only for b0 = 0. In
fact, since the integral is over a two-sphere at spatial infinity, the index i in both equations
is equal to r. By the following asymptotic behaviors

At =
q

r
+O

(︃
1

r2

)︃
, Aφ = p cos θ + b0 +O

(︃
1

r

)︃
, Frt = − q

r2
+O

(︃
1

r3

)︃
,

grr = 1 +O
(︃
1

r

)︃
, gtt = −1 +O

(︃
1

r

)︃
, Frφ =

qa sin2 θ

r2
+O

(︃
1

r3

)︃
,

gtφ =
c

r
+O

(︃
1

r2

)︃
, gφφ =

1

r2 sin2 θ
+O

(︃
1

r3

)︃
,

√︁
|g| = r2 sin θ +O (r) ,

we find that the two integral terms in (5.13) are asymptotically

AtF
rt = gttgrrAtFrt + gtφgrrAtFrφ =

q2

r3
+O

(︃
1

r4

)︃
,

AφF
rφ =

qa(p cos θ + b0)

r4
+O

(︃
1

r5

)︃
.
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Therefore they fall off at infinity more quickly than 1/r2, so the condition for the mass is
satisfied. The situation is different for the angular momentum: in this case, the term in
(5.16) behaves asymptotically as

AφF
rt =

q(p cos θ + b0)

r2
+O

(︃
1

r3

)︃
.

Therefore we find

1

4π

∮︂
Σ∞

AφF
rt dΣr =

q

2

∫︂ π

0
dθ sin θ(p cos θ + b0) = qb0 .

Then condition (5.16) is valid for dyons provided the constant b0 is set to zero. Then from
now on we will consider b0 = 0.
In order to calculated the conserved charge through the rod contributions, it is easier to
work in prolate spherical coordinates. Through (A.12), the metric takes the form

ds2 = −f (dt− ωdφ)2 + f−1
[︂
e2γσ2

(︁
x2 − y2

)︁ (︂
dx2

x2−1
+ dy2

1−y2

)︂
+ ρ2dφ2

]︂
, (5.41)

where

f =
f∗

Ξ
,

f∗ = σ2
(︁
x2 − 1

)︁
− a2

(︁
1− y2

)︁
,

Ξ = (σx+m)2 + a2y2 ,

e2γ =
f∗

σ2 (x2 − y2)
,

ω = −a(1− y2)(2m(σx+m)− q2 − p2

f∗
.

(5.42)

The Ernst potentials of this metric are given by (4.27) and (4.24). The z axis is divided into
three rods: the semi-infinite rods + and − represent the Dirac strings, which in principle
may contribute to the mass, the angular momentum and the charge of the spacetime, while
the finite rod represents the event horizon.
First of all, consider the horizon rod, where x = 1. On this rod we find

ωH = ω|x=1 =
r2H + a2

a
,

where rH = m+ σ. From (5.34), using (4.26) and (4.23), the total horizon mass is

MH =
ωH

4
χ
⃓⃓y=1

y=−1
+

1

2
(AφAφ̃)

⃓⃓y=1

y=−1
= m− p2rH

r2H + a2
, (5.43)

where the first term is the same calculation to the one of the Kerr black hole without electric
and magnetic charges; the second term, since on the horizon Aφ = py, the only non null
contribution in the product with Aφ̃ comes from the even part in y of the latter, that is
prH/(r

2
H + a2y2). Note that the horizon energy MH is different from the parameter m,

because of the presence of a term related to the magnetic charge: we will soon see the
reason for this difference.
From (5.28), it follows that the horizon charge is

QH = −q . (5.44)
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For the horizon angular momentum, from (5.35) we find

JH =
ωH

2

(︃
−LH

2
+MH − ΦHQH

)︃
, (5.45)

where
ΦH = −At − ΩHAφ = − qrH

r2H + a2
. (5.46)

Note that the horizon angular momentum satisfy JH = ma. In fact, from the previous
results, recalling that LH = σ is the length of the horizon rod, we find

JH =
(r2H + a2)(m− σ)− (p2 + q2)rH

2a
= am .

The rotational parameter a is therefore the angular momentum per unit mass.
Consider now the semi-infinite spacelike rods S+ and S−, where y = 1 and y = −1 respec-
tively. Since ω± = 0, there is no contribution of the strings to the angular momentum and
to the electric charge: J± = 0 and Q± = 0. The only non null string contribution is to the
energy of the spacetime. In fact, from (5.34) using that ω± = 0, we find

M+ = −1

2

(︂
AφAφ̃

)︂ ⃓⃓
x=1,y=1

,

M− =
1

2

(︂
AφAφ̃

)︂ ⃓⃓
x=1,y=−1

.

Using (1.5) and (4.23), we get

M± =
p(prH ± aq)

2(r2H + a2)
. (5.47)

We thus discovered that the Dirac strings are heavy: they give a non-zero contribution to
the total mass of the dyonic Kerr-Newman black hole. The sum of the two string masses is

M+ +M− =
p2rH
r2H + a2

.

Consequently the total energy becomes

M =MH +M+ +M− = m . (5.48)

Starting from the horizon Smarr formula (5.39) and using (5.43), where m is equal to the
total energy, we find the following global Smarr formula

M = 2THSH + 2ΩHJ +ΦHQ+
p2rH
r2H + a2

, (5.49)

The last additional term can be interpreted as the product of the magnetic charge P = −p
computed through (2.36) with a horizon magnetic potential Φ̃H defined by replacing q with
p in the electric potential (5.46)

Φ̃H := − prH
r2H + a2

. (5.50)

Therefore the global Smarr formula takes the form

M = 2THSH + 2ΩHJ +ΦHQ+ Φ̃HP , (5.51)

This final result show us that, taking the string contributions into account, the Smarr rela-
tion for the total mass includes a magnetic term.
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Although both assumptions (5.13) and (5.16) are Gauge dependent, the global Smarr for-
mula is not affected by the addition of a constant term in At or Aφ. In fact if we keep a
general constant b0 in Aφ, then it is no longer true that JH = J because of the contribution
from (5.16), indeed we get JH = J − qb0, where J = am. The co-rotating electric potential
in the Smarr formula is evaluated at the horizon but relative to infinity, that is

ΦH = −
(︂
Aµξ

µ
⃓⃓
r=rH

−Aµξ
µ
⃓⃓
r=∞

)︂
. (5.52)

Similar results can be found for the Gauge transformation At → At + c0, where c0 is a
constant. In this case the condition (5.13) is no more satisfied. Moreover the imaginary
part of the gravitational Ernst potential E will be modified by an additional term −2c0Aφ̃:
this is clear starting from (4.17). Anyhow the global Smarr formula (5.51) is restored.

5.5.2 Kerr-NUT

The Kerr-NUT spacetime is nothing but Kerr solution in presence of a NUT charge n. The
metric in Boyer-Lindquist coordinates is given by

ds2 = −∆

Ξ
(dt+ Pθdφ)

2 + Ξ

(︃
dr2

∆
+ dθ2

)︃
+

sin2 θ

Ξ
(adt− Prdφ)

2 , (5.53)

where

Pθ = 2n cos θ + 2s− a sin2 θ ,

Pr = r2 + a2 + n2 − 2as ,

Ξ = Pr + aPθ = r2 + (n+ a cos θ)2 ,

∆ = r2 − 2mr + a2 − n2 ,

where s is the same parameter introduced in section 5.1.
First of all, we note that unless s = 0 the total angular momentum is divergent. In fact,
starting from the Komar integral (2.16), we can rewrite it as a function of the metric
components and their derivatives, through steps similar to those seen in section 5.2. Then
we find

J = − 1

16π

∮︂
Σ∞

gijgta∂jgφadΣti . (5.54)

Remember that the index a labels the coordinates t and φ, while the remaining coordinates,
that in this case are r and θ, are labelled by i, j. Since the integral is over a two-sphere
at spatial infinity, the index i in the above equation must necessarily be equal to r, so the
total angular momentum becomes

J = − 1

16π

∮︂
Σ∞

√︁
|g| grr

(︁
gtt∂rgtφ + gtφ∂rgφφ

)︁
dθdφ . (5.55)

By writing the metric (5.53) in matrix form, the inverse metric can be found by taking
the inverse of the matrix metric through the cofactor matrix. By the following asymptotic
behaviors √︁

|g| = r2 sin θ +O (r) , grr = 1 +O
(︃
1

r

)︃
,

gtφ = −2(n cos θ + s)

r2 sin2 θ
+O

(︃
1

r3

)︃
, ∂rgφφ = 2r sin2 θ +O (1) ,

the second term in the integral (5.55) becomes

lim
r→∞

r

4

∫︂ π

0
dθ sin θ 2(n cos θ + s) = lim

r→∞
sr .
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Therefore this contribution to the total angular momentum is divergent unless s = 0. The
physical angular momentum J can be then finite only for this choice of the parameter s,
which corresponds to a symmetrical Misner string configuration.
Henceforward we assume s = 0. It is useful to work in prolate spherical coordinates (x, y)
instead of the Boyer-Lindquist coordinates. Through (A.12), the metric (5.53) can be
written in the form (5.41), where the metric functions have the same form as those in
(5.42), except for

Ξ = (σx+m)2 + (ay + n)2 ,

ω = −
2nyσ2

(︁
x2 − 1

)︁
+ 2a(1− y2)(mσx+m2 + n2)

f∗
.

Of course also the constant σ is different from that in (1.7). In this case its value is

σ =
√︁
m2 + n2 − a2 .

Since the Kerr-NUT is a solution of the vacuum Einstein equations, we consider only the
gravitational Ernst potential, which in the presence of a NUT charge is given by

ε =
σx−m+ i (ay − n)

σx+m+ i (ay + n)
. (5.56)

It can be calculated in a similar way as shown in chapter 4, or it can be directly obtained
from the gravitational Ernst potential (4.27) for the dyonic Kerr-Newman metric through
the transformation m → m+ in. From the above equation it is easy to find the imaginary
part of the complex potential

χ = Imε =
2(may − nσx)

(σx+m)2 + (ay + n)2
. (5.57)

Even in the presence of a NUT charge, the rod structure is the same as that presented in
section 3.2 for the Kerr metric.
Consider the horizon rod, which corresponds to x = 1 and y ∈ [−1, 1]. From (5.34) it follows
that

MH =
ωH

4
χ
⃓⃓y=+1

y=−1
=
ωH

4
(χ+ − χ−) , (5.58)

where χ+ = χ
⃓⃓
x=1, y=1

and χ− = χ
⃓⃓
x=1, y=−1

. From (5.57) we get 3

MH =
aωH

2rH
=
m(σ +m) + n2

rH
= m+

n2

rH
= σ , (5.59)

where in the last step we used

mrH + n2

rH
=
σ(σ +m)

rH
= σ .

For the horizon angular momentum, from (5.35) it is immediate to find

JH =
ωH

2

(︃
−LH

2
+MH

)︃
=
ωH

2

[︃
m(σ +m) + n2 − σ(σ +m)

rH

]︃
=
a2ωH

2rH
= aMH . (5.60)

In a similar way we can calculate the contributions of the two semi-infinite spacelike rods
S+ and S−, where y = 1 and y = −1 respectively. Using (5.34) and together with (5.57),
we obtain the following results

M+ =
ω+

4
lim
x→∞

χ
⃓⃓x
1
= −ω+

4
χ+ =

n(a− n)

rH
, (5.61)

3 we remind the reader to appendix B, section B.1, for more explicit calculations
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M− =
ω−
4

lim
x→∞

χ
⃓⃓1
x
=
ω−
4
χ− = −n(a+ n)

rH
, (5.62)

where ω± = ∓ 2n, while in the last steps we have used[︂
(σ +m)2 + (n± a)2

]︂ (︁
±an− n2

)︁
= 2n (±ma− nσ) (σ +m) .

For the string angular momentum, starting from (5.35), we find

J± =
ω±
2

(︃
−L±
2

+M±

)︃
. (5.63)

The total string contribution to energy can be written as

M+ +M− =
ω−
4

(χ+ + χ−) = − n2

rH
= m− σ , (5.64)

where in the last step we used: n2 = rH(2σ − rH).
Note that the parameter m, as usual, is the total energy of the spacetime; in fact 3

M =MH +M+ +M− = m . (5.65)

Therefore m does not coincide with the mass of the black hole: the energy of spacetime
does not come only from its horizon, but there is a contribution from the Misner strings.
Like Dirac strings, Misner strings are heavy and in addition they also contribute to the
angular momentum through (5.63). Note that the contribution of one string to the angular
momentum is divergent, since L± = R − σ with R → ∞, that is the length of the rod is
infinite. However, for our symmetrical choice s = 0 the sum of the string angular momentum
is finite, because L+ = L− e ω+ = −ω−, in fact

J+ + J− = −n(M+ −M−) = −an
2

rH
= a(M+ +M−) .

Therefore the total angular momentum is the sum over the three rod contributions

J = JH + J+ + J− = aMH + a(M+ +M−) = aM . (5.66)

The parameter a, as usual, is the ratio between the total angular momentum and the total
energy of spacetime. Since the sum of string angular momenta is finite, it is convenient to
define a reduced string angular momentum by

J±̃ = J± +
ω±L±

4
. (5.67)

This angular momentum can be considered as the finite part of the Misner string angular
momentum. Then we get

J+̃ + J−̃ = J+ + J− = −n(M+ −M−) = −an
2

rH
= a(M+ +M−) .

Starting from (5.63) and using the above definition, the global Smarr relation for the Kerr-
NUT solution can be written as

M = 2THSH + 2ΩHJH + 2Ω+J+̃ + 2Ω−J−̃ . (5.68)

Therefore appear two contribution related to the angular momentum contributions of the
two strings J+̃ and J−̃, while Ω − + and Ω− are the interpreted as the string angular
velocities.
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5.5.3 Dyonic Kerr-Newman-NUT

We now consider the previous metric with both electric and magnetic charge. The metric
in prolate spherical coordinates is the same as that in (5.41), where the metric functions
have the same form as those in (5.42), except for

Ξ = (σx+m)2 + (ay + n)2 ,

ω = −
2nyσ2(x2 − 1) + 2a(1− y2)

(︁
mσx+m2 + n2 − e2/2

)︁
f∗

.

Also the constant σ is different from that in (1.7). In this case its value is

σ =
√︁
m2 + n2 − a2 − q2 − p2 .

The electromagnetic four-vector potential for this solution fits the ansatz (4.2), where the
non-null components are given by

At =
q(σx+m)− p(ay + n)

(σx+m)2 + (ay + n)2
,

Aφ = py + [2ny − a(1− y2)]At .

Note that we have set s = 0 and b0 = 0, so that both Misner and Dirac strings are
symmetrically distributed.
The gravitational Ernst potential is the same as that in the previous section, given by (5.56),
while its imaginary part is reported in (5.57). The electromagnetic Ernst potential is given
by

Φ =
q − ip

σx+m+ i (ay + n)
. (5.69)

It can be directly obtained from the complex potential (4.24) for the dyonic Kerr-Newman
black hole through the transformation m→ m+ in; its imaginary part is

Ãφ = ImΦ = −q(ay + n) + p(σx+m)

(σx+m)2 + (ay + n)2
. (5.70)

Consider the horizon rod 4. Starting from (5.34), (5.35) and (5.28), we obtain the following
results for energy, charge and angular momentum

MH =
ν2[2(m2 + n2)(σ +m)−me2]

ν4 − 4a2n2
+

+

(︃
pe2

2
− µrH

)︃[︃
q(a+ n) + prH

(ν2 + 2an)2
+
q(n− a) + prH

(ν2 − 2an)2

]︃
,

(5.71)

QH = −2ν2[2rH(mq − np)− qe2]

ν4 − 4a2n2
, (5.72)

JH =
ωH

2
(−σ +MH − ΦHQH) , (5.73)

where ν2 = r2H+n2+a2 = 2
(︁
m2 + n2 + σm− e2/2

)︁
and µ = pm+qn. The metric function

ω evaluated on the horizon and the electric potential of the horizon are respectively

ωH = ω(x = 1) =
2(mσ +m2 + n2 − e2/2)

a
=
ν2

a
, (5.74)

4In order to avoid being too heavy, all the calculations of this section are reported in appendix B, section
B.2
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ΦH = −pn− qrH
ν2

. (5.75)

Consider now the string rods. We obtain the following results

M± = ±n(ma∓ nσ)

ν2 ± 2an
−
(︃
pe2

2
− µrH

)︃[︃
q(n± a) + prH

(ν2 ± 2an)2

]︃
, (5.76)

Q± = −n[prH + q(n± a)]

ν2 ± 2an
, (5.77)

J± =
ω±
2

(︃
−L±

2
+M± − Φ±Q±

)︃
, (5.78)

where
ω± = ∓2n , (5.79)

Φ± =
p

2n
. (5.80)

As noted in the previous section, the string contribution to the angular momentum is diver-
gent: the same remarks as before con be made. Defining the reduced angular momentum
as in (5.67), we see that all these contributions satisfy the following global Smarr relation

M = 2THSH + 2ΩHJH + 2Ω+J+̃ + 2Ω−J−̃ +ΦHQH +Φ+Q+ +Φ−Q− . (5.81)

Note that in the presence of both Dirac and Misner strings, in addition to a mass and
angular momentum contribution, there is also a charge contribution.



Chapter 6

Recent results following the
Clément-Gal’tsov approach

In the previous chapter we have seen how to calculate the conserved charges in presence
of line singularities: that method was proposed by Clément and Gal’tsov in [12] and, a
few months later, was heavily criticized by García-Compeán, Manko and Ruiz in [13]. In
this chapter we will comment the relevant aspects of criticism, showing how they can be
overcome. Finally, we will analyze the recent literature concerning the Smarr formula of
spacetimes with non-null NUT charge: in particular, we will quickly present two different
methods, looking for points of connection with Clément-Gal’tsov approach.

6.1 Criticisms of Clément-Gal’tsov approach

In order to better understand the extent of this criticism, we report below some extracts of
the paper [13] 1. First of all, the abstract reads

We comment on physical inconsistences of the Clément-Gal’tsov approach to
Smarr’s mass formula in the presence of magnetic charge. We also point out
that the results of Clément and Gal’tsov involving the NUT parameter are essen-
tially based on the known study (dating back to 2006) of the Demiánski-Newman
solutions which was not cited by them.

We immediately see that the criticism concerns only solutions with Dirac strings.
We now report the beginning of the article, where we can see the authors are strongly
convinced of the unphysical features of the Clément-Gal’tsov approach

In the paper [11], Clément and Gal’tsov considered the mass and angular mo-
mentum distributions in the dyonic Kerr-Newman (KN) black-hole spacetime to
get the results different from those earlier obtained for this spacetime in [19].
The preprint [19] was later published under a slightly different title [20] better
reflecting the topic of the special issue of Classical and Quantum Gravity on black
holes and electromagnetic fields, and the paper [11] was not mentioned there be-
cause the physical inconsistences in the formulas (4.8) and (4.14) of [11] were so
glaring, that we hoped Clément and Gal’tsov would be able to detect these them-
selves. However, it appears that the aforementioned authors were pretty sure
about the correctness of their results because in the recent paper [12] they have
extended their approach further to the solutions with the NUT parameter, hinting
in passing that the title change of the preprint [19] might have had something

1in the following quotes, references and notation have been slightly modified to fit the notation of our
work.
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to do with the critical tone of their previous work [11]. Therefore, we now feel
ourselves obliged to respond the Clément and Gal’tsov’s critique, and in what
follows we will comment on the physical inconsistences of the papers [11], [12].

Let us now focus on the criticized physical aspects. The first problem presented is the
following

the model proposed and advocated by Clément and Gal’tsov as alternative to the
usual interpretation of M (the mass fully confined inside the central body) has
several frankly unphysical features. First, the semi-infinite strings introduced
in [11] have different masses M±, which apparently contradicts the equatorial
symmetry of the dyonic KN solution [...] requiring M+ =M−.

First of all, note that M is not the mass of the central body as the articles states, but it is
the total energy of the spacetime, given by the Komar integral (2.15). In section 2.5 we see
that, even in a well-known solution such as the Reissner-Nordström black hole, M is the
black hole mass added to the external spacetime contribution, related to the electromagnetic
energy-momentum tensor. It is true that both contributions can be written as integrals over
the event horizon, such as in (5.14) where the only contribution comes from the horizon
rod, however it coincides with the black hole mass only in the absence of both electric and
magnetic charge.
With regard to the equatorial symmetry, we say that a solution is equatorially symmetric
when all the metric fields and the Faraday tensor are even function under the transformation

z → −z ,
ρ→ ρ .

(6.1)

In other words h(ρ, z) = h(ρ,−z) for any function that characterizes the solution.
In spherical coordinates the above transformation is equivalent to

θ → π − θ ,

r → r .
(6.2)

Consider now the dyonic Kerr-Newman black hole: the metric (1.4) is equatorially sym-
metric; on the other hand the Faraday tensor constructed from (1.5) breaks this symmetry
because of the presence of the magnetic charge: for example

Fθφ(r, θ) ̸= Fθφ(r, π − θ) .

Therefore the whole solutions, which includes also the electromagnetic fields, has no equa-
torial symmetry. Consequently the difference between M+ and M− does not contradict any
symmetry.
Then the article continues in this way

Moreover, it is easy to see that for small values of the magnetic charge p the
masses M+ and M− of the two strings can even take opposite signs, which in-
troduces undesirable negative masses into a well-behaved solution.

This observation is correct: in fact, without lost of generality, we can assume the parameters
a, q and p to be positive, therefore the rod contribution of the south pole axis to the energy
M− in (5.47) is negative if

p(σ +m) < aq . (6.3)

In particular, always exist values of the parameters m, a, q and p such that both (1.8) and
(6.3) are satisfied. The presence of a negative contribution to the energy can be attributed
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to the fact that the string interact with the black hole by pushing it away (in this case
the string is called strut, that can be viewed as an anti-gravitational object). This is more
evident for the NUTty spacetimes, where the total string contribution given by the sum
of M+ and M− is negative, while for the dyonic Kerr-Newman black hole the total string
contribution is positive. In any case, it is important that all rod contributions give a total
positive energy and this is always verified.
We also note that we are not dealing with a well-behaved solution due to the presence of
Dirac strings.
Proceeding in the article we find

Mention also that the parameter a in the Clément-Gal’tsov treatment does not
represent the total angular momentum per unit mass calculated on the hori-
zon because the parts S± of the symmetry axis have zero angular momenta and
nonzero masses, thus contradicting Carter’s interpretation [14] of the dyonic KN
solution.

However, exactly on the first page of [14] the rotational parameter a is defined as

a =
J

M
, (6.4)

whereM and J , according to what Carter writes, are respectively the asymptotically defined
mass and angular momentum, that is they are respectively defined by the Komar integrals
(2.15) and (2.16). In section 5.5.1 we show that the relation (6.4) holds for the dyonic
Kerr-Newman black hole since JH = J and m = M ; therefore we are therefore consistent
with the Carter’s definition of the rotational parameter. Note that the above ratio reduces
to

a =
JH
MH

(6.5)

only in the absence of line singularities, where JH and MH have also contributions from the
elctromagnetic energy-momentum tensor.
The last criticized aspect is the following

At the first try, the appearance of the additional term in the mass integral (3.11)
of [11] leading to the above (1) 2 could be attributed to the clearly erroneous equa-
tions (3.2) of defining the magnetic scalar potential Aφ̃. At the same time, even
if the calculations of Clément and Gal’tsov are somehow correct, the presence
of the term involving the product AφAφ̃, Aφ being the magnetic component of
the electromagnetic 4-potential, must not really produce any effect on the usual
physical interpretation of the dyonic KN solution because there are arguments
in favor of vanishing of such a term. Indeed, [...] in the case of a magnetic
monopole the potential Aφ can be made equal to zero on S± if one treats the
Dirac string as a "gauge artifact", which allows for choosing an appropriate
value of the integration constant b0 in the expression of A on each part of the
symmetry axis. Then the potential Aφ of the dyonic KN solution [...] will take
zero value on S+ (y = 1) after choosing b0 = p, while on the lower part of the
symmetry axis S− (y = −1) the potential Aφ vanishes at b0 = p. Consequently,
in this case both M+ and M− also become zeros, which is consistent with the reg-
ularity of the metric on S±. Obviously, this approach is equivalent to calculating
MS± (and MH too) by means of the usual Tomimatsu’s mass integral.

Here the real difference between the Clément-Gal’tsov approach and the Tomimatsu ap-
proach, that is the one used by Manko, comes to light. The Clément-Gal’tsov approach is

2the equation (1) of [13] summarize the rod energies (5.43) and (5.47)
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nothing but the reformulation of the Tomimatsu approach in terms of the rod structure. In
[11] Clément and Gal’tsov, in order to resolve the problem when the Tomimatsu formulas
were applied to multi-dyons (it was observed that the resulting values for the black hole
parameters failed to obey the standard Smarr relation, but obeyed a generalized Smarr rela-
tion with both electric and magnetic contributions), showed a new derivation for Tomimatsu
formulas, since Tomimatsu gave very little details of his calculations. This derivation has
been presented in terms of the rod structure in the previous chapter: comparing our results
with the Tomimatsu formulas in [21], we find out that Tomimatsu have the second term in
(5.34) missing.
In the above text García-Compeán, Manko and Ruiz states that the missing term vanishes if
we choose two different values for the constant b0 on each part of the symmetry axis. How-
ever, this solution is absurd since we cannot simultaneously choose two different integration
constant for the same component of the four-vector electromagnetic potential.

6.2 Alternative approaches to thermodynamics of NUTty space-
times

6.2.1 Wu-Wu method

In [15] Shuang-Qing Wu and Di Wu propose a systematic way to find the global Smarr
formula of spacetimes that contain a nonzero NUT charge, starting from a Christodoulou-
Ruffini-type squared-mass formula. The latter formula is a relation between the square of
the energy of spacetime, the entropy of the black hole and the other conserved charges, that
are charge and angular momentum. Such a formula is very convenient since the first law
of black hole thermodynamic can be simply deduced via differentiating that formula with
respect to all of its thermodynamic variables, and then the Smarr formula can be easily
verified. For example for the Kerr-Newman (p = 0) black hole the Christodoulou-Ruffini-
type squared-mass formula was found to be

M2 =
π

4S

(︃
S

π
+Q2

)︃2

+
πJ2

S
. (6.6)

However, it is necessary to know the conserved charges for spacetimes with a non-null NUT
charge in order to write such a formula. Instead of the usual conserved charges related
to the symmetries of the specific spacetime, they consider three conserved charges for the
Taub-NUT spacetime:

• Komar energyM defined by the standard integral at infinity (2.15): the authors report
from other papers the result M = m, in accordance with (5.65) 3. Wu and Wu reports
also the result for the horizon mass: MH = rH −m, in accordance with (5.59).

• Gravitomagnetic mass N or dual mass M̃ : the gravitomagnetic mass is calculated
from a NUT-potential introduced so that the Einstein equations may be obtained
from a three-dimensional Lagrangian density, while the dual mass (2.37) takes the
Hodge dual of the Komar mass definition. These two quantities give the same result
for spacetime with a zero cosmological constant; in particular they are both identical
to the NUT charge n. However, neither of these two charges is associated with a
symmetry of spacetime, which was our starting point for defining conserved charges.

• Angular momentum Jn = mn. This is a conjecture of the two authors: they suppose
that, similarly to the angular J = ma of the Kerr spacetime, an analogous angular

3Although reference is made to the results of the Kerr-NUT spacetime, the same results hold for the
Taub-NUT spacetime for a = 0
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momentum con be defined by substituting the rotational parameter a with the NUT
charge n. Even though they states that there are a lot of reasons to support such an
idea, it remains a pure hypothesis.

Starting from these conserved charges they arrive to the following square-mass formula

M2 =

(︁
AH − 2N2

)︁2
4AH

+
J2
n

AH
, (6.7)

where AH is the reduced horizon area: AH = AH/(4π). The hypothetical angular mo-
mentum Jn appears in the Christodoulou-Ruffini-type squared-mass formula for NUTty
spacetime in an analogous way to how the standard angular momentum J appears in the
corresponding formula for the Kerr-Newman black hole.
We can view (6.7) as an implicit function M =M(AH , Jn, N) and then write the first law

dM =
κ

2
dAH + ω̃HdJn + ψHdN ,

where
κ = 2

∂M

∂AH
, ω̃H =

∂M

∂Jn
, ψH =

∂M

∂N
.

It’s then possible to find the Smarr formula

M = κAH + 2ω̃HJn + ψHN .

The same approach is applied to the Kerr-Newman-NUT spacetime: the conserved charges,
for this spacetime in addition to the previous ones, are the angular momentum J = am and
the electric charge Q = q. The squared-mass formula takes the form

M2 =

(︁
AH − 2N2 −Q2

)︁2
4AH

+
J2
n + J2

AH
. (6.8)

As in the previous case, by defining

κ = 2
∂M

∂AH
, ΩH =

∂M

∂J
, ω̃H =

∂M

∂Jn
, ψH =

∂M

∂N
, ΦH =

∂M

∂Q
,

it is immediate to write the first law

dM =
κ

2
dAH +ΩHdJ + ω̃HdJn + ψHdN +ΦHdQ ,

and subsequently deduce the Smarr formula

M = κAH + 2ΩHJ + 2ω̃HJn + ψHN +ΦHQ .

We finally note that the NUT charge shows both rotation-like and electromagnetic charge-
like characteristics; similar results were found in the previous chapter, although charge
characteristic emerges only in presence of an electric or magnetic charge.

6.2.2 Bordo-Gray-Kubizňák method

In [16] Bordo, Gray and Kubizňák propose two different first laws for rotating spacetimes
with nonzero NUT charge. We now briefly summarize their method.
As we have seen in section 3.1, each rod of a general stationary and axisymmetric solution
is a Killing horizon, associated to the direction of the specific rod. Consider now the dyonic
Kerr-Newman-NUT spacetime; it admits three horizons: one is the event horizon of the black
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hole, generated by the Killing vector ξH = ∂t+ΩH∂φ, while the others are located along the
spacelike rods (which account for strings), generated by the Killing vectors ξ± = ∂t+Ω±∂φ.
Since we are dealing with Killing horizon, we can define a surface gravity of the strings: by
using the standard definition (1.42), we find

κ+ = κ− =
1

2n
. (6.9)

In principle, these surface gravities are a purely formal definition and do not necessarily
have the same physical interpretation of temperature, as happens for the horizon surface
gravity. Note that, up to a constant factor, they coincide with the angular velocities Ω± of
the strings. Therefore they define what they call Misner potential in the following way

ψ =
κ±
4π

=
1

8πn
. (6.10)

This potential is interpreted as the string temperature: however this interpretation is not
argued and seems not very clear at the moment. Furthermore there would be a significant
physical problem, since different parts of spacetime will have different temperatures; we also
expect the strings to be in contact with the event horizon, thus leading to a non-equilibrium
state. The authors generically call it Misner potential, since they know it could be also
interpreted as an angular velocity.
The first law, or equivalently the Smarr formula, can be written through the Euclidean
action. In order to do this, one can note that we can pass from a Lorentzian solution to
a Euclidean one through a Wick rotation. The latter consists in the introduction of an
imaginary time coordinate τ = −it, where we have to identify τ with period 2π/κH to
make the metric regular on the horizon (one has also to Wick rotate the NUT parameter,
the rotational parameter, the electric charge and the magnetic charge so that both the
metric and the electromagnetic potential vector remain real). Such Euclidean metric can
be found from an Euclidean action. Starting from the Euclidean action, one can write
the corresponding free energy G = Iβ = I/T , where I is the action and T is the Hawking
temperature (previously denoted by TH). Therefore they find two different first laws: at first,
the free energy is viewed as an implicit function of TH , ψ, ΩH , Φe (it is the co-rotating electric
potential, identical to our ΦH) and the horizon magnetic charge QH

m; the latter has been
computed by evaluating (2.36) at the event horizon. Then the thermodynamic quantities
are found by taking the derivative of the free energy with respect to the corresponding
variable. This first possibility leads to the Smarr formula

M = 2THSH + 2ΩHJ + 2ψN + ϕeQe + ϕmQ
H
m . (6.11)

The second possibility is to view to substitute the horizon magnetic charge with the asymp-
totic magnetic charge Qm, that is given by the dual of the electric charge expression (2.4),
in the variables of the free energy.

M = 2THSH + 2ΩH J̃ + 2ψÑ + ϕeQ
H
e + ϕ̃mQm , (6.12)

where J̃ , Ñ and ϕ̃m are different from J , N and ϕm respectively.
In both cases the choice of variables seems to be postulated in such a way that the Smarr
formula will take a specific form. Besides, is not clear why we should take into account also
the horizon magnetic charge, or the asymptotic magnetic charge. Moreover, it seems that
this method requires to already know the conserved charges and the associated "potentials":
in fact the authors presented two different methods, suggesting an ambiguity in the choice
of the relevant quantities.
We also point out that there is an ambiguity in the Euclidean action for manifolds with
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boundary: one can add any boundary term without modifying the equations of motion.
However, such boundary terms will modify the conserved charges, since they modify the
expression of the free energy. The authors write the Euclidean action for a spacetime with
nonzero cosmological constant Λ and then, once the free energy G is written, they take the
limit Λ → 0. Furthermore they states that NUTty spacetimes have no conical singularity for
Λ = 0; however, in section 5.1 we show that the NUT charge introduces angular defects in
the solution: the presence of divergent angular defect make us not sure if such an Euclidean
action may be written down.

Below there are two tables summarizing the resulting Smarr formula obtained through
the discussed method for the Taub-NUT spacetime and the Kerr-NUT spacetime.
Note that the product between κ and AH gives the same result of 2THSH . Let’s briefly
analyze the Taub-NUT case: the Smarr formulas obtained one with the Clément-Gal’tsov
method and the other with the Wu-Wu method are very different from each other. The
comparison between them is quite complicated since the latter method start from the hy-
pothesis of validity of the Christodoulou-Ruffini-type squared-mass formula, from which
the first thermodynamic law is derived with a cascade effect, once the conserved charges
have been chosen. A point of greater comparison would be possible if we could write a
squared-mass formula from the Clément-Gal’tsov Smarr formula. With regarding to the
Bordo-Gray-Kubizňák method, it gives similar results to ours: this similarity in the Smarr
formulas was quite expected, since the only other thermodynamic quantity that appears in
the first law for this spacetime, besides mass and entropy, is the Misner potential, which is
proportional to the angular velocities of the strings.
Moreover, we point out that the Clément-Gal’tsov method is based on calculating the con-
served charges (mass, angular momentum and electric charge) separately: once the various
contributions have been calculated, starting from the horizon Smarr formula, a global Smarr
formula is then found. On the other hand, by using the other exhibited methods, once the
conserved charge have been chosen a Smarr formula will be automatically satisfied. This
makes the latter methods difficult to apply to spacetime for which no Smarr formula is
already known.
With regarding to the Kerr-NUT spacetime, first of all note that all the results can be
written in a slightly different form by using that

r2H + a2 + n2 = 2(mrH + n2) .

For the Wu-Wu results the same previous observations can be made. The result of Bordo,
Gray and Kubizňák is similar to our also for this spacetime; in fact, it is immediate to see
that JH = J . More differences between the two methods come to light when the solution has
both electric and magnetic charge (or even when only one of them is present): for example
both J in (6.11) and J̃ in (6.12), besides being different from each other, are different from
JH in (5.73). Note that in the cases presented in the tables both Ñ = N and J̃ = J , thus
the Smarr formula (6.11) and (6.12) are equivalent.
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C
G

M = 2THSH + 2Ω+(J+̃ − J−̃)

M = m
TH = 1/(4πrH) SH = 2πσrH

Ω+ = −Ω− = −1/(2n) J+̃ = −J−̃ = n3/(2rH)
W

W
M = κAH + 2ω̃HJn + ψHN

M = m

κ = 1/(2rH) AH = 2σrH

ψH = −n/σ N = n

Jn = mn ω̃H = n/(2σrH)

B
G

K

M = 2THSH + 2ψN

M = m
TH = 1/(4πrH) SH = 2πσrH

ψ = 1/(8πn) N = −4πn3/rH

Smarr formulas for Taub-NUT spacetime

C
G

M = 2THSH + 2ΩHJH + 2Ω+(J+̃ − J−̃)

M = m

TH = σ/[2π(r2H + a2 + n2)] SH = 2π(r2H + a2 + n2)

ΩH = a/(r2H + a2 + n2) JH = a(r2H + a2 + n2)/2rH

Ω+ = −1/(2n) J+̃ = n2(n− a)/(2rH)

Ω− = 1/(2n) J−̃ = −n2(n+ a)/(2rH)

W
W

M = κAH + 2ΩHJ + 2ω̃HJn + ψHN

M = m

κ = σ/(r2H + a2 + n2) AH = r2H + a2 + n2

ΩH = a/AH J = ma

ω̃H = n/AH Jn = mn

ψH = −2nrH/AH N = n

B
G

K

M = 2THSH + 2ΩHJ + 2ψN

M = m

TH = σ/[2π(r2H + a2 + n2)] SH = 2π(r2H + a2 + n2)

ΩH = a/(r2H + a2 + n2) J = a(r2H + a2 + n2)/2rH

ψ = 1/(8πn) N = −4πn3/rH

Smarr formulas for Kerr-NUT spacetime



Conclusion

In this thesis we presented a way to calculate the conserved charges in GR in presence of
line singularities: this happens when studying stationary and axisymmetric spacetime with
NUT charge or magnetic charge. After a brief introduction necessary to recall some key
concepts and to define the notion of three-dimensional hypersurfaces and surfaces in GR, we
defined conserved charges starting from spacetime symmetries through the so-called Komar
integral.
Then we introduced two essential formalisms. First of all, we gave the key definitions for
understanding the rod structure for stationary and axisymmetric spacetimes with two com-
muting Killing vector fields; here we found that each rod has the property to be a Killing
horizon, associated to the direction of the rod. Secondly we defined the Ernst potentials.
In chapter five we focused on line singularities: all the known types of such singularities
are located on semi-infinite spacelike rods. Therefore in Weyl coordinates both black holes
and defects can be universally described as rods located on the axis. Then combining the
Komar charges with the rod structure formalism and the Ernst potentials, we decomposed
the Komar integral into a sum of rod contributions, thus finding an elegant way to calcu-
late conserved charges in the case of rotating black holes, since it involves only functions
evaluated in the turning points. The decomposition has a more complicated expression for
non-rotating black holes, because is not possible to eliminate some terms that usually go to
zero on the axis.
Having applied this method to the dyonic Kerr-Newman spacetime, we found that the Dirac
strings are heavy, that is their contribution to the energy of the spacetime is non-zero, lead-
ing to a magnetic term in the global Smarr formula. This result has been found for the
particular choice b0 = 0 (the additive constant in Aφ) which leads to a symmetrical string
configuration. Anyhow, even for b0 ̸= 0 the global Smarr formula is restored.
Then we turned our attention to the solution with non-zero NUT charge. In presence of
the latter both Misner and cosmic strings are present; if the solution is even only electri-
cally charged, Dirac strings emerge. In the case of the Kerr-NUT spacetime we selected
a symmetric configuration of Misner strings in order to guarantee a finite total angular
momentum. The same configuration has been adopted for the dyonic Kerr-Newman-NUT
spacetime: this more general case shows that the NUT charge contributes to all the con-
served charges, that are energy, angular momentum and electric charge.
The flaw of the method employed in this work lies in the starting definition for the conserved
charges: the Komar integral returns the correct charges up to a multiplicative constant,
which is fundamental. This implies that not all observers measure the same energy and
angular momentum: therefore there are privileged observers. In fact such a constant is
correctly chosen only for well normalized Killing vector fields: this normalization is not ob-
vious for not asymptotically flat spacetimes. Then a possible outlook is to try applying this
method to spacetimes which are not asymptotically Minkowski: we have already seen that
the method works for spacetimes which are asymptotically Taub-NUT. Therefore it would
be natural to analyze the insertion of an acceleration, which will introduce infinite timelike
rods corresponding to acceleration horizons in the solution; such solutions are asymptoti-
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cally Rindler. In fact the acceleration would be the only parameter not considered for black
holes of the class studied in this thesis, that is the Petrov type D class.
In addition, the Clément-Gal’tsov approach suggests that the different strings we have in-
troduced (Dirac, Misner and cosmic strings) appear to be different characterisation of the
same physical object. Indeed, in section 5.5.3 we do not distinguish between the Dirac
strings and the Misner strings: we simply treated both south pole axis and north pole axis
as a general line singularity.

Finally, by comparison with other methods applied to NUTty spacetimes in the recent

z
z4z3z2z1

H1 H2

Figure 6.1: rods for a two black hole configuration

literature, we found that the method in this thesis is the only one that can be extended
to new spacetimes for which no Smarr formula has been already found. In particular it
represents a convenient framework which is useful for the analysis of solutions containing
several horizons and defects. An example may be a system of two black holes on the same
axis: the equilibrium is ensured by the rod [z2, z3] shown in figure 6.1.



Appendix A

A.1 Differential operators

By writing the metric in Weyl coordinates with the Lewis-Weyl-Papapetrou ansatz (4.1),
in section 4 we have seen that the Einstein field equations, which usually are written by
curved differential operators, can be written in terms of flat differential operators.
For this reason we are interested in flat three-dimensional spacetime in cylindrical coordi-
nates (ρ, z, φ), whose metric is given by

ds2 = dρ2 + dz2 + ρ2dφ2 . (A.1)

For any scalar function h(ρ, z, φ) or vector function X⃗(ρ, z, φ), the gradient, the laplacian
and the divergence are respectively

∇⃗h(ρ, z, φ) =
(︃
∂h

∂ρ
,
∂h

∂z
,
1

ρ

∂h

∂φ

)︃
, (A.2)

∇2h(ρ, z, φ) =
1

ρ

∂

∂ρ

(︃
ρ
∂h

∂ρ

)︃
+

1

ρ2
∂h

∂φ
+
∂2h

∂z2
, (A.3)

∇⃗ · X⃗(ρ, z, φ) =
1

ρ

∂ (ρXρ)

∂ρ
+
∂Az

∂z
+

1

ρ

∂Xφ

∂φ
. (A.4)

Note that for the spacetimes considered these flat differential operators simplify further
since all the scalar and vector functions do not depend on the φ coordinate, associated to
the rotational Killing vector field.

A.2 Prolate spherical coordinates

Here we define the prolate spherical coordinates (x, y), which are convenient to use for
stationary and axisymmetric solutions. They are related to the Weyl coordinates (ρ, z) by
the following transformation ⎧⎪⎪⎨⎪⎪⎩

ρ(x, y) = σ
√︁
(x2 − 1) (1− y2)

z(x, y) = σxy

(A.5)

where σ is a positive constant. The ranges

ρ ≥ 0 , −∞ < z <∞ ,

of the Weyl coordinates make x and y have ranges

x ≥ 1 , −1 ≤ y ≤ 1 .
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The inverse transformation of (A.5) is given by⎧⎪⎪⎨⎪⎪⎩
x(ρ, z) =

R+ +R−
2σ

,

y(ρ, z) =
R+ −R−

2σ
,

(A.6)

where ⎧⎪⎨⎪⎩R+ =
√︂
ρ2 + (z + σ)2 ,

R− =
√︂
ρ2 + (z − σ)2 .

(A.7)

We are interested in how the metric changes under this coordinate transformation. In
general the transformation law of basis dual vectors under a change of coordinates is

dyµ =
∂yµ

∂xα
dxα ⇒ dyµdyν =

∂yµ

∂xα
∂yν

∂xβ
dxαdxβ . (A.8)

In our case, passing from the prolate spheroidal coordinates (x, y) to the Weyl coordinates
(ρ, z), we find

dρ2+dz2 = dx2

[︄(︃
∂ρ

∂x

)︃2

+

(︃
∂z

∂x

)︃2
]︄
+dy2

[︄(︃
∂ρ

∂y

)︃2

+

(︃
∂z

∂y

)︃2
]︄
+dxdy

(︃
∂ρ

∂x

∂ρ

∂y
+
∂z

∂x

∂z

∂y

)︃
.

From (A.5) follows that

∂ρ

∂x
=
σx

√︁
1− y2√

x2 − 1
,

∂z

∂x
= σy ,

∂ρ

∂y
= −σy

√
x2 − 1√︁
1− y2

,
∂z

∂y
= σx .

(A.9)

Therefore we find

dρ2 + dz2 = σ2
(︁
x2 − y2

)︁(︃ dx2

x2 − 1
+

dy2

1− y2

)︃
. (A.10)

Note that the term dxdy does not appear. This transformation is useful since in (4.1) the
block in (ρ, z) is diagonal and gρρ = gzz, so there is the factor dρ2 + dz2.
We can see how the metric changes also starting from the transformation of the metric
components. The general transformation law for the metric is

g′µν =
∂xα

∂yµ
∂xβ

∂yν
gαβ , (A.11)

where the symbol ′ indicates the components of the coordinate system {yµ}. By (A.9) it
is easy to find that gxy = 0 for the ansatz (4.1). Thus the (ρ, z)-block remains diagonal
also in prolate spherical coordinates. Actually this is true only in this particular case where
gρρ = gzz; in general we will find gxy ̸= 0.

The prolate spherical coordinates can also be related to the coordinates (r, θ) through
the following transformation ⎧⎪⎪⎨⎪⎪⎩

x(r) =
r −m

σ
,

y(θ) = cos θ .

(A.12)

In this case if the original metric is diagonal in (r, θ), it remains diagonal also in (x, y) since
the transformation matrix is diagonal.
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A.3 Taub-NUT and solitons

Here we show how to write the components gφφ and gρρ for the Taub-NUT metric (5.2) in
terms of the solitons defined by⎧⎪⎪⎨⎪⎪⎩

µ1 = σ − z +R− = (y − 1)(m− r − σ) ,

µ2 = −σ − z −R+ = (y + 1)(m− r − σ) ,

(A.13)

where R+ and R− are defined by (A.7).
Inverting these equations we can write the spherical coordinates (r, y) in terms of the solitons
as

r =
µ1 − µ2

2
− σ +m , (A.14)

y =
µ1 + µ2
µ2 − µ1

. (A.15)

Applying the latter equations to the Taub-NUT metric it is immediate to find the gφφ
component in terms of the solitons

gφφ =
4n2(µ1 + µ2)(4σ

2 − (2σ − µ1 + µ2)
2)

(µ1 − µ2) [4σ2 − 4m(2σ − µ1 + µ2) + (2σ − µ1 + µ2)2]

−
4µ1µ2

[︁
n2 + (m− σ + µ1/2− µ2/2)

2
]︁

(µ1 − µ2)2
.

(A.16)

With regard to the gρρ component, the procedure is more complicated since we have to
apply the transformation (A.11). However, from (4.1) we know that

gρρ = f−1e2γ ,

where for the Taub-NUT metric f is given by (5.3), while e2γ is given by the third equation
in (5.42) setting a = 0. We can therefore simply substitute (A.14) and (A.15) in the above
expression for gρρ to get

gρρ = −8µ1µ2[−2σ2µ1µ2(ρ2+µ2
1)(ρ

2+µ2
2)+σ2(ρ2+µ1µ2)2(µ2

1+µ2
2)+mσ(µ1−µ2)2(µ2

1µ
2
2−ρ4)]

(ρ2+µ2
1)(ρ

2+µ2
2)(µ1−µ2)2(ρ2+µ1µ2)2

.

(A.17)
Is not obvious we can write gρρ in this way starting from (A.14) and (A.15), but starting
from (A.13) it easy to verify that it leads back to the known form in (r, y) coordinates.



Appendix B

B.1 Kerr-NUT

Here we provide some steps for the calculation of the horizon energy contribution in the
case of the Kerr-NUT solution.
Let d+ and d− be defined by d+ = (σ + m)2 + (a + n)2 and d− = (σ + m)2 + (n − a)2.
Starting from (5.58) we find

χ+ − χ− =
2d−(ma− nσ) + 2d+(ma+ nσ)

d+d−
=

=
8(m3a+mn2a+ σm2a+ σn2a)

4[(m2 + n2)2 + 2σm(m2 + n2)− a2n2 + σ2m2]
=

=
2a(m2 + n2)(σ +m)

(m2 + n2)(σ +m)2
=

=
2a

rH
.

Similarly, we find

χ+ + χ− = −2n(m2 + n2)(σ +m)

(m2 + n2)(σ +m)2
= − 2n

rH
.

We used this last formula in (5.65).

B.2 Dyonic-Kerr-Newman-NUT

Here we provide some steps to get the results reported in section 5.5.3 for the rod contri-
butions to the conserved charges.
Consider the horizon rod H; starting from (5.34), the energy contribution is

MH =
ωH

4
(χ+ − χ−) +

1

2

[︃(︂
AφAφ̃

)︂
y=1

−
(︂
AφAφ̃

)︂
y=−1

]︃
.

Let’s rewrite in a different way the quantity χ+ − χ− through the following steps

χ+ − χ− =
2d−(ma− nσ) + 2d+(ma+ nσ)

d+d−
=

=
4(2m3a+ 2mn2a+ 2σm2a+ 2σn2a−mae2)

4(m2 + n2 + σm− na− e2/2)(m2 + n2 + σm+ na− e2/2)
=

=
4a[2(m2 + n2)(σ +m)−me2]

ν4 − 4a2n2
,

where d+ and d− have been defined in the previous section.
Therefore the first term becomes

ωH

4
(χ+ − χ−) =

ν2[2(m2 + n2)(σ +m)−me2]

ν4 − 4a2n2
.
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Consider now the second contribution in MH : it is a difference of two terms. The first is

AφAφ̃

⃓⃓
y=1

= − [q(a+ n) + p(σ +m)]{pd+ + 2n[q(a+ n) + p(σ +m)]}
d2+

.

Let’s consider the second factor to numerator of the last expression

pd+ + 2n[q(a+ n) + p(σ +m)] =

= [p(σ +m)2 + p(a+ n)2 + 2nq(σ +m)− 2np(a+ n)] =

= p3 + q2p− 2m2p− 2σmp− 2σnq − 2mnq =

= p(p2 + q2)− 2(pm+ qn)(σ +m) =

= pe2 − 2µrH ,

while the denominator can be written as

d2+ =
(︁
ν2 + 2an

)︁2
.

The second term is

AφAφ̃

⃓⃓
y=−1

=
[q(n− a) + p(σ +m)]{pd− + 2n[q(n− a) + p(σ +m)]}

d2−
.

Let’s consider the second factor to numerator of the last expression

pd− + 2n[q(n− a) + p(σ +m)] =

= [p(σ +m)2 + p(n− a)2 + 2nq(σ +m)− 2np(n− a)] =

= 2m2p− p3 − q2p+ 2σmp+ 2σnq + 2mnq =

= − p(p2 + q2) + 2(pm+ qn)(σ +m) =

= − pe2 + 2µrH ,

while the denominator can be written as

d2− =
(︁
ν2 − 2an

)︁2
.

Therefore we can write
1

2
AφAφ̃

⃓⃓y=+1

y=−1
=

(︃
pe2

2
− µrH

)︃[︃
q(a+ n) + prH

(ν2 + 2an)2
+
q(n− a) + prH

(ν2 − 2an)2

]︃
.

Finally we arrive at

MH =
ν2[2(m2 + n2)(σ +m)−me2]

ν4 − 4a2n2
+

+

(︃
pe2

2
− µrH

)︃[︃
q(a+ n) + prH

(ν2 + 2an)2
+
q(n− a) + prH

(ν2 − 2an)2

]︃
,

(B.1)

which is the same relation written in (5.71).
Consider now the charge contribution, which, starting from (5.28), is given by

QH =
ωH

2
Aφ̃

⃓⃓y=+1

y=−1
.

Firstly, we do not consider the quantity ωH/2 and we get

Aφ̃

⃓⃓y=+1

y=−1
=
d+[q(n− a) + p(σ +m)]− d−[q(a+ n) + p(σ +m)]

d+d−
=

=
2a[qe2 − 2(m2q +mσq − nσp−mnp)]

ν4 − 4a2n2
=

= −2a[2rH(mq − np)− qe2]

ν4 − 4a2n2
.



B.2. Dyonic-Kerr-Newman-NUT 64

Therefore we find

QH = −2ν2[2rH(mq − np)− qe2]

ν4 − 4a2n2
, (B.2)

which is equal to (5.72).
We now calculate the electric potential. Let’s define hy = q(σ + m) − p(ay + n) and
dy = (σ +m)2 + (ay + n)2. Then from the definition (5.22) we obtain

ΦH = −(At +ΩHAφ) =

= −
[︃
hy
dy

+
a

ν2
pydy + [2ny − a(1− y2)]hy

dy

]︃
=

−hyν2 − paydy − [2nay − a2(1− y2)]hy
ν2 dy

.

Let’s consider the numerator of the last expression

− q(σ +m)dy + p(ay + n)dy − paydy − 2nayhy + a2(1− y2)hy =

=− q(σ +m)
[︂
(σ +m)2 + n2 + a2y2 + 2nay

]︂
+ pn

[︂
(σ +m)2 + n2 + a2y2 + 2nay

]︂
=

=[pn− q(σ +m)]dy .

Thus we arrive at
ΦH =

pn− q(σ +m)

ν2
, (B.3)

which is the same potential written in (5.75).
Consider now the string rods and remember that y = 1 on the rod S+ while y = −1 on the
rod S−. Starting from (5.34), the string energy contribution is

M+ =
ω+

4
lim
x→∞

χ
⃓⃓x
1
+

1

2
lim
x→∞

AφAφ̃

⃓⃓x
1
= −ω+

4
χ+ − 1

2

(︂
AφAφ̃

)︂
x=1

,

M− =
ω−
4

lim
x→∞

χ
⃓⃓1
x
+

1

2
lim
x→∞

AφAφ̃

⃓⃓1
x
=
ω−
4
χ− +

1

2

(︂
AφAφ̃

)︂
x=1

,

where
χ+ =

2(ma− nσ)

ν2 + 2na
,

χ− = −2(ma+ nσ)

ν2 − 2na
.

The other quantities present in M± were previously calculated, so we immediately arrive at
(5.76).
Starting from (5.28), the string charge contribution is

Q+ =
ω+

2
lim
x→∞

Aφ̃

⃓⃓x
1
= −ω+

2
(Aφ̃)x=1 ,

Q− =
ω−
2

lim
x→∞

Aφ̃

⃓⃓1
x
=
ω−
2
(Aφ̃)x=1 ,

so we directly get (5.77) using previous calculations.
We finally calculate the electric potential on the string rods. Consider the rod S+ and define
hx+ = q(σx +m) − p(a + n) and dx+ = (σx+m)2 + (a+ n)2; from the definition (5.22),
where ξ = ∂t +Ω+∂φ, we obtain

Φ+ = −(At +Ω+Aφ) =

= −
hx+

dx+

+
1

2n

pdx+ + 2nhx+

dx+

=
−2nq(σx+m) + 2np(a+ n) + pdx+ + 2nq(σx+m)− 2np(a+ n)

2ndx+

=

=
p

2n
.
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Consider now the rod S− and define hx− = q(σx+m)− p(n− a) and dx− = (σx+m)2 +

(n− a)2; from the definition (5.22), where ξ = ∂t +Ω−∂φ, we obtain

Φ− = −(At +Ω−Aφ) =

= −
hx−

dx−
− 1

2n

−pdx− − 2nhx−

dx−

=
−2nq(σx+m) + 2np(n− a) + pdx− + 2nq(σx+m)− 2np(n− a)

2ndx−
=

=
p

2n
= Φ+ .
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