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Introduction
General Relativity is the current theory of gravitation universally accepted in
modern physics. It was developed by Albert Einstein and published in 1915 be-
coming the last great classical theory before quantum revolution. Spacetime
is identified with a four-dimensional differentiable manifold equipped with a
pseudo-Riemannian metric gµν . This tensor can be thought as a field defined
on every point of the spacetime and it is described by the famous Einstein field
equations:

Rµν −
1

2
Rgµν = 8πGTµν , (1)

where Tµν is the energy-momentum tensor, which describes the energy and mat-
ter distribution, and R, Rµν are respectively Ricci scalar and Ricci tensor, both
defined by the metric gµν . The synthetic form of these equations actually hides
the complexity of ten coupled, nonlinear PDEs, and despite the fact that par-
ticular solutions were found early after the publication of Einstein’s paper (for
example Schwarzschild spacetime in 1916), the aim of finding a general one seems
out of reach still nowadays. By reason of this complexity, situations with pecu-
liar symmetry are usually considered and different solution generating techniques
were developed over the years: in this frame axisymmetric stationary metrics rep-
resent a large class of solutions of physical interest. Considering this family, at
the end of the sixties Ernst found the way to recast the explicit form of (1) into
simpler equations. In his two original papers [2] and [3] he considers respectively
the vacuum case and then the more general electrovacuum condition where Tµν
brings only the electromagnetic contribution (in this case Einstein equations are
coupled to Maxwell equations ∇µF

µν = 0 and we speak of Einstein-Maxwell the-
ory). Although Ernst equations are still difficult to solve, they provide a natural
context to develop solution generating methods based on symmetry transforma-
tions (as shown for example by Kinnersley in [5]). In principle one can ask why
is there any advantage in using Ernst formulation to study symmetries. Indeed,
it is possible to perform the analysis also on the raw Einstein equations, but in
this case the only transformations one can find are trivial: the metric produced
is equivalent to the seed by means of a change of coordinates. In this way we can
understand that recasting equations using Ernst method is not just a matter of
simplifying the form of the system: it produces non trivial symmetries that can
be used to find new solutions.

The first chapter of this thesis deals with Ernst formulation of axially symmetric
4d gravitational problem, showing how to introduce new potentials in order to
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simplify the equations. In the second chapter we will give a brief introduction to
Lie point symmetries as a method to generate new solutions once a seed metric is
known. Through the analysis of the action principle that generates Ernst equa-
tions, we will derive the full symmetry group characterizing the system. Then,
in order to show how to practically use the symmetry transformations, we will
use one of them to generate Kerr-Newman metric from Kerr black hole.

Five dimensional gravity was first considered in 1919 by Kaluza aiming to unify
gravity with classical electrodynamics. The fundamental idea is that electro-
magnetism can be described as a purely geometric effect considering a five di-
mensional manifold. The equivalent four dimensional system (coupled to a new
scalar field called "dilaton") can be retrieved afterwards by means of dimen-
sional reduction. In 1926 Klein conjectured that the extra-spatial dimension is
real, though giving a quantum interpretation if it and defining what nowadays is
known as Kaluza-Klein theory. Despite the quantum interpretation of Klein, the
theory was built in a classical frame, circumstance that caused it to be forgotten
for some years until the rise of new unification theories, such as string theory,
which needed higher dimensional spaces to try a consistent agreement between
gravitation and quantum physics. So we can see that studying five or higher
dimensional theories of gravity is interesting both from a theoretical point of
view (the possible existence of these dimensions need to be tested with particle
accelerators) and for the fact that the considered system is equivalent to a four
dimensional one.

The third chapter deals with higher dimensional gravity, with particular attention
to the five dimensional case. Specifically, we will first modify a transformation
presented in [7] in order to add electric charge to Tangherlini black hole (the
higher dimensional version of Schwarzschild). However, the main purpose of
this section is to show that also in the context of five dimensional gravity it is
possible to introduce Ernst potentials to study Lie point symmetries and gener-
ate new solutions. After recasting the problem by means of suitable functions,
we will show that the formalism is useful to recover and generalize the result
used to charge Tangherlini. The last step we will take consists in exploiting the
generalized transformation in order to find a new possible metric.
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Chapter 1
Ernst potentials

In this section we will show how to recast Einstein-Maxwell equations in the con-
text of stationary axisymmetric solutions. The method is based on the definition
of two complex potentials and was achieved by Ernst in two different papers [2],
[3] at the end of the sixties. This formalism is a useful tool both for writing the
equations that describe the system in a simpler and more compact form, and
for supplying methods that allow to generate new solutions from already known
ones. First of all, Einstein-Maxwell theory is represented by the the following
couple of equations

Rµν −
1

2
Rgµν = 2

[
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ
]

, (1.1)

∇µF
µν = 0 , (1.2)

where the unknown fields to be found are the metric gµν and the electromagnetic
Faraday tensor Fµν , defined by Fµν ..= ∂µAν − ∂νAµ. Inhomogeneous Maxwell
equations are represented by (1.2), while the homogeneous ones (∂[µFνρ] = 0)
are identically satisfied because of the definition of Fµν . The right hand side of
the first equation shows the explicit expression of the electromagnetic energy-
momentum tensor. As a matter of choice, Einstein-Maxwell theory can be alter-
natively expressed more concisely using the following action functional

S[gµν , Fµν ] =

∫
d4x
√
−g
[
R− 1

4
FµνF

µν
]

. (1.3)

These equations can be specified assuming particular symmetries of the physical
context we are considering. In this case we are interested in stationary axisym-
metric spacetimes, which are characterized by two commuting Killing vectors ∂t
and ∂ϕ. Under this assumption the most general metric owning these symmetries
can be written in the Lewis-Weyl-Papapetrou form

ds2 = −f(dt− ωdϕ)2 + f−1[ρ2dϕ2 + e2γ(dρ2 + dz2)] , (1.4)
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where f , ω and γ are functions that depend only on the non-Killing variables
z, ρ. The most general electromagnetic potential one-form compatible with the
spacetime symmetries is given by A = At(ρ, z)dt + Aϕ(ρ, z)dϕ. In term of
the functions mentioned above Einstein equations (EE) (1.1) assume the form
(actually Einstein equations do not immediately present this simple structure,
in appendix A we show how to obtain these formulas)

∇ ·
[
ρ−2f 2∇ω + 4ρ−2fAt(∇Aϕ + ω∇At)

]
= 0 , (1.5)

f∇2f = (∇f)2 − ρ−2f 4(∇ω)2 + 2f
[
(∇At)2 + ρ−2f 2(∇Aϕ + ω∇At)2

]
, (1.6)

while Maxwell equations (ME) (1.2) become

∇ ·
[
ρ−2f(∇Aϕ + ω∇At)

]
= 0 , (1.7)

∇ ·
[
f−1∇At − ρ−2fω(∇Aϕ + ω∇At)

]
= 0 , (1.8)

where ∇ and ∇2 are understood as the usual flat differential operators of mul-
tivariable calculus. Exploiting the fact that the functions do not depend on the
coordinate ϕ and expanding the differential operators in cylindrical coordinates
it is possible to verify that the following relation is trivially satisfied regardless
of the choice of Âϕ

∇ ·
(
ρ−1ϕ̂×∇Âϕ

)
= 0 , (1.9)

where ϕ̂ is a unit vector in the azimuthal direction. Last equation may be seen
as an integrability condition for the existence of a magnetic scalar potential Âϕ.
If we set Âϕ such that

ρ−1f(∇Aϕ + ω∇At) =.. ϕ̂×∇Âϕ , (1.10)

equation (1.7) is necessarily satisfied in virtue of (1.9). Using ϕ̂× (ϕ̂×∇Âϕ) =

−∇Âϕ, latter formula can be recast as an explicit expression for ∇Âϕ

∇Âϕ = −ρ−1fϕ̂× (∇Aϕ + ω∇At) . (1.11)

Applying now the divergence operator to the former equation and taking advan-
tage of (1.9) one more time one can find that

∇ ·
[
f−1∇Âϕ − ρ−1ωϕ̂×∇At

]
= 0 . (1.12)

Comparing this equation with (1.8), which assumes the following form in term
of Âϕ

∇ ·
[
f−1∇At − ρ−1ωϕ̂×∇Âϕ

]
= 0 , (1.13)
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it is possible to understand the advantage of introducing the complex potential

Φ ..= At + iÂϕ (1.14)

which allows us to merge (1.12) and (1.13) into one complex equation

∇ ·
[
f−1∇Φ− iρ−1ωϕ̂×∇Φ

]
= 0 (1.15)

that carries all the information contained in ME. Operating with the following
vector relations

∇·
(
ρ−1ϕ̂×At∇Âϕ

)
= −∇Âϕ×∇At = ∇At×∇Âϕ = −∇·

(
ρ−1ϕ̂× Âϕ∇At

)
,

(1.16)
the first Einstein equation (1.5) can be written in the form

∇ ·
[
ρ−2f 2∇ω − 2ρ−1ϕ̂× Im(Φ∗∇Φ)

]
= 0 , (1.17)

which suggests, along the lines of integrability condition (1.9), the introduction
of a new scalar potential χ (known as "twist potential") such that

ρ−1f 2∇ω − 2ϕ̂× Im(Φ∗∇Φ) =.. ϕ̂×∇χ . (1.18)

This formula can be treated likewise (1.10) in order to get both an explicit
definition of χ

∇χ = −ρ−1f 2ϕ̂×∇ω − 2 Im(Φ∗∇Φ) (1.19)

and a new equation

∇ ·
[
f−2
(
∇χ+ 2 Im(Φ∗∇Φ)

)]
= 0 (1.20)

equivalent to (1.5). The definition of χ can be used also to express in another
form Maxwell equations: we can also apply divergence to the second term both
of (1.12) and (1.13) in order to substitute ∇ω with the twist ∇χ and express the
equations in function of the new potentials χ and Âϕ

∇ ·
[
f−1∇At

]
− f−2

[
∇χ+ 2(At∇Âϕ − Âϕ∇At)

]
· ∇Âϕ = 0 , (1.21)

∇ ·
[
f−1∇Âϕ

]
− f−2

[
∇χ+ 2(At∇Âϕ − Âϕ∇At)

]
· ∇At = 0 . (1.22)

At last, from the square modulus of (1.18) one finds that

ρ−2f 4(∇ω)2 =
[
∇χ+ 2 Im(Φ∗∇Φ)

]2

, (1.23)

while from the definition of Φ

2f∇Φ · ∇Φ∗ = 2f(∇At)2 + 2ρ−2f 3(∇Aϕ − ω∇At)2 . (1.24)
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These relations allow us to write the second Einstein equation (1.6) as

f∇2f = (∇f)2 −
[
∇χ+ 2 Im(Φ∗∇Φ)

]2

+ 2f∇Φ · ∇Φ∗ . (1.25)

If we introduce a second complex function E such that

E ..= f −ΦΦ∗ + iχ , (1.26)

equation (1.15) yields

(ReE + ΦΦ∗)∇2Φ = ∇Φ · (∇E + 2Φ∗∇Φ) . (1.27)

On the other hand, by means of a substitution of E and using (1.27), Einstein
equations (1.20), (1.25) yield

(ReE + ΦΦ∗)∇2E = ∇E · (∇E + 2Φ∗∇Φ) . (1.28)

The first obvious feature this couple of complex vector differential equation pro-
vides is an alternative free-coordinates (yet non-tensorial) representation of the
considered system. They can be specified considering the vacuum case charac-
terized by Φ = 0: equation (1.27) becomes trivial while equation (1.28) turns
into

(ReE)∇2E = ∇E · ∇E , (1.29)

which is named after Ernst.
We can also express the two equations of motion by a single action principle for
the complex field couple (E ,Φ)

S[E ,Φ] =

∫
ρdρdz

[(∇E + 2Φ∗∇Φ)(∇E∗ + 2Φ∇Φ∗)
(E + E∗ + 2ΦΦ∗)2

− 2∇Φ∇Φ∗

E + E∗ + 2ΦΦ∗

]
(1.30)

which can be specified too to the vacuum case setting Φ = 0. The two formulas
ruling E and Φ actually do not supply a complete description of all potentials
since they do not determine γ: this is due to the fact that there are other two
non-trivial Einstein equations in addition to (1.5) and (1.6). Expressed in terms
of the complex potentials they assume the following form

∂ργ(ρ, z) =
ρ

4(ReE + ΦΦ∗)2

[(
∂ρE + 2Φ∗∂ρΦ

)(
∂ρE∗ + 2Φ∂ρΦ

∗
)

−
(
∂zE+2Φ∗∂zΦ

)(
∂zE∗+2Φ∂zΦ

∗
)]
− ρ

ReE + ΦΦ∗

(
∂ρΦ∂ρΦ

∗−∂zΦ∂zΦ∗
)

,

(1.31)
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∂zγ(ρ, z) =
ρ

4(ReE + ΦΦ∗)2

[(
∂ρE + 2Φ∗∂ρΦ

)(
∂zE∗ + 2Φ∂zΦ

∗
)

+
(
∂zE+2Φ∗∂zΦ

)(
∂ρE∗+2Φ∂ρΦ

∗
)]
− ρ

ReE + ΦΦ∗

(
∂ρΦ∂zΦ

∗−∂zΦ∂ρΦ∗
)

.

(1.32)

It is clear that the equations that determine γ are completely decoupled from the
previous ones, so as to enable E and Φ to be found first by solving the system
(1.27)-(1.28), leaving γ to be determined by quadrature.

As already mentioned, this formalism is suitable for generating new solutions
to Einstein-Maxwell equations starting from already known ones. This possibil-
ity was first exploited by Ernst in [3] where he rationalized the method used by
Newman et al. in [4] for finding the electric generalization of the rotating Kerr
black hole. Even if it may seem arbitrary to some extention, we now present the
argument used by Ernst; in the next chapter it will be proved to be a particular
case within a wider generation technique.
Making the additional assumption that E is an analytic function of Φ and using
the chain rule, equations (1.28)-(1.27) imply

d2E
dΦ2

= 0 , (1.33)

which shows that E is a linear function of Φ. Using the asymptotically flat
spacetimes boundary conditions E → 1 and Φ → 0 we obtain the following
relation

E = 1− 2

q
Φ , (1.34)

where q is a complex constant. Performing the substitutions

E =..
ξ − 1

ξ + 1
=⇒ Φ =

q

ξ + 1
, (1.35)

into equation (1.28) or (1.27) one gets to[
ξξ∗ − (1− qq∗)

]
∇2ξ = 2ξ∗(∇ξ)2 , (1.36)

which transforms into

(ξ0ξ
∗
0 − 1)∇2ξ0 = 2ξ∗0(∇ξ0)2 , (1.37)

once the further substitution ξ = ξ0
√

1− qq∗ is carried out. Equation (1.37)
is equivalent to the Ernst vacuum equation (1.29) for the potential E0 through
the transformation E0 = (ξ0 − 1)/(ξ0 + 1). On account of this trick, it is
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possible to find a vacuum solution of equation (1.29) and then to map it into an
electrovacuum one following the scheme

E0 7−→ ξ0 7−→ ξ 7−→ (E ,Φ) , (1.38)

which can be expressed explicitly as

E =
(a+ 1)E0 + (a− 1)

(a− 1)E0 + (a+ 1)
, Φ =

√
1− a2

( 1− E0

(a+ 1) + (a− 1)E0

)
, (1.39)

where a is a real parameter defined by q via a ..=
√

1− qq∗.

Working out the explicit calculations, Ernst found that the solution E0 cor-
responding to Kerr metric is mapped into the couple (E ,Φ) that identifies Kerr-
Newman black hole. At this point it is not clear if the method involved is just
working accidentally by means of wishful thinking or if it can be framed into a
more structured generation technique. In the next section we will prove that the
analysis of Lie point symmetries associated to Ernst equations (1.28) and (1.27)
provides an efficient tool to better understand the transformations used and to
control which kind of solution is being generated.
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Chapter 2
Symmetries

In this chapter we focus on the method used to determine the transformation
symmetries of a set of differential equations (or alternatively of the equivalent
action). Then we present how they can be applied in the context of Einstein-
Maxwell equations in order to generate new solutions. Standard references are
[8] for a general discussion of Lie point symmetries and [9] for their application
in the context of General Relativity.

2.1 Lie point symmetries
A Lie point symmetry of the system of PDEs

H(xn, uα, ∂nu
α, ∂nmu

α, ...) = 0 , (2.1)

where xn are the independent variables, uα(xn) the dependent ones and ∂nu
α

their derivatives respect to xn, is a mapping

x̂n = x̂n(xi, uβ; ε), ûα = ûα(xi, uβ; ε) (2.2)

which maps solutions into solutions. One remarkable requirement the mapping
must satisfy is

x̂n(xi, uβ; 0) = xn, ûα(xi, uβ; 0) = uα . (2.3)

In this case we are assuming the dependence only on one parameter ε but it is
possible to consider more general charts with more than one continuous param-
eter involved. Moreover, due to the fact that under suitable hypothesis these
mappings form a one-parameter group, it is possible to compose different sym-
metries so as to obtain new transformations. In this way, the application of a
symmetry leads to a new solution by starting from an already known one. Actu-
ally, though from a mathematical point of view this technique provides a method
to generate different solutions from the original one, their difference could be not
physically significant inasmuch as it can be absorbed into a change of coordi-
nates. In these cases the considered symmetry is just a gauge transformation.
Although it is possible to deal with system of PDEs in the form of equation
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(2.1), in order to simplify the argument and to show the fundamental ideas of
this method, we will consider H independent of the derivatives of the dependent
variables uα. We can now expand equation (2.2) at first order around ε = 0 so
as to get (using property (2.3))

x̂n(xi, uβ; ε) = xn + εξn(xi, uβ) + · · · = xn + εXxn + · · · , (2.4)

ûα(xi, uβ; ε) = uα + εηα(xi, uβ) + · · · = uα + εXuα + · · · . (2.5)

where

ξn(xi, uβ) ..=
∂x̂n

∂ε

∣∣∣∣∣
ε=0

ηα(xi, uβ) ..=
∂ûα

∂ε

∣∣∣∣∣
ε=0

, (2.6)

and

X ..= ξn(xi, uβ)
∂

∂xn
+ ηα(xi, uβ)

∂

∂uα
. (2.7)

The operatorX is called "infinitesimal generator" of the transformation because
its iteration produces the finite transformation. Practically, we can obtain the
finite transformation by integrating

∂x̂n

∂ε
= ξn(xi, uβ) ,

∂ûα

∂ε
= ηα(xi, uβ) , (2.8)

with boundary condition represented by equation (2.3). Exploiting the fact that
all solutions satisfy

H(x̂n, ûα) = 0 (2.9)

independently of the value of ε, one can find that

0 =
∂H(x̂n, ûα)

∂ε

∣∣∣∣∣
ε=0

=

(
∂H

∂x̂n
∂x̂n

∂ε
+
∂H

∂ûα
∂ûα

∂ε

)∣∣∣∣∣
ε=0

, (2.10)

which is equivalent to
XH = 0 . (2.11)

At this point we can focus on the problem of finding Lie point symmetries of the
system (1.28)-(1.27). Although it is possible to reach this purpose by analyzing
directly the system of differential equations, we will follow a slightly different
path using the action principle (1.30). Following [9], we see that the considered
Lagrangian is in the form (it is actually a property shared by all electrovacuum
spacetimes with almost one non-null killing vector) of

L =
√
γGab(ϕ

c)γAB∂Aϕ
a∂Bϕ

b , (2.12)
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where γAB is the three dimensional flat metric in a general coordinate form, γ its
determinant, ϕc the fields of interest (in this case real and imaginary parts of E
and Φ) and Gab the components of the bilinear form induced by the Lagrangian.
The field equations are invariant under an infinitesimal transformation of the
form

ϕc 7→ ϕc + εξc(ϕ) (2.13)

if ξc is an affine vector field, that is

∇b∇cξa = Rabcdξ
d . (2.14)

In the present context covariant derivatives and the Riemann tensor are pertinent
to the metric Gab. One further property that can be proved states that if ξa is a
Killing vector, namely such that

∇(aξb) = ∇aξb +∇bξa = 0 , (2.15)

then the Lagrangian (2.12) is left invariant. Moreover, using the first Bianchi
identity for Riemann tensor we can check that Killing equation implies (2.14).
Practically, we consider the definition of Riemann tensor

∇µ∇νξρ +∇ν∇ρξµ = −Rλ
ρµνξλ , (2.16)

and its cyclic index permutations

∇ν∇ρξµ +∇ρ∇µξν = −Rλ
µνρξλ , (2.17)

∇ρ∇µξν +∇µ∇νξρ = −Rλ
νρµξλ . (2.18)

By summing the first two equations and subtracting the third, we find

2∇ν∇ρξmu = (−Rλ
ρµν −Rλ

µνρ +Rλ
νρµ)ξλ . (2.19)

As already mentioned, using Bianchi identity

Rλ
ρµν +Rλ

µνρ +Rλ
νρµ = 0 , (2.20)

relation (2.14) is easily verified. This implication represents a pivotal point be-
cause it tells us that a priori the symmetries of the action are just a subset of
the symmetries of the full system of differential equations. However, considering
both the action (1.30) and its relevant field equations (1.27)-(1.28), one can show
that in this case the two sets of symmetries are equivalent, so that the differ-
ence between the two methods is immaterial. It is straightforward to understand
that studying only one scalar function (the Lagrangian that defines the action)
is easier than analyzing the full set of differential equations.
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2.2 Lie symmetries of Ernst potentials

After these considerations, in order to solve Killing equation, starting with the
Lagrangian

L =
(∇E + 2Φ∗∇Φ)(∇E∗ + 2Φ∇Φ∗)

(E + E∗ + 2ΦΦ∗)2
− 2∇Φ∇Φ∗

E + E∗ + 2ΦΦ∗
, (2.21)

we first have to identify Gab. Differential operators are thought in cartesian
coordinates in order to avoid the overall term ρ present in (1.30). We see that
defining the complex variables E =.. x+ iy and Φ =.. z + iw and mapping

√
γγAB∂Aϕ

a∂Bϕ
b = ∇ϕa∇ϕb 7−→ dϕadϕb , (2.22)

where {ϕi} = {x, y, z, w}, it is possible to bring the Lagrangian into a four-
dimensional potential space with metric Gab such that

ds2 = Gabdϕ
adϕb =

1

4(w2 + z2 + x)2

[
dx2 + dy2 − 4x(dz2 + dw2)

− 4wdydz + 4zdydw + 4wdxdw + 4zdxdz
]
. (2.23)

The explicit expression of the metric allows to calculate Christoffel symbols and
covariant derivatives so as to expand Killing equation in its ten components

ξx
w2 + x+ z2

+
∂ξx
∂x

= 0

2ξy
w2 + x+ z2

+
∂ξx
∂y

+
ξy
∂x

= 0

ξw + 2wξx + 2zξy + (w2 + x+ z2)
(∂ξx
∂w

+
∂ξw
∂x

)
= 0

2zξx − 2wξy + ξz + (w2 + x+ z2)
(∂ξx
∂z

+
∂ξz
∂x

)
= 0

− ξx
w2 + x+ z2

+
∂ξy
∂y

= 0

−2zξx + 2wξy − ξz + (w2 + x+ z2)
(∂ξy
∂w

+
∂ξw
∂y

)
= 0

2wξx + 2zξy + ξw + (w2 + x+ z2)
(∂ξy
∂z

+
∂ξz
∂y

)
= 0

2
wξw − zξz
w2 + x+ z2

+
∂ξw
∂w

= 0

4zξw + 4wξz + (w2 + x+ z2)
(∂ξw
∂z

+
∂ξz
∂w

)
= 0

2
−wξw + zξz
w2 + x+ z2

+
∂ξz
∂z

= 0

(2.24)
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The solution of the system produces eight integration constants that correspond
to eight different independent infinitesimal transformations. Raising the indices
of all ξa with the inverse of the metric (2.23) one obtains the components of the
most general Killing vector in the four dimensional potential space

ξx = 4a1xy + 2a2(wx+ zy) + 2a3(xz − wy) + 4a4x− 2a6w + 2a7z

ξy = 2a1(y2 − x2) + 2a2(wy − xz) + 2a3(zy + xw) + 4a4y + 2a6z + 2a7w + 4a8

ξz = 2a1(xw + yz) + a2(4wz − y) + 2a3(z2 − w2 + x) + 2a4z − a5w − a7

ξw = 2a1(yw − xz) + 2a2(w2 − z2 + x) + a3(4zw + y) + 2a4w + a5z + a6 .

(2.25)

Setting seven parameters to zero and the eighth to one, it is possible to find
eight different infinitesimal generators which, once integrated, will produce eight
nonequivalent finite transformations. Operating the substitution one gets the
following vectors

ξ1 = 4xy∂x + 2(y2 − x2)∂y + 2(xw + yz)∂z + 2(yw − xz)∂w ,

ξ2 = 2(xw + yz)∂x + 2(yw − xz)∂y + (4zw − y)∂z + (2w2 − 2z2 + x)∂w ,

ξ3 = 2(xz − yw)∂x + 2(xw + yz)∂y + (z2 − w2 + x)∂z + (4zw + y)∂w ,

ξ4 = 4x∂x + 4y∂y + 2z∂z + 2w∂w ,

ξ5 = −w∂z + z∂w ,

ξ6 = −2w∂x + 2z∂y + ∂w ,

ξ7 = 2z∂x + 2w∂y − ∂z ,
ξ8 = 4∂y .

(2.26)

We can now consider all eight generators in order to show how to work out the
relevant finite transformations: as already mentioned, equations (2.8) provide
the practical method to find them. For example, considering ξ4, we see that
using the boundary conditions x(0) = x0, y(0) = y0, z(0) = z0 and w(0) = w0,
the associated system of ODEs can be integrated straightforwardly

dx

dε
= 4x

dy

dε
= 4y

dz

dε
= 2z

dw

dε
= 2w

=⇒


x(ε) = e4εx0

y(ε) = e4εy0

z(ε) = e2εz0

w(ε) = e2εw0

(2.27)

Turning back to the original definition of the potentials E and Φ it is possible
to write down the correspondent Lie point symmetry

E = x+ iy = b2E0 , Φ = z + iw = bΦ0 , (2.28)
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where b ..= e2ε. We can repeat the same process considering now ξ5

dx

dε
= 0

dy

dε
= 0

dz

dε
= −w

dw

dε
= z

=⇒


x(ε) = x0

y(ε) = y0

z(ε) = z0 cos(ε)− w0 sin(ε)

w(ε) = z0 sin(ε) + w0 cos(ε)

(2.29)

This system induces the following transformations on the potentials

E = E0 , Φ = eiεΦ0 . (2.30)

The composition of transformations (2.28) and (2.30) has the evident effect of
scaling E and both scaling and rotatingΦ. So this two symmetries can be merged
into one by introducing the complex parameter λ, with module b and phase ε:

E = λλ∗E0 , Φ = λΦ0 . (2.31)

The finite transformations corresponding to the second and the third infinitesimal
generators come from more involved equations that deserve a bit more attention.
Starting from ξ3 the system of ODEs reads

dx

dε
= 2(xz − yw)

dy

dε
= 2(xw + yz)

dz

dε
= 2[z2 − w2 + x]

dw

dε
= 4zw + y

(2.32)

By means of the complex (physically meaningful) substitutions E = x + iy and
Φ = z + iw the system, though still coupled, is significantly simplified

dE
dε

= 2EΦ

dΦ

dε
= 2Φ2 + E

(2.33)

In this form the system can be easily decoupled, however, the solution of the
consequent second order ODEs is not so easy. The most convenient way to solve
them is to first solve the equation

dΦ

dE =
2Φ2 + E

2EΦ , (2.34)
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which belongs to Bernoulli type, and then to substitute Φ(E) into the first of
(2.33) and solve it. As a result we can directly write the finite transformations
for the potentials E and Φ:

E =
E0

1− 2εΦ0 − ε2E0

,

Φ =
εE0 + Φ0

1− 2εΦ0 − ε2E0

.
(2.35)

Considering now ξ2 we see that the associated system is



dx

dε
= 2(xw + yz)

dy

dε
= 2(yw + xz)

dz

dε
= 4zw − y

dw

dε
= 2[w2 − z2 + x]

(2.36)

In this case the useful substitutions are represented by η = x−iy and γ = w+iz,
which yield a system identical to (2.33). Since η and γ are related to Ernst
potential by E = η∗ and Φ = iγ∗, and remembering that complex conjugation
satisfies (z/w)∗ = z∗/w∗, also in this case we can immediately obtain potential
transformations

E(s) = η∗ =
η∗0

1− 2γ∗0s− η∗0s2
=

E0

1− 2isΦ0 − s2E0

,

Φ(s) = iγ∗ =
isη∗0 + iγ∗0

1− 2γ∗0s− η∗0s2
=

isE0 + Φ0

1 + 2isΦ0 − s2E0

.

(2.37)

Even in this case the last two transformation can be expressed in term of a single
map with the introduction of a new complex parameter α ..= ε− is. In this way
we can recast (2.36) and (2.37) (with slight change of notation) as

E ′ = E
1− 2α∗Φ− αα∗E , Φ′ =

αE + Φ

1− 2α∗Φ− αα∗E . (2.38)

Similarly, the examination of the system related to ξ1 shows the benefit of intro-
ducing the complex variable Γ = y − ix and using Φ = z + iw
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

dx

dε
= 4xy

dy

dε
= 2(y2 − x2)

dz

dε
= 2(xw + yz)

dw

dε
= 2(yw − xz)

=⇒


d

dε
Γ = 2Γ2

d

dε
Φ = 2ΓΦ

(2.39)

The solution of the system is straightforward and brings directly to the final form
of the transformation

Γ =
Γ0

1− 2εΓ0

=⇒ E = iΓ =
E0

1 + icE0

,

Φ =
Φ0

1− 2εΓ0

=
Φ0

1 + icE0

,

(2.40)

where we set c ..= −2ε. The second transformation that can’t be unified with
another by introducing a complex parameter is the shift generated by ξ8. The
equations are trivial and lead to

E ′ = E + ib , Φ′ = Φ . (2.41)

Finally, the infinitesimal generators ξ6 and ξ7 can be easily integrated and yield

E ′ = E + 2itΦ− t2 , Φ′ = Φ + it ,

E ′ = E + 2sΦ− s2 , Φ′ = Φ− s ,
(2.42)

which can be recast in the usual way using a complex parameter defined by
β ..= −s+ it

E ′ = E − 2β∗Φ− ββ∗ , Φ′ = Φ + β . (2.43)

In this way we obtained the whole group of Lie point symmetry transformations
that leaves invariant the action (1.30) and its equations of motion (1.27)-(1.28):
the information enclosed in the eight parameter group is brought by three com-
plex constants (λ, β, α) and two real ones (b, c). For future reference we synthe-
size here all the finite transformations (dropping the zero as subscript and using
apostrophe for transformed potentials):

I) E 7−→ E ′ = λλ∗E Φ 7−→ Φ′ = λΦ

II) E 7−→ E ′ = E + ib Φ 7−→ Φ′ = Φ

III) E 7−→ E ′ = E
1 + icE Φ 7−→ Φ′ =

Φ

1 + icE
IV ) E 7−→ E ′ = E − 2β∗Φ− ββ∗ Φ 7−→ Φ′ = Φ + β

V ) E 7−→ E ′ = E
1− 2α∗Φ− αα∗E Φ 7−→ Φ′ =

αE + Φ

1− 2α∗Φ− αα∗E

(2.44)
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As a conclusive remark, we can see at first glance that the first three transforma-
tions form a proper subgroup, known as "vacuum group" because it maps vacuum
solutions into vacuum solutions. On the other hand, as we will see thoroughly
in the next section, transformations IV ) and V ) operate on the electromagnetic
field also when the seed solution presents Φ = 0.

2.3 Group action on Ernst potential
Once studied the symmetries and worked out the group (2.44), it is interesting
to analyze the effects of the transformations on metric functions and on elec-
tromagnetic potentials when a particular seed metric is chosen. This process
is equivalent to understand which solutions to Einstein-Maxwell equations can
be generated from known ones. The first general feature shared by every single
element of the group consists in leaving invariant equations (1.31) and (1.32), so
that γ does not change when a new solution is generated. The second character-
istic shared by I), II) and IV ) can be investigated without considering a specific
seed metric: indeed these transformations turn out to be gauge ones that do not
give rise to any new physical nonequivalent solution. As shown by Kinnersley
in [5], transformation I) produces both a scaling of the potentials that can be
absorbed by the change of coordinates t → t, ϕ → |λ|ϕ, and a rotation of Φ
equivalent to duality transformation which is well-known from special relativity.
Transformation II) affects only twist potential by the mapping χ → χ + b but
this does not affect ω because, as shown by (1.18), it is related to χ up to a
constant. Analogously transformation IV ) comes from the definition of E , Φ
and the arbitrariness of integration constants in (1.12) and (1.13).

2.3.1 Generating Kerr-Newman from Kerr

We can now focus on transformation V ) and show by direct computation that
it can generate new metrics. It is named after Harrison, who first discovered it,
and can be used to add electric charge to vacuum solutions. In the present case
we will consider Kerr black hole as seed metric and we will show how to generate
Kerr-Newman metric. First of all, Kerr metric can be written in Boyer-Lindquist
coordinates as follows

ds2 = − ∆0(r)

Σ0(r, θ)
(dt− a sin2 θdϕ)2 + Σ0(r, θ)

( dr2

∆0(r)
+ dθ2

)
+

+
sin2 θ

Σ0(r, θ)

[
adt− (r2 + a2)dϕ

]2

, (2.45)

where Σ0(r, θ) ..= r2 + a2 cos2 θ, ∆0(r) ..= r2 − 2mr + a2 and the electromagnetic
one-form A is identically zero. The first necessary step to identify Ernst potential
is to compare Kerr metric to (1.4) in order to find f0, eγ0 , ω0. Despite the fact
that the general metric and the seed are expressed in different coordinate systems,
the transformation between Boyer-Lindquist coordinates and Weyl coordinates
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does not involve t and ϕ. This property allows us to consider the block t−ϕ and
to compare the coefficients of the two metrics. When quadratic differentials and
mixed terms are factored in (2.45), one can clearly identify f0 as gtt. Therefore
we get

f0(r, θ) =
∆0(r)− a2 sin2 θ

Σ0(r, θ)
= 1− 2m

r2 + a2 cos2 θ
. (2.46)

Since the function ω0 must satisfy f0ω0 = gtϕ, knowing f0 we can find that

ω0(r, θ) = − 2mar sin2 θ

r2 − 2mr + a2 cos2 θ
. (2.47)

The component gϕϕ of Kerr metric, once considered the relation gϕϕ = ρ2/f0 −
f0ω

2
0, allows us to define the relation between Weyl radial coordinate ρ and (r,

θ). Explicitly we find that

ρ(r, θ) = sin θ
√

∆0(r) . (2.48)

Considering a second coordinate transformation

z(r, θ) = cos θ(r −m) (2.49)

and setting x ..= cos θ, LWP line element (1.4) assumes the convenient form

ds2 = −f0(dt+ω0dϕ)2−f−1
0

[
e2γ0
(

(r−m)2−(m2−a2)x2
)( dr2

∆0(r)
+

dx2

1− x2

)
+ρ2dϕ2

]
.

(2.50)
At this point we can identify the last metric potential eγ0 from the equation

f−1
0 e2γ0

[
(r −m)2 − (m2 − a2)x2

]
= Σ0 , (2.51)

which yields

e2γ0 =
r2 − 2mr + a2x2

(r −m)2 − (m2 − a2)x2
. (2.52)

Since we want to build Ernst gravitational potential, we first need to find the
twist χ0. Using Φ0 = 0 and the explicit gradient operator associated to a three
dimensional flat space via Boyer-Lindquist coordinates

∇Ω(r, x) =
1√

(r −m)2 − (m2 − a2)x2

[
r̂
√

∆0(r)
∂

∂r
Ω(r, x)+x̂

√
1− x2

∂

∂x
Ω(r, x)

]
,

(2.53)
it is possible to expand in components equation (1.18)

∂rχ0 = − f
2
0

∆0

∂xω0 = − 4amrx

(r2 + a2x2)2

∂xχ0 =
f 2

0

1− x2
∂rω0 =

2m(ar2 − a3x2)

(r2 + a2x2)2

(2.54)
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These equations can be easily integrated: starting from the first, χ0 is defined
up to a function of x which turns out to be zero once the second equation is
considered. Then the solution is

χ0(r, x) =
2amx

r2 + a2x2
. (2.55)

After the computation of all functions, using E0 = f0−Φ0Φ
∗
0 + iχ0, we can now

express Ernst gravitational potential

E0 = 1− 2m

r + iax
. (2.56)

The application of Harrison transformation leads both to a new gravitational
potential and to a non-zero electromagnetic potential

E =
E0

1− |α|2E0

, Φ =
αE0

1− |α|2E0

= αE , (2.57)

where α = b+ ic. Performing calculations one gets

E =
1

1− |α|2

[
1− 2m

r(1− |α|2) + 2m|α|2 + i(1− |α|2)ax

]
, (2.58)

which assumes a more compact form by defining R ..= r(1− |α|2) + 2m|α|2

E =
1

1− |α|2
(

1− 2m

R + ia(1− |α|2)x

)
. (2.59)

Then the electromagnetic potential is

Φ =
α

1− |α|2
(

1− 2m

R + ia(1− |α|2)x

)
. (2.60)

Electromagnetic components can be calculated straightforwardly considering real
and imaginary part of Φ

Âϕ(R, x) = Im(Φ) = −c(2m−R)R− 2ab(1− |α|2)mx+ a2c(1− |α|2)x2

(1− |α|2)R2 + a2(1− |α|2)3x2
,

(2.61)

At(R, x) = Re(Φ) = −b(2m−R)R + 2ac(1− |α|2)mx+ a2b(1− |α|2)x2

(1− |α|2)R2 + a2(1− |α|2)3x2
.

(2.62)
Twist potential can be easily found too

χ(R, x) = Im(E) =
2max

R2 + a2(1− |α|2)x2
, (2.63)

and the metric function f follows from the definition of E

f = E + |Φ|2 − iχ =
(2m−R)(2m|α|2 −R) + a2(1− |α|2)x2

(1− |α|2)2R2 + a2(1− |α|2)4x2
. (2.64)
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Since the definition of ω involves the specific form of gradient operator, at this
point it is useful to evaluate how non-Killing part of the metric transforms. In or-
der to perform this calculation, we have to remember that e2γ0 is invariant under
the full group of symmetry: we just need to operate the change of coordinates
from r to R.

f−1e2γ0(dρ2 + dθ2) =
[
R2 + a2(1− |α|2)x2

]( dR2

∆(R)
+

dx2

1− x2

)
, (2.65)

where ∆(R) ..= R2 − 2m(1 + |α|2)R + 4m2α2 + a2(1 − |α|2)2. The definition
of gradient operator is completely analogous to (2.53) and allows us to write in
explicit form equation (1.18)

∂xω = −∆

f 2
∂Rχ+ 2(Âϕ∂RAt − At∂RÂϕ)

∂Rω =
1− x2

f 2
∂xχ+ 2(Âϕ∂xAt − At∂xÂϕ) .

(2.66)

The substitution of all the potentials in the second line leads to the final form

∂Rω = −
2am(|α|2 − 1)3 (x2 − 1)

(
a2x2

(
|α|2 − 1

)2 (|α|2 + 1
)

+R
(
|α|2(4m−R)−R

))
[
a2x2

(
|α|2 − 1

)2
+ (2m−R)

(
2m|α|2 −R

) ]2

(2.67)
Integration is straightforward and produces an indefinite function of x. Substi-
tuting the result in the first line of the system, just like we did for χ0, one finds
that this function must be constant, so we set it to zero. We find that

ω(R, x) =
2am (x2 − 1)

(
|α|2 − 1

)3
[
|α|2(2m−R)−R

]
a2x2

(
|α|2 − 1

)2
+ (2m−R)

(
2m|α|2 −R

) . (2.68)

As a concluding remark on these quadratures, we can specify that we chose a
particular integration order because it was the only one to produce constant
integration function. If we had inverted the order, we would have had to solve
another non-trivial differential equation so as to define the specific form of the
integration function. Aφ is the last function we need to find to determine the
system. In order to do so we will use the explicit expression of equation (1.10)

∂xAϕ =
∆

f
∂RÂϕ − ω∂xAt

∂RAϕ =
x2 − 1

f
∂xÂϕ − ω∂RAt .

(2.69)

Substituting all the terms in the second line we get

∂RAϕ = −
2am (x2 − 1)

(
|α|2 − 1

)2
(
a2bx2

(
|α|2 − 1

)2
+ 2acRx

(
|α|2 − 1

)
− bR2

)
a4x4

(
|α|2 − 1

)4
+ 2a2R2x2

(
|α|2 − 1

)2
+R4

(2.70)
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We can integrate this expression and generate an arbitrary function of x, then
differentiating it respect to x and comparing with the first line of the system we
see that this function must assume the form k(x) = −2b2cmx− 2c3mx+ 2cmx.
Substituting it in Aϕ we obtain

Aϕ(R, x) =
2m
(
|α|2 − 1

) [
a2cx

(
|α|2 − 1

)2
+ abR (x2 − 1)

(
|α|2 − 1

)
+ cR2x

]
a2x2

(
|α|2 − 1

)2
+R2

.

(2.71)
At this point, defined all the potentials that characterize both the metric and
the electromagnetic one-form, we can note that the following substitutions bring
an evident simplification to the system. Indeed

a′ ..= a(1− |α|2) ,

m′ ..= m(1 + |α|2) ,

q ..= −2mb , p ..= 2mc ,

(2.72)

transform the metric like

ds2 = − 1

(1− |α|2)2

(
1+

q2 + p2 − 2m′R

R2 + a′2x2

)[
dt2 +2ω(R, x)dtdϕ+ω(R, x)2dϕ2

]
+

+
(
R2 + a′2x2

)[ dR2

∆(R)
+

dx2

1− x2

]
+ (1− |α|2)2(R2 + a′2x2)dϕ2 , (2.73)

where ω staisfies

ω(R, x) = (1− |α|2)2 2a′(1− x2)(q2 + p2 − 2m′R)

∆(R)
(2.74)

and ∆(R) = R2−2m′R+a′2x2 +q2 +p2 after performing transformations (2.72).
The electromagnetic one-form reads instead

A =
1

1− |α|2
(
b+

qR− pa′x
R2 + a′2x2

)
dt+ (1− |α|2)

px(a′2 +R2)− qa′R(1− x2)

R2 + a′2x2
dϕ

(2.75)
We can now scale Killing coordinates t and ϕ in order to delete the overall
(1− |α|2)2 factors that appear here and there. Applying the scaling

t = τ(1− |α|2) =⇒ dt = (1− |α|2)dτ

ϕ = φ(1− |α|2)−1 =⇒ dϕ = (1− |α|2)−1dφ
(2.76)

and dropping both the irrelevant constant term in At and the apexes on a′, m′,
after some algebra we finally get to Kerr-Newman metric

ds2 = − ∆(R)

Σ(R, θ)
(dτ − a sin2 θdφ)2 + Σ(R, θ)

( dR2

∆(R)
+ dθ2

)
+

+
sin2 θ

Σ(R, θ)

[
adτ − (R2 + a2)dφ

]2

, (2.77)

23



where Σ(R, θ) ..= R2 + a2 cos2 θ, with the associated electromagnetic one-form

A =
qR− pa cos θ

R2 + a2 cos2 θ
dτ +

p cos θ(a2 +R2)− qaR sin2 θ

R2 + a2 cos2 θ
dφ . (2.78)

The two parameters q and p are to be understood as electric charge and magnetic
monopole, while a, like in Kerr metric, is connected to angular momentum. We
can indeed see this by setting to zero one parameter at time. When a = 0 it is
possible to recognize Reissner-Nordström metric (including magnetic monopole),
when q = 0 and p = 0 Kerr metric is retrieved, while when both electromagnetic
charges and the angular momentum are turned off, we get back to Schwarzschild
black hole. The combination of these parameters can be summarized into the
following table

Not rotating (a = 0) Rotating (a 6= 0)
Uncharged (q = 0, p = 0) Schwarzschild Kerr
Charged (q 6= 0, p 6= 0) Reissner-Nordström Kerr-Newman

2.3.2 More on Harrison transformation

In the first chapter we hinted at the fact that transformation (1.39), implicitly
used by Ernst, is substantially an Harrison transformation. By means of easy
algebra we can recast it in the more suitable form

E =
E0 − 1−a

1+a

1− 1−a
a+1

E0

, Φ =

√
1− a
1 + a

1− E0

1− 1−a
a+1

E0

, (2.79)

Since the two mappings (Ernst and Harrison) are in a slightly different form, we
will use also gauge transformations I) and IV ) in order to get the desired result.
However, we remark that the charging property is carried only by V ) and the
necessity of using gauge transformations comes from the free-coordinate form we
will be working with in this section.
First of all, the most general composition I)◦IV )◦V ) (assuming real parameters
and Φ0 = 0) reads

E = λ2

[
E0(1 + β2α2 − 2βα)− β2

]
1− α2E0

, (2.80)

Φ = λ
E0(α− βα2) + β

1− α2E0

. (2.81)
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Comparing the denominators in E we immediately obtain

α =

√
1− a
1 + a

, (2.82)

while the additive term in the numerator of E fixes

λ2β2 =
1− a
1 + a

. (2.83)

Comparing the coefficients of E0 in the numerator of Φ it is possible to get the
further condition

λ(α− βα2) = −
√

1− a
1 + a

, (2.84)

which, together with (2.83), defines β and λ

β = −
√

(1− a)(1 + a)

2a
, λ = − 2a

a+ 1
. (2.85)

This set of parameters satisfies also the condition

λ2(1 + β2α2 − 2βα) = 1 , (2.86)

so Ernst transformation is anything different from a gauge-Harrison mapping
with null initial electromagnetic potential. Moreover, the arbitrary hypothesis
that E must be a function ofΦ naturally comes out from Harrison transformation
when the seed solution is uncharged (Φ = αE). In this way we see that it is a
general property of every spacetime that can be charged from a vacuum metric
by means of V ).

2.4 Discrete symmetries
Lie point symmetries do not represent the only type of transformations that gen-
erates new nonequivalent solutions: for example, the requirement that maps (2.2)
must depend continuously on ε automatically excludes all discrete symmetries.
Within this family of transformations, Wick rotation is doubtless of particular
use in the context of axially symmetric solutions. In particular we will consider
the double Wick rotation that maps time coordinate to the angular one and vice
versa:

t 7−→ iϕ ,

ϕ 7−→ it .
(2.87)

The application of this complex transformation to

ds2 = −f(dt− ωdϕ)2 + f−1[ρ2dϕ2 + e2γ(dρ2 + dz2)] (2.88)

produces the following metric

ds2 = f(dϕ− ωdt)2 + f−1[−ρ2dt2 + e2γ(dρ2 + dz2)] (2.89)
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which still solves Einstein equations, but belongs to a different family from the
first one. In this way it is possible to compose double Wick rotation to other
continuous symmetries in order to generate new solutions. In the next chapter,
working with higher dimensional generalizations of these metrics, we will show
a detailed example about how it works.
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Chapter 3
Higher dimensional gravity

Higher-dimensional theories of gravity can be thought of as a natural extension
of their four-dimensional counterpart. The main aim of this chapter is to show
that the solution generating method based on symmetries and potentials can
be used fruitfully also in this context. In particular we will deal firstly with
n-dimensional gravity, showing a particular transformation able to add electric
charge to Schwarzschild-Tangherlini black hole (higher dimensional generaliza-
tion of four-dimensional Schwarzschild) and then, considering five dimensions,
we will prove that this mapping can be recovered and generalized by means of
Ernst potentials and Lie point symmetries.

3.1 Charging transformations for Tangherlini

As already outlined in chapter introduction, Schwarzschild solution in arbitrary
dimension n ≥ 4 was first found by Tangherlini in [10]. It represents an asymp-
totically flat, spherically symmetric black hole, where the metric assumes the
form

ds2 = −fdt2 + f−1dr2 + r2dΩ2
n−2 , (3.1)

with dΩ2
n−2 as line element on the (n−2)-dimensional sphere with unitary radius,

and f is such that

f = 1− µ

rn−3
. (3.2)

The parameter µ is related to the physical mass M by

M =
(n− 2)π

n−3
2

8Γ(n−1
2

)
µ =

(n− 2)Ωn−2

16π
µ , (3.3)

where Γ(s) is Euler Gamma function and Ωn−2 is the hypersphere surface defined
in n− 1 spatial dimensions. A fast check shows that for n = 4 we have µ = 2M
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as expected. In this context it is useful to introduce an hypersphere parametriza-
tion slightly different from the most common one: it is almost analogous to the
standard diffeomorphism as far as the first n− 4 coordinates are concerned, but
it differs in the last two one. It can be written as

x1 = cos θ cosψ1

x2 = cos θ sinψ1 cosψ2

...
xn−5 = cos θ sinψ1 . . . sinψn−6 cosψn−5

xn−4 = cos θ sinψ1 . . . sinψn−6 sinψn−5

xn−3 = sin θ cosϕ

xn−2 = sin θ sinϕ

(3.4)

where θ ∈ [0, π/2], ϕ ∈ [0, 2π], ψn−5 ∈ [0, 2π] and the other ψi ∈ [0, π]. With such
coordinates the spherical line element can be expressed in function of the coor-
dinates ϕ, θ and the standard line element of a lower dimensional hypersphere,
so that it assumes the form dΩ2

n−2 = cos2 θdΩ2
n−4 + dθ2 + sin2 θdϕ2. Substituting

it in (3.1) one obtains

ds2 = −fdt2 + f−1dr2 + r2 cos2 θdΩ2
n−4 + r2dθ2 + r2 sin2 θdϕ2 , (3.5)

which will be used as seed metric for the charging transformation. As described
by Ortaggio in [7], when we consider a solution admitting one spacelike Killing
vector ∂ϕ within pure Einstein-Maxwell gravity, it is possible to choose a set of
coordinates {xi,ϕ}, i = 1, ..., n − 1, with giϕ = 0 = Ai. In this case the general
form of the solution is

ds2 = gijdx
idxj + V dϕ2 , (3.6)

F = ∂iAϕdxi ∧ dϕ⇐⇒ A = Aϕdϕ , (3.7)

where all functions depend only on the set of non-Killing coordinates {xi}. As-
suming these properties, one can show that the following transformation leaves
invariant Einstein-Maxwell action, generating non-equivalent solution respect to
the seed: 

Λ =
(

1 +
n− 3

n− 2
BAϕ

)2

+
1

2

n− 3

n− 2
B2V

g′ij = Λ2/(n−3)gij , V ′ = Λ−2V

A′ϕ = Λ−1
[
Aϕ +B

(1

2
V +

n− 3

n− 2
A2
ϕ

)] (3.8)
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where B is the constant that will add the relevant charge to the seed spacetime.
In [7] this transformation is used to add magnetic field to (3.5): the identification
of potentials is quick and leads to the new solution

ds2 = Λ2/(n−3)[−fdt2+f−1dr2+r2 cos2 θdΩ2
n−4+r2dθ2]+Λ−2r2 sin2 θdϕ2 , (3.9)

A =
1

2
Λ−1Br2 sin2 θdϕ , (3.10)

where f is the same of (3.5) and

Λ = 1 +
1

2

n− 3

n− 2
B2r2 sin2 θ . (3.11)

This is the generalization of four-dimensional black hole immersed in Melvin
universe, a particular spacetime surrounded by parallel non-vanishing magnetic
lines. Its properties, and in particular its stability were studied extensively by
Melvin and Thorne in [6] and [11] hoping to set a conceivable context to gravi-
tational collapse in strong magnetic fields.

We will now use transformation (3.8) together with double Wick rotation in
order to generate n-dimensional Reissner-Nordström black hole. First of all,
performing double Wick rotation (2.87) on Tangherlini metric (3.5) we find

ds2 = fdϕ2 + fdr2 + r2 cos2 θdΩ2
n−4 + r2dθ2 − r2 sin2 θdt2 , (3.12)

while electromagnetic four potential A is still zero. At this point, exploiting the
explicit form of f , the application of (3.8) yields

Λ = 1 +
1

2

n− 3

n− 2
B2
(

1− µ

rn−3

)
=

=
1

2rn−3

n− 3

n− 2

[(2(n− 2)

n− 3
+B2

)
rn−3 − µB2

]
, (3.13)

which suggests the following change of coordinates

αRn−3 =
(2(n− 2)

n− 3
+B2

)
rn−3 − µB2 , (3.14)

where α is a generic constant that will be determined later on the basis of con-
venience. Electromagnetic potential can be calculated as

A′ϕ =
BV

2Λ
=

B(n− 2)

2(n− 2) + (n− 3)B2
− 2B(n− 2)2µ

(n− 3)[2(n− 2) + (n− 3)B2]

1

αRn−3
,

(3.15)
where the first constant term is unphysical and can be dropped. The Killing
component of the metric transforms in such way that

V ′ =
V

Λ2
=
(2(n− 2)

n− 3

)2 1

(2(n−2)
n−3

+B2)2

[
1−

µ(2(n−2)
n−3

−B2)

α

1

Rn−3
−

− 2(n− 2)

n− 3

µ2B2

α2

1

R2(n−3)

]
. (3.16)
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All the other metric functions such as gtt can be found considering transforma-
tions in the form

g′tt = Λ2/(n−3)gtt =
( n− 3

2(n− 2)

)2/(n−3)

R2α2/(n−3) sin2 θ , (3.17)

which shows the convenience of choosing α =
(

2(n−2)
n−3

)
, that simplifies g′tt into

g′tt = R2 sin2 θ , (3.18)

V ′ into

V ′ =
(2(n− 2)

n− 3

)2 1

(2(n−2)
n−3

+B2)2

[
1− µ

(
1− n− 3

2(n− 2)
B2
) 1

Rn−3
−

− (n− 3)µ2B2

2(n− 2)

1

R2(n−3)

]
, (3.19)

and the electromagnetic potential A′ϕ to

A′ϕ = − 2(n− 2)

(n− 3)
(

2(n−2)
n−3

+B2
) µB

2Rn−3
. (3.20)

At this point we can see that scaling the azimuthal coordinate is advantageous
to delete overall factors in V ′ and A′ϕ. Indeed[

2(n− 2)

(n− 3)
(

2(n−2)
n−3

+B2
)]ϕ 7−→ φ (3.21)

leads to

V ′dϕ2 7→

[
1− µ

(
1− n− 3

2(n− 2)
B2
) 1

Rn−3
− (n− 3)µ2B2

2(n− 2)

1

R2(n−3)

]
dφ2 , (3.22)

A′ϕdϕ 7−→ Aφdφ = −µB
2

1

Rn−3
dφ (3.23)

The other terms that show r2 as an overall factor transform like gtt and can be
written simply replacing r2 with R2. The second component of the non-Killing
block, included the transformation of the differential, is mapped like

f−2dr2 7−→ Λ2/(n−3)f−2dr2 =
(

1− µ

rn−3

)−1

dR2 = (3.24)

=

[
1− µ

(
1− n− 3

2(n− 2)
B2
) 1

Rn−3
− (n− 3)µ2B2

2(n− 2)

1

R2(n−3)

]−1

dR2 . (3.25)
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At this point we can apply for the second time double Wick rotation, which leads
to the final form of both the metric and the electromagnetic potential

ds2 = −

[
1− m

Rn−3
+

2

(n− 3)(n− 2)

q2

R2(n−3)

]
dt2+

+

[
1− m

Rn−3
+

2

(n− 3)(n− 2)

q2

R2(n−3)

]−1

dR2 +R2 cos2 θdΩ2
n−4

+R2dθ2 +R2 sin2 θdφ2 , (3.26)

A = Aφdt = − q

n− 3

1

Rn−3
dt , (3.27)

where we performed the following substitutions

m ..= µ
(

1− n− 3

2(n− 2)
B2
)

, (3.28)

q ..=
iµB

2
. (3.29)

We want to highlight that in (3.27) Aφ, though keeping its old name, after Wick
rotation refers to time component of the electromagnetic potential. Moreover last
formula clearly shows that B must be taken imaginary. The presented solution
is the arbitrary-dimensional generalization of Reissner-Nordström 4d black hole:
by imposing n = 4 one can easily retrieve the better known RN solution.

3.2 Ernst potentials in five dimensions
In this section we define Ernst potentials for Einstein-Maxwell theory in five
dimensions assuming only one electromagnetic component. We also show that
this formulation allows to study symmetries, which are formally very similar to
the four dimensional ones, giving the possibility to exploit Lie transformations
in order to generate new solutions. First of all, we consider the following ansatz

ds2 = −eS−T (dt−ωdψ)2 +e−S−Tρ2dψ2 +e−S−T+2Γ(dρ2 +dz2)+e2Tdϕ2 , (3.30)

A = Aϕdϕ , (3.31)

where S, S, Γ, ω, Aϕ are functions of non-Killing coordinates (ρ, z). Under
these assumptions the only non-trivial Maxwell equation is given by ∇µF

µϕ = 0.
Explicitly it reads

2(∂ρAϕ∂ρT + ∂zAϕ∂zT )− (∂ρρAϕ + ∂zzAϕ +
1

ρ
∂ρAϕ) = 0 . (3.32)

We can clearly recognize the scalar product between gradients in the first term
and the cylindrical Laplacian in the second one. Multiplying the equation by eT
we obtain

eT∇2Aϕ = ∇eT∇Aϕ . (3.33)
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Einstein equations come in a more elaborate form, however, by means of linear
combinations one can find more suitable relations that still describe the system.
In order to ease the dissertation, the explicit calculation to get to the following
formulas is reported in appendix B. The first equation reads

2(∂ρS∂ρω + ∂zS∂zω) + ∂ρρω + ∂zzω −
1

ρ
∂ρω = 0 , (3.34)

and it is equivalent to the vector form

∇ ·
(
e2Sρ−2∇ω

)
= 0 . (3.35)

We can notice that this formula is formally identical to equation (1.17) when
Φ = 0, so we can define analogously a twist potential χ

ρ−1e2S∇ω =.. ϕ̂×∇χ , (3.36)

such that (3.35) is trivially satisfied. Equivalently to (1.20), the new equation is

∇ ·
(
e−2S∇χ

)
= 0 . (3.37)

The second useful Einstein equation assumes the explicit form

e2S

ρ2

[
(∂ρω)2 + (∂zω)2

]
+ ∂ρρS + ∂zzS +

1

ρ
∂ρS = 0 , (3.38)

that is equivalent to
eS∇2eS = (∇eS)2 − (∇χ)2 . (3.39)

Last relation again involves electromagnetic component Aϕ

3
(
∂ρρT + ∂zzT +

1

ρ
∂ρT

)
+ 4e−2T

[
(∂ρAϕ)2 + (∂zAϕ)2

]
= 0 , (3.40)

and can be written in terms of flat differential operators too

3∇2T + 4e−2T (∇Aϕ)2 = 0 . (3.41)

At this point we can see the advantage of introducing two complex functions E1

and E2 defined by

E1
..= eT + i

2√
3
Aϕ , (3.42)

E2
..= eS + iχ , (3.43)

which allow to recast all the relevant PDEs into a very symmetric form: equations
(3.33) and (3.41) can be expressed respectively as imaginary and real part of

Re(E1)∇2E1 = ∇E1 · ∇E1 , (3.44)
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while equations (3.37) and (3.39) correspond to the imaginary and real part of

Re(E2)∇2E2 = ∇E2 · ∇E2 . (3.45)

Last two formulas are formally identical and can be recognized as the vacuum
Ernst equation (1.29) already known from 4d formulation. However, in the
present context potentials are defined differently, and the twist is used only
in connection to the gravitational function χ, while electromagnetic component
Aϕ appears in E1 without considering any mediation with new functions. Like
the four-dimensional counterparts, the equations for γ are completely uncoupled
from the others and can be expressed in terms of E1 and E2

∂ρΓ =
ρ

4(ReE2)2
(∂ρE2∂ρE∗2 − ∂zE2∂zE∗2)+

+
3ρ

4(ReE1)2
(∂ρE1∂ρE∗1 − ∂zE1∂zE∗1) , (3.46)

∂zΓ =
2ρ

4(ReE2)2
∂ρE2∂zE∗2 +

6ρ

4(ReE1)2
∂ρE1∂zE∗1 . (3.47)

These results are also shown in [12] by Yazadjiev in the context of inverse scat-
tering method. The equations of motion (3.44) and (3.45) for the fields E1, E2

are characterized as the minimum of the effective action:

S[E1,E2] =

∫
ρdρdz

[
∇E1∇E∗1

(E1 + E∗1)2
+
∇E2∇E∗2

(E2 + E∗2)2

]
. (3.48)

In this case the proof is straightforward if we consider that the least action
principle

0 =
δS

δϕi
, S[ϕi] =

∫
L(ϕi,∇µϕ

i)
√
|g|dnx (3.49)

gives rise to Euler-Lagrange equations

∂L
∂ϕi
−∇µ

(
∂L

∂(∇µϕi)

)
= 0 . (3.50)

In this specific case we can consider E∗1 and E∗2 as unknown fields of the theory
(they are not independent of E1 and E2, so the choice of one pair of fields or
their conjugates returns equivalent equations), in this way we find

∇µ

(
∂L

∂(∇µE∗1)

)
=

1√
|g|
∂µ

(√
|g| ∂L
∂(∂µE∗1)

)
= (3.51)
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=
1

ρ

[∂ρE1 + ρ∂ρρE1 + ρ∂zzE1

(E1 + E∗1)2
− 2ρ

∂ρE1

(E1 + E∗1)3

(
∂ρE1 + ∂ρE∗1

)
−

− 2ρ
∂zE1

(E1 + E∗1)3

(
∂zE1 + ∂zE∗1

)]
=

=
∇2E1

(E1 + E∗1)2
− 2

(E1 + E∗1)3
(∇E1∇E1 +∇E1∇E∗1) ,

where covariant derivatives and g are referred to cylindrical metric in flat space
(in this context we could have substituted covariant derivatives with vector op-
erators, but they are basically the same). The other term of Euler-Lagrange
equations is

∂L
∂E∗1

= −2
∇E1∇E∗1

(E1 + E∗1)3
. (3.52)

So we can see that the effective Lagrangian (3.48) retrieves correctly the equa-
tion for the field E∗1. Because of the action principle’s symmetrical form, the
calculation respect to the variation of E∗2 is identical and returns (3.45).

3.3 5d Lie Symmetries

Having set the right equations and their correspondent action, we can now apply
methods from chapter 2 in order to find all the infinitesimal generators of Lie
point symmetries. Every single term of (3.48) represents the particular case of
Φ = 0 in the four dimensional Einstein-Maxwell action (1.30), so we expect that
symmetry transformations on E1 and E2 form a subgroup of (2.44). In order to
prove it we just need to check that these mappings do not mix E1 with E2. As
in chapter two, considering the components of complex potentials E1 = x + iy
and E2 = u + iv, we can associate a metric to action (3.48) and find its Killing
vector fields. In this case we find

ds2 =
dx2 + dy2

4x2
+

du2 + dv2

4u2
, (3.53)

whose Killing vectors (a priori we must assume ξi = ξi(x, y, u, v)) are solutions
of the following system of ten PDEs (we split it into blocks in order to ease its
visualization) 

∂uξx + ∂xξu = 0

∂vξx + ∂xξv = 0

∂uξy + ∂yξu = 0

∂vξy + ∂yξv = 0

=⇒


∂u(∂xξy − ∂yξx) = 0

∂v(∂xξy − ∂yξx) = 0

∂x(∂uξv − ∂vξu) = 0

∂y(∂uξv − ∂vξu) = 0

(3.54)
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

2ξy
x

+ ∂yξx + ∂xξy = 0

∂xξx +
ξx
x

= 0

∂yξy −
ξx
x

= 0

(3.55)



2ξv
u

+ ∂vξu + ∂uξv = 0

∂uξu +
ξu
u

= 0

∂vξv −
ξu
u

= 0

(3.56)

We can start by solving block (3.55). The equation for ξx is already uncoupled
and gives

ξx =
C(y, u, v)

x
, (3.57)

where C(y, u, v) is an integration function. Differentiating the first equation of
the block respect to y, the third respect to x and subtracting them, one finds
that ∂yyC(y, u, v) = 0, which means that C is linear in y. We can specify ξx
further by writing

ξx =
D(u, v) +B(u, v)y

x
. (3.58)

Integrating now the third equation of the block, we find that ξy depends on a
new function E(x, u, v) according to

ξy =
1

x2

[
D(u, v)y +

B(u, v)

2
y2
]

+ E(x, u, v) . (3.59)

Substituting the solution in the first equation, which specifiesE(x, u, v) = A(u, v)/x2−
B(u, v)/2, we find that ξy must be in the form

ξy =
1

x2

[
D(u, v)y +

B(u, v)

2
(y2 − x2) + A(u, v)

]
. (3.60)

We can now consider the first block (3.54) and notice that the combination
∂xξy − ∂yξx must be independent both of u and v. Since it turns out to be
a polynomial in the variables x and y, the independence can be satisfied only
when all coefficients D(u, v), B(u, v) and A(u, v) are constant functions. Block
(3.56) is formally identical to the system we have already solved, so it is possible
to write its solution just by replacing the subscripts. That said, contravariant
components (indices are raised with the inverse of (3.53)) of the most general
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Killing vector field are given by

ξx = 4x(d+ by) ,

ξy = 4
[
dy +

b

2
(y2 − x2) + a

]
,

ξu = 4u(e+ fv) ,

ξv = 4
[
ev +

f

2
(y2 − x2) + h

]
,

(3.61)

which correspond, considering in turn just one non-zero parameter, to six inde-
pendent generators

ξ1 = 4xy∂x + 2(y2 − x2)∂y ,

ξ2 = 4x∂x + 4y∂y ,

ξ3 = 4∂y ,

ξ4 = 4uv∂u + 2(v2 − u2)∂v ,

ξ5 = 4u∂u + 4v∂v ,

ξ6 = 4∂v .

(3.62)

We are now sure that our initial guess about symmetry transformations that
do not mix x, y with u, v, then E1 with E2 is true. The present infinitesimal
transformations are two copies of the four dimensional vacuum case: as such
they were already integrated in more general form in chapter 2. In particular,
the integration of ξ1 and ξ4 is a particular case of (2.39). The relevant finite
transformations, expressed in terms of complex potentials, read


E1 7−→ E ′1 = λλ∗E1

E1 7−→ E ′1 = E1 + ia

E1 7−→ E ′1 =
E1

1 + ibE1


E2 7−→ E ′2 = γγ∗E2

E2 7−→ E ′2 = E2 + ic

E2 7−→ E ′2 =
E2

1 + i`E2

(3.63)

The first two mappings are gauge transformations, while the third is known
as "Ehlers transformation" and can be used to generate new nonequivalent so-
lutions. For example, as shown in [1], in the context of 4d Einstein-Maxwell
theory, it can be used to add NUT charge to the seed metric. Because of the
different definition of potentials, in this five dimensional formalism the transfor-
mation acts differently respect to the four dimensional formulation, adding two
dissimilar charges depending on whether it is used on E1 or E2. Moreover, before
considering specific seed solutions and computing how the transformation acts
on them, we cannot be able to define the physical significance of the couple of
parameters. We will now show that Ehlers transformation, once applied to E1,
is equivalent to (3.8) in 5d. In light of the calculations done with (3.8), we will
identify the symmetry as a magnetizing/charging transformation. First of all,
when n = 5 we have
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

Λ =
(

1 +
2

3
BAϕ

)2

+
1

3
B2V

g′ij = Λgij , V ′ = Λ−2V

A′ϕ = Λ−1
[
Aϕ +B

(1

2
V +

2

3
A2
ϕ

)]
.

(3.64)

Evaluating E1/(1 + ibE1) explicitly using metric functions we can check that
there exists a value for b that satisfies (3.64).

E ′1 =
eT + 2i√

3
Aϕ

1 + ibeT − 2b√
3
Aϕ

=

=
1

(
√

3− 2bAϕ)2 + 3b2e2T

[
3eT + i(2

√
3Aϕ − 4bA2

ϕ − 3be2T )
]

. (3.65)

Taking real and imaginary parts of E ′1, it is possible to find the new potentials
eT
′ and A′ϕ.

V ′ = e2T ′ = Re(E ′1)2 =
e2T[(

1− 2b√
3
Aϕ

)2

+ b2e2T
]2 (3.66)

We see that V ′ = Λ−2V holds if we set b = −B/
√

3. Analogously we can work
out A′ϕ from the imaginary part E ′1. Substituting b = −B/

√
3 we have

A′ϕ = −i
√

3

2
Im(E ′1) =

=
1

2
√

3

1(
1 + 2B

3
Aϕ

)2

+ 1
3
B2e2T

(
2
√

3Aϕ +
4√
3
BA2

ϕ +
√

3Be2T
)

=

=
1

Λ

(
Aϕ +

2

3
BA2

ϕ +
1

2
Be2T

)
, (3.67)

which is the same of the correspondent transformation in (3.64). Considering
the invariance of S and Γ under this mapping, we see that the transformation
of the other components gij of the metric follows e−T . Since e−T ′ = Λe−T , all
non-Killing components are mapped to g′ij = Λgij.
We can now propose the same argument, yet considering E2 = eS + iχ as seed
potential. Exploiting its explicit form and separating real and imaginary part,
we can write transformation laws for eS and χ

eS
′
=

eS

(1− `χ)2 + `2e2S
, (3.68)

χ′ =
χ− `χ2 − `e2S

(1− `χ)2 + `2e2S
. (3.69)
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If we define Ω ..= (1 − `χ)2 + `2e2S the full symmetry group acting both on the
metric and the electromagnetic potential can be written as

eS−T 7−→ eS
′−T ′ =

Λ

Ω
eS−T ,

e−S−T 7−→ e−S
′−T ′ = ΛΩe−S−T ,

e2T 7−→ e2T ′ =
1

Λ2
e2T ,

ω 7−→ ω′ ,

Aϕ 7−→ A′ϕ = Λ−1
[
Aϕ +B

(1

2
V +

2

3
A2
ϕ

)]
,

(3.70)

where ω′ satisfies {
∂ρω

′ = ρe−2S′∂zχ
′

∂zω
′ = −ρe−2S′∂ρχ

′ .
(3.71)

3.4 Ehlers

In this section we will apply Ehlers transformation on the second potential E2

starting again from Tangherlini black hole. Introducing the new coordinate x =
sin θ we can write the seed metric as

ds2 = −
(

1− µ

r2

)
dt2 +

(
1− µ

r2

)−1

dr2 +
r2

1− x2
dx2 + r2(1− x2)dψ2 + r2x2dϕ2 .

(3.72)
As we have already done in various contexts, it is possible to compare this partic-
ular metric with the general ansatz (3.30) in order to identify the various metric
potentials. First of all we can see that ω = 0 and recognize T and S

eT = rx , (3.73)

eS−T = 1− µ

r2
=⇒ eS =

(r2 − µ)x

r
. (3.74)

The component gψψ supplies the change of coordinates between ρ and the couple
(r, x)

e−S−Tρ2 = r2(1− x2) =⇒ ρ = xr
√
r2 − µ

√
1− x2 . (3.75)

At this point, applying Ehlers transformation in the form of (3.68) and (3.69) to
the seed E2 = eS, we obtain

eS
′
=

rx(r2 − µ)

r2 + `2(µ− r2)2x2
, (3.76)
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χ′ = − `(µ− r2)x2

r2 + `2(µ− r2)x2
. (3.77)

Since we know χ′ we may calculate ω′ using (3.71). However, having expressed
the potentials in function of the couple (r, x) intead of (ρ, z), it is convenient to
convert differential operators as we did in chapter 2 while charging Kerr. Whereas
in four dimensions the change of coordinates for z is well known, in this case we
need to find a suitable one asking the metric be diagonal also in coordinates (r, x).
Assuming the coordinate z(r, x) in the form z(r, x) = f(r)g(x) and calculating
dρ2 + dz2 in function of dr and dx, one can see that diagonal terms vanish only
if the following differential equation is satisfied

rx(µ− r2)(2x2 − 1) + f(r)g(x)
d

dr
f(r)

d

dx
g(x) = 0 . (3.78)

The equation is separable and can be easily integrated. The integration constants
are chosen in order to have

f(r) = r2 − µ

2

g(x) = x2 − 1

2

=⇒ z(r, x) =
(
r2 − µ

2

)(
x2 − 1

2

)
. (3.79)

We can now express the line element in the new coordinate system

dρ2 +dz2 =
(r2 − µx2)

[
r2 − µ(1− x2)

]
r2

[(
1− µ

r2

)−1

dr2 +
r2

1− x2
dx2

]
, (3.80)

which allows to write the explicit form of gradient operator

∇Ω(r, x) =
1√

(r2 − µx2)[r2 − µ(1− x2)]

[
r̂
√
r2 − µ ∂

∂r
Ω(r, x)+

+ x̂
√

1− x2
∂

∂x
Ω(r, x)

]
. (3.81)

Now it is possible to write (3.71) in terms of the new coordinates
∂rω

′ = ρ(r, x)e−2S′

√
1− x2

r2 − µ
∂xχ

′ = −2`r(1− x2)

∂xω
′ = −ρ(r, x)e−2S′

√
r2 − µ
1− x2

∂rχ
′ = 2`x(µ+ r2) .

(3.82)

The integration of the system is straightforward and yields

ω′ = `
[
µx2 − r2(1− x2)

]
. (3.83)
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The last potential Γ can be easily found when Weyl line element is converted
with equation (3.80): the condition

e−S−T−2Γ

r2
(r2 − µx2)

[
r2 − µ(1− x2)

]
= 1 , (3.84)

defines
e2Γ =

r2x2 (r2 − µ)

(r2 − µx2) [(r2 − µ (1− x2)]
. (3.85)

Then we can write the final metric

ds2 = − r2 − µ
r2 − `2(r2 − µ)2x2

[
dt− `[µx2 − r2(1− x2)]dψ

]2

+

+
(

1 +
`2(r2 − µ)2x2

r2

)[(
1− µ

r2

)−1

dr2 +
r2

1− x2
dx2

]
+

+ (1− x2)
[
r2 − `2(r2 − µ)x2

]
dψ2 + r2x2dϕ2 . (3.86)
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Appendix A
4d Einstein equations

As anticipated in Chapter 1, we show how to recast Einstein equations in order
to introduce Ernst potentials in four dimensions. Maxwell equations (1.7) and
(1.8) comes straightforwardly from ∇µF

µϕ = 0 and ∇µF
µt = 0, so it is possible

to bring about the computation by writing more explicitly

∇µF
µϕ = 0 =

1√
−g

∂µ(
√
−gF µϕ) , (A.1)

and expanding all the terms. In this formula g = −e4γr2/f 2 is the determinant
of the metric (1.4) and the electromagnetic strength tensor is defined by F µν =
gµλgνσFλσ, with Fλσ = ∂[λAσ] such that

Fλσ =


0 ∂ρAt ∂zAt 0

−∂ρAt 0 0 −∂ρAϕ
−∂zAt 0 0 −∂zAϕ

0 ∂ρAϕ ∂zAϕ 0

 . (A.2)

The case of Einstein equations is a bit more complicated because (1.5) and (1.6)
do not correspond to the explicit form gravitational equations (1.1) assume.
Because of this, in order to bring them in a more suitable form, we need to
consider linear combinations that allow to simplify similar terms. In order to
accomplish this task, it can be convenient to take the trace of Einstein equations
(1.1) so as to simplify R. Indeed, since the electromagnetic energy-momentum
tensor is traceless, we find that R = 0, which allows to write Einstein equations
as

Hµν
..= Rµν − 2Tµν = 0 . (A.3)

Explicitly, the various non-trivial components read (removing factorized overall
terms)

Htt = −2f 3
[
(∂ρAϕ)2 + (∂zAϕ)2 + ω2

(
(∂ρAt)

2 + (∂zAt)
2
)
− 2ω(∂zAt∂zAϕ+

+ ∂ρAt∂ρAϕ)
]
− r2

[
(∂zf)2 + (∂ρf)2

]
+ f 4

[
(∂zω)2 + (∂ρω)2

]
+

+ rf
[
∂ρf + r∂ρρf + r∂zzf − 2r

(
(∂ρAϕ)2 + (∂zAϕ)2

)]
= 0 , (A.4)
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This component, once divided by r, directly corresponds to the second Einstein
equation (1.6). Basically this is the reason why we choose to use (A.3): otherwise
the component Htt would have carried derivatives of γ coupled to the other
potentials. The second useful relation is

Htϕ = −2f 3ω
[
(∂ρAϕ)2 + (∂zAϕ)2 + ω2

(
(∂ρAt)

2 + (∂zAt)
2
)
−

− 2ω
(
∂ρAt∂ρAϕ + ∂zAt∂zAϕ

)]
+ rf 2(−∂ρω + ∂ρρω + ∂zzω)+

+ rfω

[
∂ρf + r∂ρρf + r∂zzf + 2r

[
(∂ρAt)

2 + (∂zAt)
2
]]
−

− r2ω
[
(∂ρf)2 + (∂zf)2

]
+ f 4ω

[
(∂ρω)2 + (∂zω)2

]
= 0 . (A.5)

These two components are enough to retrieve the first Einstein equation (1.5).
As a matter of fact, we can combine them trying to remove the dependence on
the second derivatives of f , perhaps the most direct way to do it is to consider

h1
..=

Htt · ω −Htϕ

r4
= 0 , (A.6)

which corresponds, in vector notation, to the following equation

h1 = ∇ · (ρ−2f 2∇ω) + 4ρ−2f(∇At) · (∇Aϕ + ω∇At) = 0 . (A.7)

Summing the first Maxwell equation (scaled by 4At) to h1 we find Einstein
equation (1.5)

0 = h1 + 4At∇ ·
[
ρ−2f(∇Aϕ + ω∇At)

]
=

= ∇ ·
[
ρ−2f 2∇ω + 4ρ−2fAt(∇Aϕ + ω∇At)

]
. (A.8)

The other non-trivial components Hρρ, Hzz and Hρz define γ, while Hϕϕ is equiv-
alent to the couple Htt, Htϕ. The equations that allow to integrate γ once the
other potentials are known are supplied by

Hρz =
∂zγ

r
+
a∂zAt∂ρAt

f
− 2f(ω∂zAt − ∂zAϕ)(ω∂ρAt − ∂ρAϕ)

r2
−

− ∂zf∂ρf

2f 2
+
f 2∂zω∂ρω

2r2
= 0 , (A.9)

and by the the difference

Hρρ −Hzz =
∂ργ

r
+

(∂ρAt)
2 − (∂zAt)

2

f
+
f

r2

[
(∂zAϕ)2 − (∂ρAϕ)2+

+ ω2
[
(∂zAt)

2 − (∂ρAt)
2
]

+ 2ω(∂ρAt∂ρAϕ − ∂zAt∂zAϕ)

]
+

+
(∂zf)2 − (∂ρf)2

f 2
+
f 2

r2

[
(∂zω)2 − (∂ρω)2

]
= 0 . (A.10)
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Appendix B
5d Einstein equations

Similarly to what we did in the previous appendix, we recast the raw Einstein
equation in five dimensions so as to give them an appropriate form to introduce
Ernst potentials. First of all we define

Hµν
..= Rµν −

1

2
Rgµν − 2

[
FµρF

ρ
ν −

1

4
gµνFρσF

ρσ
]

, (B.1)

so that Einstein equations reduce to

Hµν = 0 . (B.2)

They can be written explicitly once we consider the ansatz

ds2 = −eS−T (dt−ωdψ)2 + e−S−Tρ2dψ2 + e−S−T+2Γ(dρ2 + dz2) + e2Tdϕ2 , (B.3)

A = Aϕdϕ . (B.4)

Non trivial components of Hµν = 0 read (minus overall terms which do not
influence the solution):

Htt =
(
−4e2T (∂zAϕ)2−(∂zS)2−3(∂zT )2+

3e2S(∂zω)2

ρ2
−4e2T (∂ρAϕ)2−(∂ρS)2−

− 3(∂ρT )2 +
3e2S(∂ρω)2

ρ2
+ 4(∂zzS +

∂ρS

ρ
+ ∂ρρS)− 4(∂zzγ + ∂ρργ)

)
= 0 (B.5)

Htψ =
[
− 4(∂zS∂zω + ∂ρS∂ρω)− 2(∂zzω −

∂ρω

ρ
+ ∂ρρω) + ω

(
− 4e2T (∂zAϕ)2−

− (∂zS)2 − 3(∂zT )2 +
3e2S(∂zω)2

ρ2
− 4e2T (∂ρAϕ)2 − (∂ρS)2 − 3(∂ρT )2+

+
3e2S(∂ρω)2

ρ2
+ 4(∂zzS +

∂ρS

ρ
+ ∂ρρS)− 4(∂zzγ + ∂ρργ)

)]
= 0 (B.6)

43



Hρρ =
(

4e2T (∂zAϕ)2 + (∂zS)2 + 3(∂zT )2− 3e2S(∂zω)2

ρ2
+ 4e2T (∂ρAϕ)2 + (∂ρS)2−

− 3(∂ρT )2 +
3e2S(∂ρω)2

ρ2
+

4∂ργ

ρ

)
= 0 (B.7)

Hρz =
(2∂zγ

ρ
− 4e−2T∂zAϕ∂ρAϕ − ∂zS∂ρS − 3∂zT∂ρT +

e2S∂zω∂ρω

ρ2

)
= 0

(B.8)

Hψψ =
[
(ρ2 − e2Sω2)

(
(∂zS)2 + (∂zT )2

)
+ 8e2Sω(∂zS∂zω + ∂ρS∂ρω) + e2Sω2+

+
3e4Sω2(∂zω)2

ρ2
+ 4e2Sω2∂zzS + 4ρ2∂zzγ − 4e2Sω2∂zzγ + 4e2Sω∂zzω+

+ 4e−2T (ρ2 − e2Sω2)
(

(∂zAϕ)2 + (∂ρAϕ)2
)

+
4e2Sω2∂ρS

ρ
+ ρ2(∂ρS)2−

− e2Sω2(∂ρS)2 + 3ρ2(∂ρT )2 − 3e2Sω2(∂ρT )3 − 4e2Sω2∂zω

ρ
+

+ 8e2Sω∂ρS∂ρω + e2S(∂ρω)2 +
3e4Sω2(∂zω)2

ρ2
+ 4e2Sω2∂ρρS+

+ 4ρ2∂ρργ − 4e2Sω2∂ρργ + 4e2Sω∂ρρω
]

= 0 (B.9)

Hϕϕ =
[
− 4(∂zAϕ)2 − 4(∂ρAϕ)2 +

1

ρ2
e2T
(
ρ2(∂zS)2 + 3ρ2(∂zT )2 − e2S(∂zω)2−

− 2ρ2∂zzS − 6ρ2∂zzT + 4ρ2∂ρρS − 6ρ2∂ρρT + 4ρ2∂ρργ
)]

= 0 (B.10)

The last non trivial component is Hzz, however, since it is related to Hρρ by
the simple relation Hρρ = −Hzz, it does not add any relevant information to
the system. At this point we can focus on Htt and Htψ in order to delete the
dependence on γ. By performing

0 = Htt · ω +Htψ =.. h1 (B.11)

only the first terms of Htψ survive, then we get

2(∂ρS∂ρω + ∂zS∂zω) + ∂ρρω + ∂zzω −
1

ρ
∂ρω = 0 , (B.12)

which is equation (3.34). Considering

0 =
ρ2 ·Hψψ + 4ρ2ωe2Sh1 + (ρ4 − ρ2ω2e2S)Htt

4ρ2
=.. h2 , (B.13)
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we find equation (3.38):

e2S

ρ2

[
(∂ρω)2 + (∂zω)2

]
+ ∂ρρS + ∂zzS +

1

ρ
∂ρS = 0 . (B.14)

As last step, we can perform the linear combination

− (Htt + e−2THϕϕ) + h2 (B.15)

in order to retrieve equation (3.40)

3
(
∂ρρT + ∂zzT +

1

ρ
∂ρT

)
+ 4e−2T

[
(∂ρAϕ)2 + (∂zAϕ)2

]
= 0 . (B.16)

As a conclusive remark we highlight that this process allows to uncouple the
equations that define ω, T , S, Aϕ from the ones that define γ. Once solved the
first set, one can consider Hρρ, Hρz and find γ by simple quadratures.
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