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Abstract

We consider a Fermi gas in a magnetic field ~H. We compute an-
alytically the grand canonical potential Ω and derive the magnetic
susceptibility χ. Ω can be evaluated with the method of Peierls, via a
Laplace inverse transform of the Boltzmann canonical partition func-
tion Z(β). The integral in the complex plane is evaluated over an
appropriate contour, applying the theorem of residues. The calcula-
tion is done for D=3 and D=2. At low temperature, an oscillatory
behaviour of Ω arises, which is the experimentally observed de Haas-
van Alphen (dHvA) effect for metals.
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1 Introduction

The de Haas-van Alphen effect (dHvA) is a non-linear, oscillatory behaviour

of magnetization in metals, as the external magnetic field ~H is changed.
These oscillations are found in other physical quantities of metals, as mag-
netoresistivity (Shubnikov-de Haas effect), specific heat, sound attenuation;
they are caused by the quantization of the energy levels of electrons (the
Landau Levels) in a magnetic field.
Magnetization M in statistical mechanics is the variable

M := − ∂E
∂H

where E is the thermodynamical potential in the chosen description (it can be
the internal energy, Helmholtz free energy, Gibbs energy, the grand canonical
potential Ω, etc.).
A quantum mechanical treatment of free electrons gives three terms for the
magnetic susceptibility χ:

χ :=
1

V

∂M

∂H
= χP + χL + χosc

The first term is due to the spin-field interaction (Pauli’s paramagnetic χP );
the second term, Landau’s diamagnetic χL, accounts for the orbital motion
of the charged electron in the magnetic field which, like a microscopic loop
of current, generates a magnetic moment; the last term is not constant like
the other two, but is an oscillating function of 1/H - plotted against H, it
gives a sawtooth curve.

This last term is the dHvA effect, and is detectable in the regime µBH �
kbT , high magnetic fields and low temperatures, as we shall see. These three
terms - and all magnetism, indeed, as shown by Bohr and van Leeuwen - can
be explained only with a quantum mechanical description.
The dHvA effect is one of the most powerful tool for measuring the Fermi
surface (FS) of metals, which determines most of the relevant electronic prop-
erties. The FS is mapped out by its cross sectional extremal areas Aextr,
measured for different directions, since Aextr is proportional to the frequency
of the dHvA oscillations. In fact, all properties that depend on the density
of states show an oscillatory dependence on 1/H.
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1.1 Outlook of this work

Here we outline the structure of this article.

A general introduction is given, with a short summary of the historical
development of the theory and the experimental advancements related to the
de Haas-van Alphen (dHvA) effect (§1.2).

We are interested in deriving magnetic quantities, as susceptibility, from
theoretical considerations. This theory will be done after a presentation of
the single-particle Hamiltonian that governs the energy of free, noninteract-
ing electrons in an external magnetic field, uniform in space (§2).
Such a system shows a typical quantum mechanical behaviour, with discrete
energies called Landau levels (§2.1). We make some qualitative considera-
tions over the eigenfunctions of the energy, which show consistent differences
for far and near the edges of the sample, determining respectively bulk and
edge states. we will consider the degeneracy of the energy levels, and show
the connection to the Fermi surface of metals.

In section (§3) we apply statistical mechanics (SM) to investigate the
properties of the gas of electrons. In doing that, we see how the quantum
mechanics of single electrons affect the macroscopic ensemble.
Through SM it is possible to trace the mechanical meaning of thermodynam-
ical quantities, such as magnetization M and susceptibility χ. Classical SM
is governed by Boltzmann probability and for high temperatures it describes
quantum systems too (§3.1). For low temperatures though, it is necessary
to apply Fermi-Dirac statistics, since Pauli’s exclusion principle plays an im-
portant role in the distribution of the particles density. Moreover, quantum
statistical systems are appropriately described through the grand canonical
ensemble (§3.2), in which the number of particles N of the system may vary.

Hence, we use Peierls’ method to switch from a canonical to a grand
canonical description of the system, in a rigorous mathematical way (§3.3).
We summarize the calculation (§4) done by Sondheimer and Wilson for the
system in 3D. It takes advantage of well-known tools of complex analysis, as
the theorem of residues to evaluating a Laplace inverse transform.

At last, we put forth the calculation for a 2D system (§5), which is - to
our knowledge - the original feature of this work.

The calculations show that both in 3D and 2D, magnetization is the sum
of three terms: diamagnetic, paramagnetic, and dHvA contributions. While
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the diamagnetic and paramagnetic susceptibilities are independent from the
external field, and are the leading terms for high temperatures, the dHvA
susceptibility shows an oscillatory dependence on the inverse field 1/H, and
is not negligible in the small temperatures-strong magnetic field regime.

In the appendix (§A) there is a basic description of the mathematical
tools we use, namely the Laplace transform (§A.1), Peierls’ method (A.2),
the calculus of residues (§A.3) and Hankel’s representation of the Gamma
function (§A.4).

Figure 1: First observation of oscillatory dependence of susceptibility (verti-
cal axis) on the magnetic field strength (horizontal axis) in a pure crystal of
bismuth. (de Haas, van Alphen, 1930) [1].

1.2 Historical overview

Bohr (1911) and then Van Leeuwen (1919) pointed out how no magnetic ef-
fect can arise from a classical mechanical system at thermal equilibrium. In
the 1930s, Landau explained the mechanism underlying diamagnetism; the
electronic orbit generates a magnetic moment that couples with the mag-
netic field, diminishing it. This magnetization is opposite to Pauli param-
agnetism, which explains the tendency of the electron spin to align to the
field, increasing it. The two effects are in contrast, and the deriving magnetic
susceptibilities, for free electrons are χL = −1

3
χP .

At low temperatures and in high magnetic fields, experiments showed
how susceptibility was not independent from the magnetic field. Until then,
a straight line was expected, whose slope represents the metal’s susceptibil-
ity - a constant that indicates its response in magnetization as the field is
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increased. Instead, a sawtooth curve was plotted. Such oscillating behaviour
of magnetization is the de Haas-van Alphen effect (dHvA), discovered in
December 1930 in crystal bismuth, as visible in Fig. (1).

Earlier that year, Landau had independently made a theoretical predic-
tion of such phenomenon, deriving it from the quantum mechanics that gov-
erns the electron. A free electron in a uniform magnetic field moves in a spiral
that points in the direction of the field. That is, seen in the direction of the
field, the electron orbit is a circle, whose radius depends on the strength of
the field. The difference between classical and quantum theory is that in the
latter (in a semi-classical picture), the radius rc can take discrete values only.
Such orbits correspond to discrete energy levels, the Landau Levels (LL).

Figure 2: (a) Field dependence of the oscillatory part of the torque for the
various temperatures explored and (b) corresponding Dingle plots. From
Jaudet, (2008) [2].

Magnetization and other thermodynamical quantities (such as tempera-
ture) can be explained as the macroscopic outcome of a microscopic inter-
action that is averaged on many particles, for a given probability (which,
in turn, defines a statistics). Mechanical statistics is indeed the branch of
physics that tries to account for this connection.

Landau made a complete analytical derivation of the free energy by using
the Poisson summation formula to evaluate the summation over energy levels,
but this method was open to the same objections as arise in the case of
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classical statistics.
Peierls (1933, [3]) demonstrated how the dHvA effect is a direct conse-

quence of the Fermi-Dirac statistics for the electrons. This statistics is in
turn a consequence of Pauli exclusion principle for fermions. In the 1940s,
dHvA oscillations were observed in many other metals.

In 1951, Sondheimer and Wilson [4] evaluated the grand canonical po-
tential in the Fermi-Dirac statistics essentially by the inverse Laplace trans-
form of the classical partition function, regarded as a function ZB(β) of
β = 1/kBT , where kB is the Boltzmann constant and T is the absolute tem-
perature. This mathematical method, which is rigorous for the free electron
gas, can be applied to metals, only if the binding energy can be neglected.
The binding can be taken into account by the effective mass m∗.
In 1952, Lars Onsager gave a physical explanation of the phenomenon, relat-
ing it to the Fermi surface of metals. In 1952, Dingle explained the amplitude
reduction of oscillations through the broadening of the LL, caused by elec-
tron scattering by impurities. Starting from the 1960s, the dHvA effect was
studied in two-dimensional electron gas (2DEG).

In the 1980s, the field of research of 2DEG systems in high magnetic fields
and at low temperatures has brought to the discovery of superconducting side
effects, as the integer and fractional quantum Hall effect (respectively von
Klitzing, and Laughlin, 1985 and 1998 Nobel Prizes in physics).

The dHvA effect has been exploited to measure the Fermi surface (FS) of
metals; this technique is still widely used for its precision: in 2009 only, more
than 30 papers appeared on APJ journals, dealing with such s (for example
[1, 5, 6, 7]).

1.3 The dHvA effect and the Fermi Surface

In two dimensions, the Fermi Energy corresponds to EF = N~2
Am∗ . The density

of states at the Fermi Energy in two dimensions is

ρ(EF ) =
Am∗

π~

Notice that below the Fermi energy, at small T , the degeneracy of states
g corresponds to the density ρ, for they are all occupied. There are many
measurable quantities that contain information about the geometric structure
of the Fermi surface. The knowledge of the shape of the Fermi surface allows
to calculate the transport coefficients of the metal along with its equilibrium
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Figure 3: Fermi Surface for valence electrons of ZrB12 (Gasparov, 2008, [8])

and optical properties. The de Haas-van Alphen effect is the most powerful
technique to deduce the geometry of the Fermi surface. In 1952, Onsager
pointed out that the change in 1/H through a single period of oscillation
was determined by the remarkably simple relation

ν = ∆

(
1

H

)
=

2πe

~c
1

Aextr

Aextr is any extremal cross-sectional area Aextr of the Fermi surface (in k-

space) in a plane normal to H. Altering the ~H direction brings different
extremal areas into play. All the Aextr of the Fermi surface can be mapped
out. In real solids such a surface can be quite complex, Fig. (3). In a sense,
measuring the frequency of the dHvA oscillations for different directions of
the magnetics field is like making a tomography of the Fermi surface.

In the simpler case of free, non interacting electrons, in no magnetic field,
the FS is just a sphere (or, in 2D, a circle) in the momentum-space. The
quantization for the 3D case is depicted in Fig. (7).
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2 Quantum mechanics

In non-relativistic theory, a magnetic field can be regarded only as an ex-
ternal field. The magnetic interactions between particles are a relativistic
effect. Since electron speeds in a solid are small compared with the speed of
light, Dirac relativistic equation reduces to the Schrödinger equation, which
determines the time evolution of the system:

i~
d

dt
φ = Hφ (1)

where φ is the wavefunction of the system, and H is the Hamiltonian op-
erator, the extension to QM of the classical Hamiltonian function, which
describes the energy of the system in terms of the canonical coordinates po-
sition and momentum.
We are interested in finding the eigenfunctions ψ of the Hamiltonian opera-
tor, in order to determine the eigenvalues of the energy E. Eq. 1 becomes:

Hψ = Eψ (2)

We shall consider the problem with two slightly different approaches. First,
we find in an immediate way the eigenvalues E through algebraic considera-
tions; secondly, we solve the differential equation to determine explicitly the
energy eigenfunctions. Before doing so, we give a motivation to the quantum
description of the problem.

Van Leeuwen theorem. Bohr (1911), and then Van Leeuwen (1919)
pointed out how no magnetic effect can arise from a classical mechanical
system at thermal equilibrium. Here we give an intuitive procedure to con-
vincing of this result, anticipating some notions of statistical mechanics that
are defined in section 3.

We calculate the free energy F of the system, which is the work that the
system can do; then we use the thermodynamical relation

M = − ∂F
∂H

to calculate the magnetization. In classical mechanics, and using classical
statistics,
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F = −NkBT log

∫∫
dpdqe−H(~p,~q)/kBT (3)

where

H(~p, ~q) =
1

2m
(~p+

e

c
~A)2 (4)

is the Hamiltonian of a charged, spinless electron in a magnetic field; the
electron’s charge is −e. We substitute as integration variable

~Π = ~p+
e

c
~A

in place of the momentum ~p, noting that d~p

d~Π
= 1. We point out that the

canonical momentum is ~p, while ~Π is called the kinetic momentum m~v, which
is defined by one of the two Hamilton equations

~Π

m
= ~̇q =

∂H
∂~p

(5)

If in eq. (3) we perform the integration over Π, it is at once evident that

the vector potential ~A, and with it the magnetic field ~H, disappears from
the equation. The free energy does not depend on the magnetic field, and
therefore there is no magnetization, M = ∂F

∂H
= 0.

In quantum mechanics the observables
~̂
A and ~̂p do not commute:

[
~̂
A, ~̂p

]
6= 0;

that is the reason why magnetic effects live up to the macroscopic level.

2.1 Landau levels

The Hamiltonian operator of a free, noninteracting electron in a magnetic
field is

H =
1

2m
(~p+

e

c
~A)2 − µB~σ · ~B (6)

where∇× ~A = ~B. From now on we make the approximation ~B = ~H+4π ~M ≈
~H, where ~H is the external magnetic field and ~B is the induction field, that
takes into the account the variation due to magnetization ~M . In the situation
in analysis this is a good approximation, as H is of some Tesla of magnitude.

The Hamiltonian is separable in two commuting terms

H = H// +H⊥ =
p2
z

2m
+H⊥
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where we have supposed that the field is in the ẑ direction, without a loss
in generality. H⊥ = 1

2m
(Π2

x + Π2
y), defining the canonical momentum ~Π as

Πi

m
= ẋi =

1

i~
[H, xi] = (pi +

e

c
Ai) (7)

which is the quantum analogue of the classical Hamiltonian relation, eq.
(5). From now on we substitute qi with xi. It is clear that the vector
potential has no component in the the ẑ direction, both in the symmetric

gauge ~A = 1
2
~H × ~r, which in this case reduces to ~̂A = H/2

−ŷx̂
0

, and in

the Landau gauge ~̂A = H

0
x̂
0

.

[Πy,Πx] = [py +
e

c
Ay, px +

e

c
Ax] =

eH

c
i~

We notice that this commutation relation is similar to the canonical com-
mutation relation that determines the position-momentum uncertainty. We
define

πi =
Πi√
eH/c

These operators satisfy the canonical commutation relations

[πy, πx] = i~

We can rewrite the Hamiltonian as:

H⊥ =
1

2

eH

cm
(π2

x + π2
y) =

1

2
ωc(π

2
x + π2

y) (8)

where ωc = eH/mc is the cyclotron frequency. In analogy with the theory of
the 1D harmonic oscillator we now define the ladder operators,

a =
πy + iπx√

2~
a† =

πy − iπx√
2~

which bring the Hamiltonian in the standard form

H⊥ = ~ωc(n̂+
1

2
) (9)
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where n̂ = a†a is the usual number operator.
The eigenvalues of the whole Hamiltonian are determined by the three quan-
tum numbers k, n,ms:

Ek,n,ms =
~2k2

2m
+ ~ωc(n+

1

2
)− µBmsH (10)

k ∈ R is the ẑ component of momentum, n = 0, 1, 2, ... is the discrete energy
value due the magnetic field, while ms = ±1 depends on the spin, that can
either be aligned in the direction of the field or opposite to it.

Figure 4: Energy spectrum, for H = 0 and H > 0.

These results are rigorous for noninteracting, non-relativistic electrons.
In order to approximate the behaviour of conduction electrons in metals,
we substitute m with an effective mass m∗ that should take care of the
adiabatic potential of the crystal Vad, in a very rough approximation. The
effective mass is properly a tensor, but in this simplified work we assume
that m∗ij ≡ m∗. This identity holds:

1

2
~ωc =

m

m∗
µBH (11)

where we recall that µB = e~/2mc = 9.27 · 10−24J/T is the Bohr magneton.

Eigenfunctions. In order to find the eigenfunctions of E, it turns out
to be convenient to work with the vector potential in the Landau gauge

~̂
A = H

0
x̂
0

. There is some freedom in the choice of vector potential for a
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given magnetic field. However, the Schrödinger equation is gauge invariant,
which means that adding the gradient of a scalar field χ to ~A,

~A→ ~A+∇χ

φ→ e
i
~χφ

changes the overall phase of the wave function by an amount corresponding
to the scalar field so that |φ′|2 = |φ|2. Physical properties are not influenced
by the specific choice of gauge.
We reconsider eq. (2):

∂2ψ

∂x2
+ (

∂

∂y
− ieHx

~c
)2ψ +

∂2ψ

∂z2
=

2mE

~2
ψ (12)

Since equation 12 contains neither y or z explicitly, we may assume ψ(x, y, z) =
ei(kyy+kzz)u(x) and obtain for the function u the equation

u′′ +

{
2mE1

~2
− (ky −

eH

~c
x)2

}
u = 0 (13)

where E1 = E − ~2
2m
k2
z is the energy of the motion in the transverse plane.

Eq.(13) is the differential equation of a one-dimensional harmonic oscillator
with frequency eH

mc
= ωc and center x0 = ~c

eH
ky, which is called the guiding

center.
To find the number of states belonging to each energy eigenvalue, we

have to specify the boundary conditions. In the y-direction and z-direction
we shall assume the cyclic condition, which allows values for ky and kz that
are multiples of 2π/Ly 2π/Lz respectively. We choose to enforce the cyclic
condition in the y-direction only. However, B. I. Halperin showed that it is
possible to obtain a periodic solution in x and y.

We assume, instead, that in the x-direction the system is bounded by two
walls, a distance Lx apart. If the Lx is large compared to the extension of
the oscillator function un(x− x0), which is of the order of the orbital radius,
the functions for which the center x0 lies well inside the volume will not be
affected by the presence of the walls. This solutions correspond to the bulk
states, and form the typical discrete energy levels that you can see in Fig. (5).
No solutions exist if x0 lies well outside the volume; for a small range of x0

near the wall, the presence of the wall modifies the oscillator eigenfunction,
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Figure 5: (a) semi-classical orbits of electrons in the plane normal to B. (b)
Landau Levels at the edge of the sample [23].

determining the steep slope in correspondence to the walls. The permissible
interval of ky is LxeH/~c.

There are

g =
LxLyeH

2π~c
=

A

2πl2
(14)

states of the same energy.

l =

√
~c
eH

(15)

l is the magnetic length, g is the degeneracy of each Landau Level, which
is to be multiplied by the gs = 2 degeneracy due to spin only if we neglect
the spin split in energy. The ratio between the separation of Landau levels
~ωc and the Zeeman split 2µBH is m∗/m, which is negligible, m∗ being some
percent of the bare mass m. For a field of 1 Tesla and a strip of 1 mm sides
the degeneracy is of the order of 1010.

Now, we consider the two-dimensional problem, suppressing motion in
the z direction, reducing it to a strip of sizes Lx and Ly. We impose periodic
boundary conditions in y. We simplify the notation of eq. (13), normalize
the variables, x/l→ ξ so to obtain Weber’s equation:

− ψ′′2(ξ) + (ξ − ξ0)2ψ(ξ) = εψ(ξ) (16)

whose general solution is a linear combination of Parabolic Cylinder func-
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tions:
ψk,p(ξ) = ADn(

√
2(ξ − ξ0)) +BDn(−

√
2(ξ − ξ0)) (17)

The real parameters A,B and n = (ε−1)/2 (n can take also rational values!)
are constrained by the boundary conditions ψ = 0 at the edges, and by

normalization 1 =
∫ Lx/l

0
dξ|ψ(ξ)|2. For a fixed value of ξ0, the solutions

are orthogonal and correspond to a sequence of discrete eigenvalues. Each
eigenvalue, regarded as a function of ξ0, is a Landau branch.

Bulk and edge states. Weber’s solutions can be divided in bulk states and
edge states. For bulk states each branch n is a straight horizontal line, and
there is no dependence on the center of the orbit ξ0; the branches are equally
spaced. The corresponding eigenfunctions are those of the 1D harmonic
quantum oscillator, for which:

ψk,n(ξ) =
1√√
π2nn!

e−
1
2

(ξ−ξ0)2Hn(ξ − ξ0) (18)

The eigenvalue is εn = 2n + 1 with integer n, and Hn are the Hermite
polynomials,

Hn(ξ) = (−1)neξ
2 dn

dξn
e−ξ

2

(19)

Determining the exact solution of the wavefunctions near the edge is a com-
plex task; recently Wang et al. (2009, [7]) gave an accurate treatment of
the problem, though numerical methods, including the spin-orbit interaction
that in real metals further splits spin-up and spin-down levels, Fig. (6).
The edge states, as visible in fig. (5), have eigenvalues that tend to infin-
ity as the center of orbit ξ0 tends to the wall. We may account for this
with two simple and just qualitative arguments. The first one is that, in a
semi-classical frame, the electron does not close the circular orbit, instead it
keeps bouncing on the edge, shifting of a length rs - upwards if it is next to
the right edge, downwards if it is at the left edge. This is a very intuitive
explanation of how two opposite currents build up at the edges of a 2DEG
sample, and further investigation leads to understanding the arising of the
integer quantum Hall effect.
Another insight involves Heisenberg’s uncertainty principle, ∆x∆p ≥ ~/2.
We can imagine the contribution of an eigenvalue ε(ξ) for which the guiding
center ξ0 � Lx/l is well outside the sample, say at the foremost right; it
shows a parabolic behaviour, and it intersects the infinite wall of the edge
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at higher and higher energies as the guiding center is shifted farther from
the wall. This implies a narrower spatial range ∆x in which the electronic
wavefunction is localized; as a backlash, momentum, and thus energy, gets
higher and higher.

Figure 6: The energy spectrum in units of meV versus the guiding center,
here called y0. Through numerical methods, Wang 2009 [7].

Eventually, we notice that the choice of the symmetric gauge would lead
to a different study of the solutions of the differential equation; we just point
out that in that representation the eigenfunctions of energy are also eigen-
functions ψ(r) of the angular momentum z-component, Lz, thus embodying
the symmetry of the system under rotation around the z axis. Indeed, the
high degeneracy of the Landau Levels reflects this multiple symmetries of the
system. In the Landau gauge it’s evident the invariance under translational
displacement, at least for bulk states. Below, we give a further insight to the
meaning of degeneracy.

Flux quantization. The total magnetic flux passing through the sample
is

Ψ =

∫
~H · ~nda = H

∫
da = HLxLy (20)

so that we can express the degeneracy from eq. (14) as

g =
LxLyHe

2π~c
=

Ψe

2π~c
≡ Ψ

Ψ0

(21)
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where Ψ0 = ~c2π/e can be viewed as the flux quantum. It is noteworthy to
say that this simple derivation finds an analogue in the quanta of flux gener-
ated by the electronic vortices in superconductors - with charge 2e because
electrons are paired.
The qualitative fact is that the flux quantization sets a finite minimum size
of an orbit and thereby provides the escape from Van Leeuwen theorem.

Figure 7: The plot of points in (kx, ky, kz)-space. The dotted sphere repre-
sents the Fermi energy surface. Graphics from Lahiri, [14].

2.2 The dHvA effect

We give a qualitative and intuitive insight of the phenomenon, following
Huang [9].

The Landau Levels are the discrete eq. (10). The degeneracy g is linear in
H (strength of the magnetic field), eq. (14). At low T , electrons occupy the
lowest available energy levels; since the levels below the Fermi energy are all
filled (only the last level can be partially filled), the degeneracy corresponds
to the density of states. At N fixed, decreasing the field H provokes g to
decrease, and fewer electrons can be accommodated on each level. Some
electrons will be forced to jump to a higher energy level. This causes the
low-T oscillation of magnetic susceptibility as H is decreased.
Ashcroft [5] points out that the level density will have a sharp peak whenever
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E is equal to the energy of an extremal orbit satisfying the quantization
condition ∆A = 2πe

~c H. The sets of orbits satisfying the condition for a given
n form a tubular structure in k-space, Fig. (7). Most electronic properties
of metals depend on the density of states at the Fermi energy, and g(EF ) =
ρ(EF ) will be singular whenever H causes an extremal orbit on the FS to
satisfy the quantization condition. ρ(EF ) is singular at regularly spaced
intervals in 1/H given by

ν(dHvA) = ∆

(
1

H

)
=

2πe

~c
1

Aextr
(22)

The dHVA effect can be observed in very pure metals only at low tempera-
tures and in strong magnetic fields that satisfy

EF � ~ωc � kBT

Thus the oscillatory behaviour as a function of 1/H should appear in any
quantity that depends on the level density at EF - which, at T = 0, includes
almost all characteristic metallic properties. The oscillating behaviour is not
detectable if kBT is greater than the spacing between the LL, kBT � ~ωc.
Electron scattering constitutes another problem, and the electronic relaxation
time τ provides a limit in the definition of energy, as for the time-energy
uncertainty principle, ∆E ≈ ~/τ .
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3 Statistical mechanics

Statistical mechanics provides the connection between mechanics (quantum,
or classical) and thermodynamics, which accounts for heat, temperature and
other macroscopic quantities of many-particles systems - in the simplest case:
a noninteracting gas. We will treat here only equilibrium thermodynamics,
that is, all macroscopic quantities have reached the mean value and there are
no fluctuations. Van Leeuwen’s theorem states that no magnetic effect can
be generated by a classical system at thermal equilibrium. For this reason
we will start with a quantum mechanical description of the Hamiltonian,
considering the case of the previous section: electrons in a magnetic field.
The second law of thermodynamics states that thermodynamic equilibrium
is reached when entropy is maximal for constant internal energy U . It is easy
to see that this is equivalent to requiring a minimum of internal energy for
constant entropy. (If the internal energy were not minimal, we could extract
work and then re-inject it in the form of heat, thereby increasing the entropy).
In practice, it is usually the temperature which is kept constant. We must
re-express the second law in terms of the minimum of a new thermodynamic
function. This will be done explicitly below, by carrying out a Legendre
transformation. This function is the free energy:

F = U − TS

in the case of a canonical ensemble, and is the grand canonical potential in
the case of a varying number of particle N:

Ω = F − µN (23)

When the number of particles in the system is not fixed, is then useful to
specify the mean number of electrons by means of a chemical potential µ.

In differential form these definitions become

dF = HdM − SdT dΩ = dF −Ndµ

3.1 Classical statistics

In classical statistical mechanics we use Boltzmann distribution to determine
the probability of a given particle of the system at temperature kBT = 1/β
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Figure 8: A sketch of internal energy U and free energy F = U−µN versusN ,
the number of particles. It is evident that deriving F by the minus chemical
potential µ gives the statistical mean number of particles at equilibrium [N ]

to be at energy E is given just by p(E) = 1
Z
e−βE. Z is the normalizing factor,

called partition function, since
∑

α pα = 1 for the possible α energy states.
Z retains all the thermodynamical information of the system, which can be
calculated through partial derivation.

ZB(β) =
∑
α

g(Eα)e−βEα (24)

In our case,

Z =

∫
dpdqe−β

∑
iHi(p,q) =

∫
dpdqe−β

∑
i

1
2m

(~pi+
e
c
~A(~qi))

2

(25)

From now on | ~H| = H is the strength of the field, not to be confused
with the Hamiltonian operator, H. If the electrons were not subject to Pauli
principle, the Boltzmann statistics for thermal equilibrium would apply (we
denote it by ZB):

ZB(β,H) =
∑
k,n,ms

g(E)e−βEk,n,ms (26)

where the eigenvalues follow equation (10) and the degeneracy of each energy
level is given by eq. (14). Every part of the Hamiltonian commutes with the
others, since k is for the translational degrees of freedom, n for the interaction
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of the orbital magnetic moment and the field, and ms for the internal degree
of freedom represented by the spin-field interaction. The relative partition
function is thus separable - it is the product of its different parts:

ZB(β,H) = Ztr(k)ZLL(n)Zs(ms)

where Ek = p2z
2m

= ~2k2/2m. If the particle is confined in the x-direction
in a strip of size Lx = L, we can take the periodic boundary conditions so
that the wavefunction is the same at opposite boundaries:

Ek =
~2k2

2m
, k =

2π

L
n, n ∈ Z

in the limit of macroscopically large L, the plane wave states form a
continuum, so that we can approximate the sum for the partition function
by the Gaussian integral

Ztr =
∑
k

e−βEk ≈
∞∫

−∞

e−β
(2π~)2x2

2mL2 dx

We can then simplify the equation since the latter is the Gaussian integral:

Ztr =
L

Λ
, Λ =

√
2π~2

mkBT

where we have introduced the thermal length Λ.
The product of the three partition functions becomes:

ZB(β,H) =
∑
k,n,ms

g(E)e−βEk,n,ms

= gZtr
∑
n

e−β~ωc(n+ 1
2

)
∑
ms

eβµBmsH

=
A

2πl2
L

Λ
exp(
−β~ωc

2
)
∞∑
n=0

(
e−β~ωc

)n ∑
ms=−1,+1

eβµBmsH

(27)

=
V

Λ2πl2
cosh(βµBH)

sinh(β~ωc/2)
(28)
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3.2 Quantum statistics

Here we account for the effects of quantum mechanics on the distribution of
the particles (or, if you prefer, of the wavefunctions) of the system. There
is a double presence of QM, both in the Hamiltonian operator (and in the
redefinition of the underlying mathematics), and in the resulting statistics
for low temperatures. That is the regime in which the condition on the sym-
metry or antisymmetry of the wavefunction makes the Bose-Einstein or the
Fermi-Dirac distributions emerge, respectively for bosons or fermions. The
latter is called Pauli’s exclusion principle, for no more than two electrons can
occupy the same energy level.
In QM, particles are either fermions or bosons, depending on their behaviour
under inversion of parity of their wavefunction (for a more precise explana-
tion, see any basic QM textbook, as [12]). Bosons, which are characterized
by a totally symmetric wavefunction, behave in a “social-like” way, being
possible to push as many of them on any energy level. On the contrary, the
antysimmetrized wavefunctions of fermions imply that at most two of them
can occupy the same energy level, the factor 2 brought in by the possible
orientation of the spin. Thus fermions show up as an “incompressible” fluid,
since the exclusion principle produces a repulsion between particles.
We now analyze how this peculiar quantum effect determines radically dif-
ferent behaviour on the macroscopic level. The grand partition function is:

Q =
∏
α

[∑
n

(eβ(µ−Eα))n

]
(29)

The sum in brackets can be carried out explicitly: for fermions n = 0, 1,
thus it equals 1 + eβ(µ−Eα); for bosons, n = 0, 1, 2, . . ., therefore that sum is

a geometric series, whose summation gives
(
1− eβ(µ−Eα)

)−1
. In a compact

mode, we can rewrite the grand canonical partition function as:

Q =
∏
α

[
eβ(µ−Eα)

]−θ
where θ = +1 for bosons and θ = −1 for fermions. From now on we shall
disregard the boson case, as we deal with electrons, which are fermions. We
can define the mean occupation number, know as the Fermi function as

n(E) = f(E) =
1

1 + eβ(E−µ)
(30)
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One of the most relevant thermodynamical potentials for grand canonical
ensembles is the grand canonical potential, that for fermions is

Ω = −PV = −kBT logQ = −kBT
∑
α

log(1 + eβ(µ−Eα)) (31)

At T = 0 it is possible to approximate this summation by the Poisson sum-
mation formula, first used for this purpose by Landau(1938), or by the Euler
Maclaurin formula, which was used for the calculation of the steady diamag-
netism (also by Landau, 1930). The two methods differ essentially only in
that the Fourier analysis is put in at the start in the Poisson approach and at
the end in the Euler-Maclaurin one (for a complete derivation see Shoenberg
[1]), in Appendix 3 and sec 2.3.1.

3.3 Peierls’ method

In the next two sections we will use Peierls’ method to evaluate the grand
canonical potential Ω essentially via a Laplace inverse transform of the Boltz-
mann partition function ZB. This method provides a useful connection be-
tween a canonical and a grand canonical description of the ensemble, through
exact and simple calculations.
We should point out how a grand canonical description of the system (which
leaves not fixed the energy E, nor the number of particles N) is the most
suitable for quantum mechanics, not only because it allows to ease the sum
over the levels of energy (which becomes a convergent series), but also for it
embodies the Principle of indetermination: at any given moment, it is not
possible to know exactly how many electrons compose the system. Moreover,
from a more practical perspective, we shall observe that wires, and metallic
surfaces in general, provide an almost ideal reservoir of electrons.

We derive the grand canonical potential Ω from the canonical partition
function, instead that from the grand canonical partition function Q of eq.
(31).
Proposition

Ω =

∫ ∞
0

dEz(E)
∂f(E)

∂E
(32)

z(E) =

∫ c+i∞

c−i∞

ds

2πi
esE

ZB(s)

s2
(33)
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where s is the extension of β to the complex plane, c ∈ R, c ≥ 0 and

f(E) =
1

eβ(E−µ) + 1

is the Fermi occupation number of a state of energy E, defined in eq. (30).
A proof of the proposition is given in the Appendix (§A.2).

3.3.1 Peierls’ method for the electron gas in 3D

We apply Peierls’ method in the case of the 3D electron gas in no magnetic
field.

ZB = gs
∑
k,n,ms

e−β
~2k2
2m = 2

(
L

Λ

)3

= 2V

(
m

2π~2β

) 3
2

(34)

we now extend β → s to a complex variable; equation 33 becomes

z(E) = 2V
( m

2π~2

) 3
2
E5/2

∫ c/E+i∞

c/E−i∞

ds

2πi
ess−7/2

If we apply the residue theorem to the integral above, we see that the rel-
evant contribution comes only from the path on σ, Fig. (14), due to the
negative-real axis branch cut. We notice that

∫
σ
ds
2πi
ess−7/2 is just Hankel’s

representation of the Gamma function (see Appendix A.4).

z(E) =
2V

Γ(7/2)

( m

2π~2

) 3
2
E5/2 = α0E

5/2

we have introduced the constant α0, independent from the energy. The grand
canonical potential is

Ω0 = α0

∫ ∞
0

dEE5/2f ′(E)

For βµ� 1, f(E) is the “step function”, also known as the Heaviside func-
tion, with step at E = µ. Its derivative is Dirac delta function −δ(µ − E),
and the integration above is trivial:

f(E)T=0 =

{
1 E ≤ µ

0 E > µ

Ω0 = −α0

∫ ∞
0

dEE5/2δ(µ−E) = −α0µ
5/2 = − 16

15
√
π
V
( m

2π~2

)3/2

µ5/2 (35)
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Figure 9: The Fermi function at T = 0 and T greater than 0. From Huang,
[9].

3.3.2 Peierls’ method in 2D for H = 0

The Boltzmann canonical partition function, for an electronic gas in two
dimensions (2DEG) is:

ZB = gs
∑
k

e−β
~2k2
2m = 2

(
L

Λ

)2

=
Am

π~2β
(36)

Again, we evaluate the grand canonical potential through Peierls’ method,
according to equations (32), (33). We extend β to the complex plane and
dub it s:

z(E) =

∫ c+i∞

c−i∞

ds

2πi
esE

ZB(s)

s2
(37)

=
2A

m2π~2

∫ c+i∞

c−i∞

ds

2πi
esEs−3 (38)

=
2A

m2π~2
E2Res0(ezz−3) =

2A

m2π~2

E2

2
(39)

where we have applied the residues theorem, to the contour of Fig. (11);
we made the change sE → z and evaluated the residue of ezz−3 due to the
pole of order III in z = 0. The residue is equal to the a−1 coefficient of the
Laurent series f(z) =

∑+∞
−∞ anz

n.
It follows:

Ω2D
0 =

2A

2π~2
m

∫ ∞
0

dEE2f ′(E)
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For βµ � 1, f(E) is the “step function”, also known as Heaviside function,
with step at E = µ. Its derivative is the Dirac delta function −δ(µ − E),
and the integration above is trivial:

Ω2D
0 = − Am

4π~2
µ2 (40)
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4 3D system

We apply Peierls’ method to find the overall magnetization of the electronic
gas confined in a cubic box.
As Sondheimer and Wilson pointed out in their 1951 article: “The inverse
Laplace transform of ZB has a simple physical meaning: it is the number of
energy levels per unit energy interval” [4].
In the problem considered here, both in 3D and 2D (next section), ZB is a
complicated oscillatory function of the energy, whereas its Laplace inverse
transform is a simple monotonic function.

We consider ZB(s), where s is the extension of β to the complex plane.
The behaviour of the inverse Laplace transform of ZB(β) is determined by
its singularities. The branch cut on the negative-real axis gives the stead
diamagnetism, including its point variation with T and H, while the poles
at s = inπ produce the dHvA oscillations.
It is necessary to account for the electron spin interaction with the external
field H, which introduces a paramagnetic effect that adds to the total sus-
ceptibility.
If two terms of the Hamiltonian commute, the relative partition function is
separable: ZB = ZL · ZP , ZB divides into Landau’s and Pauli’s factors.

For independent electrons in a magnetic field, eq. (33) is:

z(E) = 2V

(
m∗

2π~2

) 3
2
(
~ωc
2

) 5
2

I(
2E

~ωc
) (41)

I(x) =

∫ c+i∞

c−i∞

ds

2πi
esx

cosh(sm∗/m)

s5/2 sinh s
(42)

A. Landau and Pauli susceptibilities. The integral along σ gives a
contribution which can be evaluated approximating the singular behaviour
of the integrand in the origin: s−5/2(sinh s−1) = s−7/2 − 1

6
s−3/2 + R(s). The
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Figure 10: The path (c - i∞, c + i∞) in the complex s-plane is completed
in the oriented contour C that avoids the cut Res < 0 and encloses simple
poles on the imaginary axis. While the two arcs do not contribute to the
integral, the integral on the path (−∞+ iε, −∞− iε) enclosing the cut does,
and is subtracted ( added with orientation reversed: this is path σ).

remainder R is just the different and is finite in s = 0.

Iσ(x) =

∫
σ

ds

2πi
esx

cosh(sm∗/m)

s5/2 sinh s
(43)

=
1

2
[(x+

m∗

m
)5/2 + (x− m∗

m
)5/2]

∫
σ

ds

2πi
ess−7/2

− 1

12
[(x+

m∗

m
)1/2 + (x− m∗

m
)1/2]

∫
σ

ds

2πi
ess−3/2

+

∫
σ

ds

2πi
esx cosh(s

m∗

m
)R(s) (44)

where the first two integrals are Hankel’s representation of the Gamma func-
tion (see Appendix A.4, eq. (79)). The integral thus reduces to:

Iσ(x) =
8x5/2

15
√
π

+
x1/2

√
π

[(
m∗

m
)2 − 1

3
] +O(x−1/2)

At T = 0 it is f ′(E) = −δ(µ− E) and the integration is trivial

ΩPL = −2V

(
m∗

2π~2

)3/2(~ωc
2

)5/2

Iσ(
2µ

~ωc
) (45)
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and for small magnetic field (µ � ~ωc) the large x expansion is used up to
O(H2),

= Ω0 −
2√
π
V µB

2H2µ1/2

(
m∗

2π~2

)3/2

[1− 1

3
(
m

m∗
)2] (46)

where Ω0 is the partition function of the Fermi gas in zero field and T = 0.
M = −∂Ω/∂H. The correction to µ for EF is quadratic in H, so we can
replace µ with EF in the expression for M . At fixed density, it yields the
magnetic susceptibility per unit volume:

χ =
1

V
(
∂M

∂H
)N,V

=
4√
π
µB

2
√
EF

(
m∗

2π~2

)3/2

[1− 1

3
(
m

m∗
)2]

= µB
2ρ(EF )[1− 1

3
(
m

m∗
)2] (47)

(48)

ρ(EF ) = 3
2
nEF

−1 is the density of states at the Fermi energy of the ideal gas
in 3D. We recognize a positive (Pauli) paramagnetic term χP and a diamag-
netic one χL (Landau), which is one third of the former for m∗ = m.

B. dHvA oscillations. The contour integral is evaluated exactly by sum-
mation of residues in s = ±inπ, n = 0 is excluded by the contour:

I(x) =

∫
C

ds

2πi
esx

cosh(sm∗/m)

s5/2 sinh s
(49)

=
∑
n6==

einx
cos(nπm∗/m)

(inπ)5/2
(50)

= −2
∞∑
n=1

(−1)n

(nπ)5/2
cos(nπx− π

4
) cos(nπm∗/m) (51)
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where the mathematical passages are analyzed in the similar calculus for the
dHvA oscillations in the 2D case. The relevant integral for Ωosc is

=

∫ ∞
0

dE cos(nπ
2E

~ωc
− π

4
)f ′(E)

= −β
4

∫ ∞
0

dE
cos(nπ 2E

~ωc −
π
4
)

cosh2(β(E − µ)/2)

= −1

2

∫ ∞
−βµ/2

dt
cos( 4nπ

β~ωc t+ 2nπ µ
~ωc −

π
4
)

cosh2 t

for small temperatures the lower limit is taken to −∞ and the integral is
known (GR 3.982 [17])

= −1

2
cos(2nπ

µ

~ωc
− π

4
)

∫ ∞
−∞

dt
cos( 4nπ

β~ωc t)

cosh2 t

= −2nπ2

β~ωc
cos(2nπ µ

~ωc −
π
4
)

sinh(2nπ2

β~ωc )
(52)

so that the contribution to the grand canonical potential produced by the
summation on the simple poles of the imaginary axis is

Ωosc =
V

2π2
kBT

(
eH

4~c

)3/2 ∞∑
n=1

(−1)n

(n)3/2
cos(

nπm∗

m
)
cos(2nπ µ

~ωc −
π
4
)

sinh(2nπ2

β~ωc )
(53)

The Fermi surface in 3D. We shall determine the magnetization and
magnetic susceptibility

Ω = F − µN

M = −
(
∂Ω

∂H

)
N

χ =
1

V

(
∂M

∂H

)
N,V

but we need to do it at constant N and V :

Ω(µ, T,H)→ Ω̃(N, T,H) (54)

so that, first we evaluate N :

N = −
(
∂Ω

∂µ

)
T,V

and then we express the chemical potential µ as a function of N . Moreover:
we make the identity µ ≡ EF that is true for T = 0, for EF is a meaningful
constant.
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5 2D system

We now consider a 2D system electron gas (2DEG). As for Hisihara [20], a
given system is two dimensional if the characteristic length

√
Dτi is larger

than its thickness, where D is the diffusion constant and τi is the inelastic
scattering time. In real applications, we can realize two-dimensional electron
systems at interfaces between semiconductors [18].

Today, very clean AlGaAs-GaAs heterostructures constitute an almost
perfect realization of a 2DEG [22]. Measuring the weak magnetization of
dHvA oscillations represents a challenging experimental task. It is usually
measured by torque magnometers (magnetic torque |~τ | = | ~M× ~H|) as you can
see from the experimental plot of Fig. (2). Other devices include torsional
magnetometers with optical angular detection, micromechanical cantilever
magnometers, dc superconducting quantum interference device magnetome-
ters [7].
We assume that the free electrons are bound to move in a plane, transverse
to the direction of the magnetic field ~H. As before, we assume that the field
is uniform in space, and choose it in the z-direction; the electrons are in a
x-y plane.
In a classical and semi-classical picture, in a 3D system, electrons in a mag-
netic field move in spirals, aligned on the field direction. In a 2D system
their orbits just draw circumferences.
The energy E of the 3D system is continuous - the LL are discrete, but there
is no quantization in the z-component of momentum, which remains unaf-
fected by the field; in a 2D system though, the energy is completely discrete.
Fujita et al. (2002) claim that a 2D system is intrinsically paramagnetic,
since from their calculations Landau’s diamagnetic term is absent; neverthe-
less they claim that the system exhibits dHvA oscillations [21]. We shall
make the analytic calculations and partially overthrow this conclusion, since
paramagnetism, diamagnetism, and dHvA oscillations all appear.
The Hamiltonian of an electron in a 2DEG sample is

H = ~ωc(n̂+
1

2
)− µB~σ · ~H (55)

where from the 3D system eq. (10) the kz term is dropped. The eigenvalues
are

En,ms = ~ωc(n+
1

2
)− µBmsH (56)
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As before, we use Peierls’ method to derive the grand canonical potential Ω
from Boltzmann partition function Z. Then we evaluate the susceptibility χ
through the thermodynamical relations:

M = − ∂Ω

∂H
, χ =

1

V

∂M

∂H
= − 1

V

∂2Ω

∂H2

From the 3D Boltzmann partition function, the term Ztr = L/Λ is
dropped, because motion in the z direction is suppressed; the partition func-
tion is then:

ZB =
∑
n,ms

g(E)e−βEn,ms =
A

2πl2
cosh(βµBH)

sinh(β~ωc/2)
(57)

In order to get Ω from eq. (32), we need z(E) from eq. (33); thus we calculate

z(E) =

∫ c+i∞

c−i∞

ds

2πi
esE

ZB(s)

s2
=

A

2π~2

~ωc
2
I(x)

where we have extended β → s′ to the complex plane, and then s′ → s2/~ωc.
We have introduced

I(x) =

∫ c+i∞

c−i∞

ds

2πi
esx

cosh(sm∗/m)

s2 sinh s
(58)

In the last passage we have used the condition on the effective mass (eq.
11), setting x = 2E/~ωc.

5.1 Calculating the integral

We use the residue theorem to calculate the integral above, closing the path
of integration as shown in Fig. (11).

In this case, γ = C(α) + D(α) where the path of integration in eq. (58)
can be seen as C = (c− i∞, c+ i∞) = limα→∞[c− iα, c+ iα] where D is the
semicircle of radius |α| centered in c, towards the negative-real axis.

Hence if we call f(s) the integrand in eq. (58), we see that it has infinite
simple poles in s = ±inπ due to the singular behaviour of sinh s−1 there, and
a pole of order III in s = 0 as lims→0f(s) ≈ s−3.
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Figure 11: Integration in the 2D case. The singularities are one pole of order
III in the origin and infinite simple poles on the imaginary axis at ±nπi,
with n any integer number. Note the difference from the 3D case: there is
no branch cut on the negative-real axis, thus no need for the path σ.

For <(s) ≤ c the integrand is bounded and tends to zero on D because
of the s−2esE factor. We can thus evaluate the integral in eq. (58):∑

n

Reszn(f) =

∫
γ

f(s) = lim
α→∞

[∫
C(α)

f(s) +

∫
D(α)

f(s)

]
=

∫
C

f(s) = 2πi
∑
n∈Z

Resnπif

I(x) = I0 + Iosc
First we evaluate the residue in the origin, then those on the imaginary axis.

1. The residue in s = 0 The residue in s = 0 is equal to the a−1 term
of the Laurent series of f , that is

∑∞
−∞ ans

n. We can Taylor expand all
the simple functions, which are all well-known series, and then multiply the
terms. The Laurent series of 1

sinh(s)
is (1

s
− s

6
+ 7

360
s3). An approximation to

II order for all the series is sufficient to give all the terms in s−1:

I0 = Ress=0[esx
cosh(sm

∗

m
)

s2 sinh s
] = a−1
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f(s) = (1 + sx+
(sx)2

2!
+ . . .)(1 +

1

2!

(
s
m∗

m

)2

+ . . .)
1

s2
(
1

s
− s

6
+ . . .)

We solve the products between parenthesis, and pick up just the terms in
s−1,

Ress=0 = a−1 =
1

2

(
x2 − 1

3
+

(
m∗

m

)2
)

We will see that this three terms produce respectively the grand canonical
potential in no field Ω0, the diamagnetic contribution, and the paramagnetic
one, which we both put in ΩPL.

2. Residues in s = nπi. We calculate the residues of the infinite sim-
ple poles in s = nπi, where the function diverges due to the denominator:
sinh(ix) = sinx and sinx = 0 for every x = nπ. This produces a series of
real trms. Since the residue of sinh−1 s is 1 for s = inπ, we get the series

I(x) = Res
∑
n6=0

einπx
cosh(inπm

∗

m
)

(inπ)2 sinh(inπ)

= (−1)
∑
n6=0

einπx
cos(nπm

∗

m
)

(nπ)2
Res(

1

sin(nπ))

= −2
∞∑
n=1

cos(nπx)

(πn)2
cos(nπ

m∗

m
) (59)

where we have converted the series on any integer n in a series only on the
positive integers, noticing that:

∑
n6=0

einπx =

{
cos(lπx) + i sin(lπx) n > 0

cos(lπx)− i sin(lπx) n < 0
= 2

∞∑
n=1

cos(nπx)

where lN and we see that the imaginary part i sin cancels out for every n.
If we consider the series in eq. (59), we see that, for Weierstrass criterion,
it converges totally, and thus uniformly, since |f(nx)| → 0 faster than 1/n.
This contribution to the potential Ω is responsible for the dHvA oscillations.
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5.2 The grand canonical potential

Ω = Ω0 + ΩPL + Ωosc

Pauli and Landau terms. We calculate Ω0 + ΩPL.

z(E) =
A

8πl2
~ωc

(
x2 + (

m∗

m
)2 − 1

3

)
we rewrite x, ωc, A, to make it explicit the dependence on E, H:

z(E) =
Am∗

2π~2
E2 +

Am∗

2π~2
µB

2

(
1− 1

3

( m
m∗

)2
)
H2

We see that, besides the oscillating term, the grand canonical potential sums
up to

Ω− Ωosc =

∫ ∞
0

dEz(E)f ′(E) =
Am∗

2π~2
µ2︸ ︷︷ ︸

Ω0

+
Am∗

2π~2
µB

2

(
1− 1

3

( m
m∗

)2
)
H2︸ ︷︷ ︸

ΩPL

(60)
where as in the 3D case, we have used the fact that for βµ � 1 f ′(E) =
−δ(E − µ). Since M = −n∂Ω/∂H, where in 2D we define the particle den-
sity n = N/A, it is evident that the first term, which corresponds to the
grand canonical potential of an inert gas, gives no contribution to the mag-
netization, as it is independent from H. For m∗ = m the Landau diamagnetic
susceptibility is exactly −1/3 of Pauli’s paramagnetic term.

The dHvA term. Here we evaluate Ωosc. The exact derivative of the
Fermi function is

f ′(E) = −β
4

1

cosh2(β(E − µ)/2)
(61)

so that

Ωosc =

∫ ∞
0

dEz(E)f ′(E) (62)

=
A

8πl2
~ωcβ

∞∑
n=1

cos(nπm∗
m

)

(nπ)2

∫ ∞
0

cos(nπ 2E
~ωc )

cosh2(β(E − µ)/2)︸ ︷︷ ︸
⊗

(63)
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We consider now just ⊗, that is the relevant integral in E; if we introduce
the auxiliary variable t = β

2
(E − µ) so that dE = 2

β
dt, the integral becomes

⊗ =

∫ ∞
−µβ/2

dt
cos(nπ 4t

β~ωc + nπ2µ~ωc)
cosh2 t

(64)

= cos(nπ
2µ

~ωc
)

∫ ∞
−∞

dt
cos( 4nπ

β~ωc t)

cosh2 t
(65)

The lower bound of the integral is taken to −∞ in the condition µβ � 1,
and from the table of integrals (integral 3.982.1 GR [17])

⊗ =
4nπ2

β~ωc
cos(nπ

2µ

~ωc
)

1

sinh(2nπ2

β~ωc )
(66)

The contribution of the simple poles on the imaginary axis reflects on the
oscillating part of the grand canonical potential

Ωosc =
A

πβl2

∞∑
n=1

1

n

cos(nπm∗
m

) cos(2nπ µ
~ωc )

sinh(2nπ2

β~ωc )
(67)

we can see the oscillatory dependence (given by the cosine) on 1/ωc ≈ 1/H.

Another magnetic oscillatory effect is the Shubnikov-de Haas effect. It is
an oscillation of magnetoresistance ρij, detectable at low temperatures and
in strong magnetic fields (T ≈ 1 K, H ≈ 20 T). As the dHvA effect, it arises
from the quantization of the energy levels, and thus is another macroscopic
effect of the intrinsic quantum nature of matter.

The interaction among electrons or the presence of impurities decreases
the amplitude of dHvA oscillation, with a reduction factor known as the Din-
gle factor. In fact, if the electron scattering is taken into account, the Landau
levels are broadened and this leads to a reduction in amplitude very nearly
the same as would be caused by a rise of temperature from the real tempera-
ture T to T + x. The shift x is called the Dingle temperature and the Dingle
factor is the amplitude reduction of oscillations given by exp(−2π2kx/βH)
[1].
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5.3 The Quantum Hall effect

1 - The integer quantum Hall effect. A spectacular effect of the quan-
tization of the energy levels (LL) is the quantum Hall effect (QHE). The Hall
voltage is quantized for a 2D system. In fact, we can view the dHvA effect
as an outcome of the Quantum Hall effect; in turn, some consider the QHE
a direct expression of gauge invariance in quantum systems. When a current
~J passes through a conducting band in the presence of magnetic induction
~B, a voltage VH is produced in the direction normal to the current.

Figure 12: The Hall resistance varies stepwise with changes in magnetic field
B. Step height is given by the physical constant 2π~/e2 ( value approximately
25 kilo-ohm ) divided by an integer i. The figure shows steps for i =2,3,4,5,6,8
and 10. The lower peaked curve represents the longitudinal resistance, which
disappears at each step; Yoshioka, [18]

.

2 - The fractional quantum Hall effect is a more complex phenomenon,
which arises at lower temperatures and in stronger fields. It was explained
with the introduction of quasiparticles by theoretical physicist Laughlin (for
that, in 1998 he was awarded the Nobel prize). Quasiparticles are bound
states of electrons and flux quanta of the field [19]. This field of research
is very active and rapidly evolving and the theory it is concerned with goes
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beyond the reaches of this short work - as it deals with the quantum theory
of fields.

Figure 13: torque vs magnetic field. Gasparov, 2008 [8].
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6 Conclusions

We have shown how to compute analytically the dHvA effect for noninter-
acting electrons in a magnetic field; the dHvA effect a subtle oscillatory
behaviour of magnetization, not negligible in the regime µBH � kBT , which
is of great interest in the study of superconducting properties of metals, since
it is a reliable and precise tool to mapping the Fermi surface, which deter-
mines most of their electronic properties. We have explained the appearance
of the Landau Levels, and given a basic quantum mechanical and statistical
overview. We took inspiration from the paper of Sondheimer and Wilson
[4] and show that also in 2D, magnetization is the sum of free concurrent
terms: paramagnetism, diamagnetism and dHvA oscillations. We confuted
the claim of Fujita et al., 2002 [21], of the absence of diamagnetism in the
2DEG. We regard as an interesting feature the the fact that this is an exact
derivation, through the means of Complex Analysis, of a calculation that
is usually conducted through approximation methods (Euler-Maclaurin for-
mula) [1, 21], or numerical implementation [7, 24]. We need to stress that
this calculation is exact for the limiting case of noninteracting free electrons
only, hence is open to wide approximation techniques as the knowledge of
the crystal potential in metals is enhanced.

A comparison between the 3D and 2D cases shows that, introducing the
identity µ = EF for the Fermi gas at T = 0, the relevant physical quantities,
Ω, M , χ are all expressed in terms of the density of states of the relative
Fermi energy and D-dimensional volume. We use the relations for EF and
ρ(EF ) in no magnetic field: In 3D:

EF =
~2

2m∗
(
3π2n

) 2
3 ρ(EF ) =

3

2

N

V
EF
−1 =

3n

2EF
(68)

In 2D:

EF =
N~2

Am∗
ρ(EF ) =

m∗A

π~2
=

2n

EF
(69)

We can rewrite the magnetization and the susceptibility and see how they in
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fact express the same physical relations in 3D and 2D:

MPL(3D) =
4√
π
V µ2

B

√
EF

(
m∗

2π~2

)3/2

[1− 1

3
(
m

m∗
)2]H

= V µ2
Bρ(EF )[1− 1

3
(
m

m∗
)2]H (70)

MPL(2D) =
2N

EF
µ2
B[1− 1

3
(
m

m∗
)2]H

= Aρ(EF )µ2
B[1− 1

3
(
m

m∗
)2]H (71)

χPL(3D) = µ2
Bρ(EF )[1− 1

3
(
m

m∗
)2] (72)

χPL(2D) = µ2
B

2n

EF
[1− 1

3
(
m

m∗
)2]

= µ2
Bρ(EF )[1− 1

3
(
m

m∗
)2] (73)

We recall that the different term of the grand canonical potential Ω are:

Ω = Ω0 + ΩPL + Ωosc

We report just the oscillatory part of Ω, responsible for the dHvA effect,
both in the 3D and the 2D case:

Ωosc(3D) =
V

2π2β
(
eH

4~c
)3/2

∞∑
n=1

(−1)n

(n)3/2

cos(nπm
∗

m
) cos(2nπ µ

~ωc −
π
4
)

sinh(2nπ2

β~ωc )
(74)

Ωosc(2D) =
A

πβ

eH

~c

∞∑
n=1

1

n

cos(nπm∗
m

) cos(2nπ µ
~ωc )

sinh(2nπ2

β~ωc )
(75)

We can recognize in both cases a dependence on the temperature and the
magnetic field (from β and ωc). The amplitude of the oscillations is modu-
lated by cos(nπm ∗ /m). In both cases sinh−1 nx assures on the convergence
of the series. We notice that, as reasonable, the series is multiplied by factors
that have a difference in the exponents (3/2 in 3D, 1 = 2/2 in 2D), as the
relevant D-dimensional volumes are V and A.
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A Appendix

A.1 The Laplace transform

We define the Laplace transform of the function f

L[f ] =

∫ ∞
0

e−sxf(x)dx

provided that the infinite integral exists; s is a complex number. We notice
that if f(x) = 0 for x ≤ 0 the following relation holds

L[f ](s) = F [f ](is)

where F [f ] is the Fourier transform, F [f ] =
∫∞
−∞ f(x)eiωxdx. In analogy with

Fourier inversion theorem, it is possible to invert the Laplace transform,

f(x) =
1

2πi
lim
L→∞

∫ s+iL

s−iL
F (σ)eσxdσ

where s ≥ s1 so that F (σ) is analytic for Reσ ≥ s1, and the path is vertical.
This formula is known as the Mellin inversion theorem. The function f(x) is
called the inverse Laplace transform of F (s).

A.2 Peierls’ method

A general proof of Peierls’ method is given. We define

ZB(β) =
∑
a

gae
−βEa Ω = − 1

β

∑
a

ga log(1 + e−β(Ea−µ))

Proposition

Ω =

∫ ∞
0

dEz(E)φ′′(E) (76)

where

z(E) =

∫ c+i∞

c−i∞

ds

2πi
esE

ZB(s)

s2
,

s is the extension of β to the complex plane; c ≥ 0 and

φ(E) = − 1

β
log(1 + e−β(E−µ))
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is such that φ′(E) = f(E), where the latter is the Fermi function of eq.30.
Proof. We notice that the Laplace transform φ̃(s) is well defined for

Re(s) ≥ −β and so is

φ(E) =

∫ c+i∞

c−i∞

ds

2πi
esEφ̃(s)

Then we can evaluate Ω:

Ω =
∑
a

gaφ(Ea) =

∫ c+i∞

c−i∞

ds

2πi
esEφ̃(s)

∑
a

gae
sEa

=

∫ c+i∞

c−i∞

ds

2πi
φ̃(s)ZB(−s)

=

∫ c+i∞

c−i∞

ds

2πi
[φ̃(s)s2]

ZB(−s)
s2

=

∫ ∞
0

dEφ′′(E)z(E)

To obtain the last line, the following relation for the resultant of the
Laplace transform is used:∫

ds

2πi
f̃(s)g̃(−s)esx =

∫ ∞
0

dyf(y)

∫
ds

2πi
g̃es(x−y) =

∫ ∞
max(x,0)

dyf(y)g(y − x)

A.3 The residue theorem

Consider a closed path γ, and a function f of complex variable z, that is
holomorphic in the region enclosed by γ except for a collection, at most
numerable, of isolated points (the singularities); the following applies:∫

γ

dzf(z) = 2πi
∑
n

Reszn(f)

where zn are all the singularities of f inside the contour γ. The residue of f
is equal to the a−1 term of its Laurent series, defined as

f(z) =
∞∑
−∞

anz
n

Note that if f is completely holomorphic in the region considered, the Laurent
series reduces to the Taylor series.
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Figure 14: The path σ around the cut

A.4 Hankel’s representation of the Γ function

The Gamma function is an extension to real and complex numbers of the
factorial function f(n) = n! = n · (n − 1) · (n − 2) · · · 2 · 1, which is defined
on positive integers; there are many representations of it. Euler, who first
thought of it, devised the following integral representation

Γ(z) =

∫ ∞
0

dte−ttz−1 (77)

defined for Re(z) > 0; integrating by parts one obtains

Γ(z + 1) = zΓ(z) (78)

Its restriction to the positive integers is Γ(n) = (n−1)!. For z = 1
2

the change
t = x2 makes eq. 77 equal to the Gaussian integral, so that Γ(1

2
=
√
π. If we

apply the functional relation eq.78 we can derive the relation

Γ(n+
1

2
) =

(2n− 1)!!

2n
√
π (79)

Hankel’s integral representation of the Gamma function is

1

Γ(z)
=

∫
σ

ds

2πi
ess−z (80)

where σ is the path shown around the branch cut in figure 14.
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