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FACOLTÀ DI SCIENZE E TECNOLOGIE
Corso di Laurea in Fisica

Tesi di Laurea Triennale

Coulombic interactions in the fractional
quantum Hall effect: from three particles

to the many-body approach

Candidato:

Daniele Oriani
Matricola 828482

Relatore:

Prof. Luca Guido Molinari

Anno Accademico 2016–2017



This page intentionally left blank.



Contents

Abstract 5

1 Uncorrelated electrons in uniform magnetic field 7
1.1 Overview of Hall effects . . . . . . . . . . . . . . . . . . . . . 7
1.2 Landau levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Energy spectrum . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Degeneracy . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Bargmann space . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 Eigenfunctions . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Integer Quantum Hall Effect . . . . . . . . . . . . . . . . . . 16

2 Fractional quantum Hall effect 19
2.1 Conceptual framework . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Exact solution for the three particle problem . . . . . . . . . 21

2.2.1 Two interacting particles . . . . . . . . . . . . . . . . 21
2.2.2 Three interacting particles . . . . . . . . . . . . . . . . 23

2.3 Many-body framework . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 The hamiltonian . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Laughlin’s ansatz . . . . . . . . . . . . . . . . . . . . . 31

3 Coulomb interaction in the disk geometry 35
3.1 System geometry . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Analytic Coulomb interaction matrix elements . . . . . . . . 37
3.3 Exact diagonalization for finite cluster . . . . . . . . . . . . . 41

3.3.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.2 Numerical study . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Conclusions 53

A Three particles matrix elements 55

References 59

3



This page intentionally left blank.



Abstract

Since its discovery in 1982 by Tsui, Stormer and Gossard [1] the fractional
quantum Hall effect has piqued the interest of physicists, notably because
of the extreme correlation properties emerging in the system.

In the wake of the discovery of the plateau at filling factor 1/3, R.B.
Laughlin published some pioneering works in an effort to provide the phe-
nomenon with a theoretical explanation: he started by studying the prob-
lem of three interacting electrons with first-quantized formalism [2] and then
moved on to proposing an extremely successful ansatz for the ground state
[3] by guessing it from general assumptions.

Nonetheless, the reason why Laughlin’s wavefunction approximates the
true ground state so well is still unknown. Current efforts aim to answer
this question, for example by studying the expansion of the ansatz in Slater
determinants [4][5], as well as to provide alternative, more general theories
(such as Composite Fermion theory [6]) that are able to describe all of the
observed plateaux in a unified fashion.

In this thesis we solve the three particle problem exactly, which gives
us physical insight in our review of the many-body problem. In the third
chapter we study the effect in the disk geometry, by performing the exact
diagonalization of the hamiltonian. Finally we compare our exact ground
states for small clusters of electrons with Laughlin’s ansatz, obtained from
its expansion in Slater determinants.
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Chapter 1

Uncorrelated electrons in
uniform magnetic field

1.1 Overview of Hall effects

Consider a conducting material in which there are an electric field E and a
magnetic field B, both static in time and homogeneus in space. Let their
directions be orthogonal and fix a reference frame so that E = E x̂ and
B = B ẑ. Then the electrons in the material will flow in the ŷ direction,
giving rise to a current. This is the Hall effect, first accounted in 1879 [7].

In the aforementioned conditions a point charge q of mass m obeys the
classical equation of motion

mẍ = q

(
E +

ẋ

c
×B

)
(1.1.1)

If we suppose the current to be stationary this quantity is zero. Moreover,
if J = qρ0ẋ is the current density and ρ0 is the density of the point charges
in the material, Ohm’s law reads

E = ρ̂ J = qρ0ρ̂ ẋ, (1.1.2)

where ρ̂ is the resistivity tensor. Substituting in the equation of motion
(1.1.1) gives

ρij = −sgn(q)εij3 ρH ρH :=
B

|q|cρ0
(1.1.3)

The quantity ρH is called Hall resistivity. In this setup the diagonal resis-
tivity ρii is vanishing and the charges, which from now we will consider to
be electrons of charge q = −e, have a velocity perpendicular to both fields.
In passing, we observe that in the case of a two dimensional conductor resis-
tance and resistivity are exactly the same quantity and thus we can speak
equivalently of Hall resistance or Hall resistivity: RH ≡ ρH .
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1. UNCORRELATED ELECTRONS IN UNIFORM MAGNETIC FIELD

This result for the Hall resistance is in complete agreement with that of
Drude’s model for transport phenomena in conductors. However, they both
hold only in the case of weak magnetic fields. As B is increased quantum
mechanical effects begin to be apparent.

Figure 1.1: Diagonal and Hall resistance as a function of B in the IQHE (left) and in
the FQHE (right). Note how the diagonal resistivity tends to vanish at the beginning of
every plateau. The minima in the diagonal resistance constitute a much easier mean to
detect fractions. Sources: [8][9]

The first account of these effects was given by Von Klitzing’s study [10] in
1980 of the Hall effect in a MOSFET (metal-oxide-semiconductor field-effect
transistor). His experimental setup operated at a temperature T = 1.5K and
used a fixed magnetic field of B = 18T, corresponding to a magnetic length
` ∼ 104µm. The results indicated a quantization of the Hall resistance as a
function of the density of electrons:

RH =
h

ne2
(1.1.4)

where n is an integer. Other experiments with Si MOS systems [11] and
GaAs-AlGaAs heterojunctions [8] put in light how this phenomenon is uni-
versal, in the sense that it presents itself in the exact same way in all known
experimental setups: in particular the quantity h/e2 appears to be a uni-
versal constant. This is the Integral Quantum Hall Effect (IQHE).
The physics of the IQHE can be accounted for by an independent electrons
theory. The key elements in the explanation lie in the presence of disorder
in the sample and in the energy quantization of the electrons.

As the experimental techniques were perfectioned some unexpected plateaux
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1.2. LANDAU LEVELS

in the Hall resistance were observed at fractional multiples of h/e2:

RH =
h

fe2
(1.1.5)

with f = 1/3 was observed for the first time in 1982 by Tsui, Stormer and
Gossard [1] in GaAs heterostructures and started the study of the fractional
effect (FQHE). Their discovery was made possible by the very low working
temperature they reached (50 mK), two orders of magnitude smaller than
that employed by Von Klitzing. In their setup they had a particle density
of about 4.0 · 1015m−2 and a magnetic field of less than 8T, corresponding
to a magnetic length ` ∼ 157µm.

In the absence of magnetic field, an electron gas in its ground state is
observed to form a Wigner crystal which minimizes the electrostatic repul-
sion. Note that in QHE experiments, the magnetic length, which quantifies
the spacial extension of the electronic wavefunctions, is much larger than
the typical Wigner lattice constant, which in 2D is ∼ 1.6nm [12]. This is a
symptom that in the context of the quantum Hall problem, the host lattice
does not play a relevant role, as the wavefunctions extend over so many
lattice sites.

After the discovery of the first fractional plateau (which granted Laugh-
lin, Tsui and Stormer a shared Nobel prize in 1998), plateaux at more than
other 50 fractions were observed such as those in references [13][14].
Experimentally, crucial elements that made these discoveries possible were
the possibility to reach lower temperatures, stronger magnetic fields and
availability of much purer samples.
Unlike the integer effect, the FQHE cannot be explained neglecting the inter-
actions between electrons: here the coulombic repulsion plays a fundamental
role. A successful theory for the fractional effect explains it as the integer
effect for topological particles called composite fermions (CF) [6].

1.2 Landau levels

The theoretical explanations for the integral and fractional effects are quite
different but both involve a quantum mechanical treatment of the motion
of electrons in a magnetic field.

1.2.1 Energy spectrum

We start off by studying the single electron in a magnetic field. The single
particle hamiltonian is

H =
1

2me

(
p+

e

c
A

)2

(1.2.1)
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1. UNCORRELATED ELECTRONS IN UNIFORM MAGNETIC FIELD

where A = A(x) is the vector potential. Let us define a dynamical momen-
tum

π := p+
e

c
A (1.2.2)

and rewrite the hamiltonian as

H =
1

2me
π2 (1.2.3)

We observe that the components of π do not commute with each other.
Instead, using the coordinate representation promptly shows that

[π1, π2] = −i~eB
c
1 = −i~

2

`2
1 (1.2.4)

From now we will be using units where the magnetic length
√

~c/eB =: ` ≡
1. Since the commutator (1.2.4) is proportional to the identity, the hamilto-
nian of our problem is unitarily equivalent to that of an harmonic oscillator.
Hence we expect an energy spectrum of the form εn ∝

(
n+ 1/2

)
, n =

0, 1, 2, . . . Thus we define a pair of ladder operators

a :=
π1 − iπ2
~
√

2
a† :=

π1 + iπ2

~
√

2
(1.2.5)

so that their commutator is [a, a†] = 1. This way the hamiltonian (1.2.3)
can be rewritten as a function of the number operator a†a and we find the
energy spectrum in the expected form:

εn = ~ωc
(
n+

1

2

)
(1.2.6)

where the cyclotron frequency is defined by ωc := eB/me. These energy
levels are named Landau levels after L.D. Landau who solved the problem
[15] when quantum mechanics was a very recent invention.
In passing, note that the energy separation between adjacent Landau levels
~ωc increases linearly with the magnetic field strength.

1.2.2 Degeneracy

In the classical analogue of this problem, solving the equation of motion
gives the solution (

x(t)

y(t)

)
=

(
X0

Y0

)
+ r

(
cos (ωct)

sin (ωct)

)
(1.2.7)

i.e. a circular uniform orbit of radius r > 0 around the center (X0, Y0). Using
the expressions for the velocities shows that(

X0

Y0

)
=

(
x+ ẏ/ωc
y − ẋ/ωc

)
(1.2.8)
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1.2. LANDAU LEVELS

These classical results will help us in determining the degeneracy of the
Landau levels in the quantum mechanical context. Following [16] we define
by analogy the following quantum mechanical orbit center operators

X0 := x+
1

ωc

dy

dt
= x− π2

meωc
Y0 := y − 1

ωc

dx

dt
= y +

π1
meωc

(1.2.9)

as well as a corresponding quantum orbit radius operator R2
0 = X2

0 + Y 2
0 .

The time derivatives are computed using Heisenberg’s equation. Direct cal-
culation shows that [H, X0] = [H, Y0] = 0, while [X0, Y0] = i~/meωc, which
implies that the Landau levels are certainly degenerate.

We will now show that this degeneracy is due to angular momentum. To
do this, let us fix the symmetric gauge for the vector potential, so that

A(x) =
1

2
B × x =

B

2
(−y, x) (1.2.10)

Then the angular momentum in this 2-D problem is given by

L ≡ L3 = xpy − ypx =
eB

2c

(
r2c −R2

0

)
(1.2.11)

where r2c := (x−X0)
2 + (y−Y0)2. Now, the angular momentum is indeed a

constant of motion, since [H, L] = 0. But the physical meaning of L in the
presence of an external magnetic field can be very unusual: in this context
it quantifies the radial position of the orbit center.
Let us write the angular momentum spectrum as L = −~m, m ∈ Z. Next,
the hamiltonian (1.2.3) can be written in terms of rc as H = 1/2meω

2
cr

2
c , so

the spectrum of the r2c operator is found to be:

r2c =
2~
meωc

(
n+

1

2

)
(1.2.12)

Now, the operator R2
0 = X2

0 +Y 2
0 is again unitarily equivalent to an harmonic

oscillator hamiltonian. From this observation it follows that its spectrum is
R2

0 = 2(m′ + 1/2), with m′ = 0, 1, 2, . . . Substituting back in (1.2.11) the
spectra of operators L, r2c , R

2
0 gives the relation:

m = m′ − n (1.2.13)

Thus, for a fixed energy, L is unbounded in one direction and bounded in the
other. A real physical system usually has a finite size. Since the orbit center
must lie inside the system, this puts an upper bound on R2

0, which in turn
implies that there must be a maximum admitted value for m′. Thus in real
systems L is bounded in both directions and m = −n,−n+1, . . . ,−n+m′max.

We are now ready to quantify the degeneracy of the Landau levels. Con-
sider a disk shaped system of surface S. In units of `, the R2

0-quantum is

11



1. UNCORRELATED ELECTRONS IN UNIFORM MAGNETIC FIELD

simply 2, to which is naturally associated a surface quantum 2π. Hence
S/2π is the degeneracy of each Landau level and G := 1/2π is the corre-
sponding degeneracy per unit area. If ρ0 is the number density of electrons
on the surface, we define the filling factor

ν :=
ρ0
G

= 2πρ0 (1.2.14)

which represents the number of filled Landau levels.

Let us now define a couple of ladder operators for R2
0 (or equivalently

for the angular momentum):

b :=
X0 + iY0√

2
b† :=

X0 − iY0√
2

(1.2.15)

which verify [b, b†] = 1. From direct calculation we find that the ladder
operators for R2

0 commute with those for the energy levels.
Diagonalizing together the complete set of commuting operators {H, L} we
can express a basis for the state space as

|n,m〉 =
(b†)m+n√
(m+ n)!

(a†)n√
n!
|0, 0〉 (1.2.16)

Our next objective is finding the eigenfunctions for the single electron
problem. To do so we will work in particular holomorphic function spaces
that will make our calculations swifter.

1.2.3 Bargmann space

The commutation relations between position and momentum operators are
central to quantum mechanics. Defining a family of ladder operators {ai}
on a Hilbert space permits to find the equivalent relations [ai, a

†
j ] = δij1

known as canonical commutation relations (CCR).
Consider the space H(Cd) of holomorphic functions F : Cd → C and define
the operators of multiplication and derivation. Then their commutator is
computed to be [

∂

∂zi
, zj

]
= δij1 (1.2.17)

i.e. they match the CCR. Unlike ladder operators, multiplication and deriva-
tion operators are not adjoints of one another in a function space with the
usual inner product. Nonetheless it is possible to define an inner product so
that ( ∂

∂zj
)† = zj ; indeed Bargmann in [17] found a Hilbert space in which

these operators would be adjoints of one another.
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1.2. LANDAU LEVELS

Definition 1.2.1 (Bargmann space). Let HL2(Cd, µ) be the space of holo-
morphic functions

HL2(Cd, µ) :=

F ∈ H(Cd) :

∫
Cd

dµ |F (z1, . . . , zd)|2 <∞

 (1.2.18)

where

dµ := (π
√

2)−d exp

−1

2

d∑
i=1

|zi|2
ddz (1.2.19)

and ddz is simply the Lebesgue measure on Cd = R2d. Then HL2(Cd, µ) is
called Bargmann space.

Since it is a closed subspace of the Hilbert space L2(Cd, µ) the Bargmann
space is also an Hilbert space. An orthonormal basis for this space is given
by the following set of functions

d∏
j=1

znj√
2nj+1/2 nj !

:
(
nj
)
⊂ Nd

 (1.2.20)

By construction, in Bargmann space derivation and multiplication operators
are adjoints of one another and verify the CCR. Note that, since the inner
product in this space is not the standard one, operators that have specific
properties (e.g. are unitary, hermitian, etc.) in this space may not have
them in function spaces with the standard inner product (and viceversa).

Following Hall [18] we now recall a theorem of central importance for
quantum mechanics, because it helps to justify the choice of L2 as a Hilbert
space and the coordinate representation for the position and momentum
operators.

Theorem 1.2.1 (Stone-von Neumann). Let A1, . . . , Ad and B1, . . . , Bd be
self-adjoint and possibly unbounded operators on a Hilbert space H. Suppose
the following conditions hold:

1. (CCR) For j, k = 1, . . . , d and for r, s ∈ R we have[
eirAj , eisAk

]
= 0[

eirBj , eisBk
]

= 0

eirAjeisBk = e−irsδjkeisBkeirAj

2. (Irreducibility) If V ⊂ H is a closed subspace of H invariant under
eirAj and eisBk for all j, k and all r, s, then either V = {0} or V = H.

13



1. UNCORRELATED ELECTRONS IN UNIFORM MAGNETIC FIELD

Then there is a unitary map U : H → L2(Rd, dx) such that UeirAjU † = eirQj

and UeisBkU † = eisPk are the canonical position and momentum operators
exponentiated.

We have formulated the theorem using operators in their exponenti-
ated form: this makes them bounded, which avoids domain problems. For
the sake of clarity we note how this result holds not only for position and
momenta operators but also for any other operators satisfying the same con-
ditions.
This theorem is central in validating the use of unconventional represen-
tations in quantum mechanics: it affirms that if we have a Hilbert space
and in it are defined operators that meet the hypotheses of the theorem,
then these operators are merely different but equivalent ways to express
the canonical position and momentum operators (or equivalently the ladder
operators). Ultimately, L2 is not special in any way and its choice is a mat-
ter of convenience. Up to unitary equivalence, there is a unique irreducible
representation of the CCR.

In the case of the Bargmann space, it can be shown that the Stone-von
Neumann theorem holds. This implies we can represent creation and anni-
hilation operators as multiplication and derivation operators on Bargmann
space and there exists a unitary operator to map them to canonical ladder
operators. This operator is the integral Bargmann transform

U : L2(Rd, dx) → HL2(Cd, µ) (1.2.21)

U

(
Qj + iPj

~
√

2

)
U † =

∂

∂zj
(1.2.22)

U

(
Qj − iPj
~
√

2

)
U † = zj (1.2.23)

In the next section we will be able to appreciate the usefulness of this rep-
resentation in making the calculations much swifter.

1.2.4 Eigenfunctions

We wish to find the common eigenfunctions of H, L in Bargmann space. To
do this, we represent both sets of ladder operators as multiplication and
derivation operators on Bargmann space functions:

a† 7→ w√
2

a 7→
√

2
∂

∂w

b† 7→ z√
2

b 7→
√

2
∂

∂z

(1.2.24)

14



1.2. LANDAU LEVELS

Expressing b† in terms of the spatial coordinates leads to the identification
z = x − iy in units of `. The ground state is found by imposing a |0, 0〉 =
b |0, 0〉 = 0, which implies Ψ00(w, z) = 2−1/2. All the other eigenfunctions
are obtained from (1.2.16):

Ψnm(w, z) =
zm+n√

2m+n+1/2 (m+ n)!

wn√
2n+1/2 n!

(1.2.25)

From now on we will only be interested to the lowest Landau level (LLL):
so fixing n = 0 and integrating out w gives

Ψm(z) =
zm√

2m+1/2m!
(1.2.26)

In passing we emphasize how, by linearity, any polinomial in z is an eigen-
function of H relative to the LLL.

It is useful to have a way to retrieve the eigenfunctions in L2(R2), more
commonly used in the literature. Let φ(z) be a almost-everywhere-nonzero
function and write the identity∫

dµ
∣∣Ψm(z)

∣∣2 =

∫
dz

π
√

2
e−|z|

2/2
∣∣Ψm(z)

∣∣2 (1.2.27)

=

∫
dz

π
√

2

e−|z|
2/2

|φ(z)|2
∣∣φ(z)Ψm(z)

∣∣2 (1.2.28)

Choosing

φ(z) =
e−|z|

2/4√
π
√

2
(1.2.29)

we can build a norm-preserving map

A : HL2(C, µ)→ L2(R2) (1.2.30)

Ψm 7→ φΨm =: Ψ̃m (1.2.31)

In this fashion we obtain the more familiar normalized eigenfunction

Ψ̃m(z) =
1√

2π2mm!
zme−|z|

2/4 (1.2.32)

where z = x − iy. Note that the obtained eigenfunctions are no longer
holomorphic1, since they fail to satisfy Cauchy-Riemann equations.

1The term e−|z|
2/4 is itself not holomorphic and compromises the rest of the wavefunc-

tion.
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1. UNCORRELATED ELECTRONS IN UNIFORM MAGNETIC FIELD

1.3 Integer Quantum Hall Effect

Now we have all the elements to gain a basic understanding of the physics of
the integer effect through a useful semiclassical argument. In real setups, the
electrons feel not only the coulombic repulsion of one another (unessential
to the IQHE) and the magnetic field: an impurity potential is also present.
It generates a landscape of peaks and troughs, varying on a bigger length
scale than that of the magnetic length in conditions of strong magnetic
field. Hence the energy of an electron will be given by the sum of the
hamiltonian (1.2.1) and the impurity term. This way the Landau levels are
broadened and a distinction between localized and delocalized states comes
to be. Electrons moving along equipotential lines of the impurity potential,
which are closed, are in localized states.

Figure 1.2: An example of impurity potential acting in the IQHE and a few equipotential
lines.

The existence of localized states explains the presence of plateaux in
RH . First of all, note that from the point of view of quantum Hall effects,
tuning the magnetic field and changing the electron density are equivalent
operations. Now, starting from a filling factor ν = n and adding elec-
trons (or holes) would change the value of the resistance in an ideal system.
Accounting for the effects of impurities is thus essential in explaining the
phenomenon. If the Fermi energy lies amongst localized states, then the
added particles go to occupy localized states and thus do not contribute to
conduction. Hence in this case the value of RH does not change.

This model gives some insight on the nature of the plateaux, but does
not explain the universality of the h/e2 constant: for example we could
suspect a result for the ν = n case such as RH = B/ecρdeloc where ρdeloc is
the density of electrons in the delocalized states. Since this density can be
very small, the Hall resistance could be very large and there would be no

16



1.3. INTEGER QUANTUM HALL EFFECT

reason for it to be quantized as in (1.1.4).
This problem was solved by Laughlin [19] who showed that, as long as the
Fermi energy lied between the n-th and the (n + 1)-th Landau levels, the
Hall resistance would retain the value (1.1.4).
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Chapter 2

Fractional quantum Hall
effect

In this chapter we discuss the physics of the fractional effect. We start by
defining the problem and analyzing the aspects that distinguish it from the
integer effect. We begin to gain an understanding of the phenomenon by
finding an exact solution to the problem involving two and three electrons.
We then move to the analysis of the full problem in Fock space and discuss
Laughlin’s ansatz for the ground state wavefunction.

2.1 Conceptual framework

In depth analyses of the IQHE, both experimental and numerical, have
shown that the integer effect cannot produce plateaux at fractional filling
factors. This is because there is a unique delocalized state for each Landau
level. For this reason a theoretical account of the fractional effect must
provide a different explanation for the plateaux.

We can try and identify the responsible interaction by writing the full
(first-quantized) Hamiltonian for a system of N electrons:

H =
1

2m

N∑
j=1

(
pj +

e

c
Aj

)2

+

N∑
j=1

∑
k<j

e2/ε

|xj − xk|
+ gµBB · S + Vimp (2.1.1)

From left to right these are respectively the kinetic term (accounting also
for the interaction with the magnetic field), the coulombic repulsion term,
the Zeeman splitting term and finally the impurity potential of the sample.
Momentarily setting c = 1 and using values for the parameters typical of
GaAs-AlGaAs heterojunctions, we can compare the relative importance of
the various terms:

` =

√
~c
eB
≈ 25√

B
nm ~ωc = ~

eB

mc
≈ 20kBB J (2.1.2)

19



2. FRACTIONAL QUANTUM HALL EFFECT

where the magnetic field strength B is to be expressed in Tesla and the mass
m = 0.067me is the band mass in the sample. Using ε = 12.6 and Landé
factor g = −0.44 we quantify the Coulomb and Zeeman energies roughly as

ECoulomb(B) =
e2

ε`
≈ 50kB

√
B J (2.1.3)

EZeeman(B) = gµBB =
1

2

mb

me
~ωc ≈ 0.3kBB J (2.1.4)

Comparing the characteristic energies of the different terms leads us to
the following approximations:

• We neglect the impurity potential : although it is essential to the ex-
planation of plateaux in the integer effect, no significant physics is lost
by switching it off in this context. This is because disorder causes the
plateaux but these can only appear if there are gaps in the state oc-
cupancy of electrons. These gaps thus logically precede the plateaux.
A model for the quantum hall effect must then explain the gaps: since
for the FQHE this can be done without accounting for impurities, they
add nothing significant to the underlying physics of the phenomenon.

• We consider fully polarized electrons: i.e. the spin degree of freedom
is frozen. If all spins are aligned, the Zeeman term in the hamiltonian
is constant and can be dropped. This approximation is not necessar-
ily appropriate for all experimental realizations. Anyways, in strong
magnetic fields, ECoulomb/EZeeman → 0 which implies that electrostatic
repulsion energy is not enough to flip a spin.

• We consider the B → ∞ limit, at fixed filling factor, which agrees
well with the previous approximation. Since ECoulomb/~ωc → 0 this
justifies neglecting LL mixing caused by electrostatic repulsion (which
is the only interaction we haven’t neglected). Keeping the fixed filling
factor constant is crucial in performing this limit, otherwise the limit
would imply ν → 0. To avoid this we must also have the electron
number density ρ0 → 0.

It is vital that the second hypothesis is applied: this is because EZeeman/~ωc
is not necessarily small in strong magnetic field. So, even in the limit B →∞
there could in principle be LL mixing caused by spin-orbit interaction, even
though energetically very unfavorable. If we freeze the spin degree of freedom
before operating the limit this problem is avoided.

All of these approximations are introduced because they simplify the
problem significantly, getting rid of aspects that are not fundamental and
thus exposing only the essential physics of the FQHE.
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2.2. EXACT SOLUTION FOR THE THREE PARTICLE PROBLEM

2.2 Exact solution for the three particle problem

Following Laughlin in [2], in this section we find exact solutions for the
problem of two and three interacting electrons, given the working hypotheses
given above. Now, the problem of three particles interacting through a 1/r
potential usually does not have analytical solutions: the reason why in this
context we can solve it rests in the projection on the LLL. A 2-body problem
is an effective 1-body problem, since we can focus on the internal degree of
freedom, discarding the trivial center of mass degree of freedom. Projecting
on the LLL turns the problem in an effective 0-body problem, since it takes
away another degree of freedom. The same reasoning applied to the 3-body
problem reduces it to an effective 1-body problem, which is thus solvable.

2.2.1 Two interacting particles

We start by choosing a coordinate representation in which for j = 1, 2 the
position of each electron is specified by the complex number zj = xj − iyj
and writing the two particle hamiltonian in it:

H =
1

2me

(
−i~∇1 +

e

c
A(z1)

)2

+
1

2me

(
−i~∇2 +

e

c
A(z2)

)2

+
e2

|z1 − z2|
(2.2.1)

where ∇j = (∂xj , ∂yj ). We have taken ε = 1 for convenience. Next, we
choose the symmetric gauge for the vector potential, so that its expression
is the same as in (1.2.10). We can separate the center of mass from the
internal degree of freedom by performing the change of variables1:

z̄ :=
z1 + z2

2

za :=
z1 − z2√

2


p̄ := p1 + p2

pa :=
p1 − p2√

2

(2.2.2)

where pa has components pxa and pya . Conjugate variables for the za degree
of freedom are respectively xa, pxa and ya, pya :

[xa, pxa ] = i~1 [ya, pya ] = i~1 (2.2.3)

Similar relations hold for the center of mass degree of freedom. The vector
potential transforms as

A(z̄) =
A(z1) +A(z2)

2
A(za) =

A(z1)−A(z2)√
2

(2.2.4)

The kinetic part of the hamiltonian (2.2.1) rewritten in the new variables is

Hkin =
1

2m

(
1√
2
p̄a +

e
√

2

c
A(z̄)

)2

+
1

2m

(
pa +

e

c
A(za)

)2

(2.2.5)

1Notice how the transformation has a Jacobian different from 1.

21



2. FRACTIONAL QUANTUM HALL EFFECT

The two terms are mutually commuting. Since the potential will not contain
any terms from the center of mass degree of freedom, we discard the first
term, whose eigenfunctions and eigenvalues we already know from Chapter
1. Focusing on the internal degree of freedom, the relevant hamiltonian
becomes:

Hint =
1

2µ

(
−i~∇a +

e

c
A(za)

)2

+
e2√
2|za|

(2.2.6)

where ∇a = (∂xa , ∂ya) = 2−1/2(∂x1 − ∂x2 , ∂y1 − ∂y2) and µ = me is the
reduced mass. The choice of the symmetric gauge for the vector potential
causes ∇ ·A to vanish. Hence, in the expansion of the kinetic term of the
hamiltonian we have:

Hkin =
1

2µ

(
−i~∇a +

e

c
A(za)

)2

(2.2.7)

=
1

2µ

{
−~24a +

(
e

c

)2

A2(za)−��������i~e
c

∇a ·A(za) −
i~e
c
A(za) ·∇a

}
(2.2.8)

=
1

2µ

{
−~24a +

e2B2

8c2
|za|2 +

i~eB
4c

∂φ

}
(2.2.9)

From this we deduce that the Schrödinger equation can be solved by sepa-
ration of the variables:

Ψ(za) = Ψ(r, φ) = R(r)Φ(φ) (2.2.10)

with r := |za| and φ := Arg za. The two-dimensional laplacian operator in
polar coordinates is given by

4a = ∂2r +
1

r
∂r +

1

r2
∂2φ (2.2.11)

Next we observe that the hamiltonian (2.2.6) conserves the angular momen-
tum L ≡ L3 = xapya − yapxa = −i~∂φ. Substituting (2.2.9), (2.2.11) and
the angular momentum spectrum L = ~m, m = 0, 1, 2, . . . in (2.2.6) we find
the equation for the radial part of the eigenfunction R = R(r):

− ~2

2µ

(
d2R

dr2
+

1

r

dR

dr
− m2

r2
R

)
+

1

2
µω2

cr
2R(r)−1

2
~ωcmR(r)+

e2√
2r
R(r) = εR(r)

(2.2.12)
which is just the radial Schrödinger equation for a two dimensional harmonic
oscillator, with and added potential term V ′ = e2/

√
2r. The angular part

of the wavefunction is found to be

Φ(φ) = e−imφ (2.2.13)
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2.2. EXACT SOLUTION FOR THE THREE PARTICLE PROBLEM

The potential term V ′ constitutes a repulsive core caused by the coulom-
bic repulsion between electrons. Treating it as small leads to an evaluation
of the energy eigenvalue in a first order perturbative approximation. Re-
membering that we are restricting the analysis to the LLL we have

εm = εLLL + 〈m|V ′|m〉 =
1

2
~ωc + 〈m|V ′|m〉 (2.2.14)

where the states |m〉 are the eigenstates of the unperturbed hamiltonian.
Since letting V ′ = 0 in (2.2.6) leads to the hamiltonian (1.2.1), these states
are represented by the functions (1.2.32).

The expected value of the perturbation can be computed through the
following calculation

〈
m

∣∣∣∣ 1

r

∣∣∣∣m〉 =

∫
C

dz Ψ∗(z)
1

|z|
Ψ(z) (2.2.15)

=
1

2m+1πm!

∫
C

dz |z|2m−1e−|z|2/2 (2.2.16)

=
1

2mm!

∞∫
0

dr r2me−r
2/2 (2.2.17)

=

√
2π

2m+1

(2m− 1)!!

m!
=
√

2π
(2m)!

22m+1(m!)2
(2.2.18)

where the last line is an identity, easily provable by induction.

Computing the quantity 〈m|r2|m〉 = 2(m + 1) over the unperturbed
states gives us an intuitive interpretation for this model: as long as the
coulombic interaction is small enough the two electrons orbit around their
common center of mass, while the repulsion contributes a negative binding
energy term. Numerical simulations show that the accuracy of the model
increases with m and under usual experimental conditions it brings satisfac-
tory results. This makes sense, since the electrostatic interaction expectation
value (2.2.18) decreases with 1/

√
m as m gets large, thus becoming more

and more negligible.

2.2.2 Three interacting particles

As we anticipated in presenting this section, projection on the LLL and
focusing on internal degrees of freedom make the three-body problem an
effective one-body problem, turning it into solvable. The full hamiltonian is
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given by

H =
1

2me

{(
−i~∇1 +

e

c
A(z1)

)2

+

(
−i~∇2 +

e

c
A(z2)

)2

+

(
−i~∇3 +

e

c
A(z3)

)2
}

+
e2

|z1 − z2|
+

e2

|z2 − z3|
+

e2

|z1 − z3|
(2.2.19)

As before, we perform a coordinate change to isolate the center of mass
degree of freedom

z̄ :=
z1 + z2 + z3

3

za :=

√
2

3

(
z1 + z2

2
− z3

)
zb :=

z1 − z2√
2



p̄ := p1 + p2 + p3

pa :=

√
2

3

(
p1 + p2

2
− p3

)
pb :=

p1 − p2√
2

(2.2.20)
Rewriting (2.2.19) in the new variables and dropping the trivial dependence
from the center of mass we obtain the hamiltonian for the internal degrees
of freedom a, b:

Hint =
1

2µ

{(
−i~∇a +

e

c
A(za)

)2

+

(
−i~∇b +

e

c
A(zb)

)2
}

+ V ′

V ′ :=
e2√

2

 1

|zb|
+

1∣∣∣√32 za + 1
2zb

∣∣∣ +
1∣∣∣√32 za − 1

2zb

∣∣∣
 (2.2.21)

Again we want to solve the problem considering the interaction V ′ as a small
perturbation. We already know how the solution to the Schrödinger equation
for uncorrelated particles is given in Bargmann space by the functions:

ϕmn(za, zb) =
1√

2m+n+1m!n!
zma z

n
b (2.2.22)

But, even though we are looking for the unperturbed eigenstates (i.e. with
coulombic interaction switched off), we still need to account for Pauli’s prin-
ciple: namely our eigenfunctions must be antisymmetric under permutations
of any two particles. Thus the functions (2.2.22) are not appropriate for this
task. Still, they generate the whole state space, thus particular linear com-
binations of them will constitute a basis for the (smaller) space of admissible
wavefunctions.

To find these combinations, we observe that for three particles and with
the variables we defined, even permutations are precisely equivalent to a
rotation of ±2π/3 in the a, b space. Also, odd permutations are simply the
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2.2. EXACT SOLUTION FOR THE THREE PARTICLE PROBLEM

parity transformation relative to zb. Hence a convenient way to comply with
Pauli’s principle will be to require symmetry under rotations of ±2π/3 and
antisymmetry under zb 7→ −zb. A way to satisfy these requirements is more
easily achievable performing another change of variables:

z+ :=
za + izb√

2

z− :=
za − izb√

2

(2.2.23)

Now, the transformation zb 7→ −zb acts on the new variables as z+ ↔ z−.
Also, rotations by an angle θ in the a, b plane act as{

z+ 7→ z+e
iθ

z− 7→ z−e
−iθ (2.2.24)

Hence, all terms of the form (z+z−)k will be invariant under rotations by
any θ (but symmetric under odd permutations) for any integer k. Similarly
all terms of the form zk+ − zk− are antisymmetric under odd permutations:
but from (2.2.24) we see that they are only symmetric under rotations by
θ = ±2π/3 if k is a multiple of 3. All this motivates us to write the ansatz

ϕmn(z+, z−) = (z3m+ − z3m− )(z+z−)n (2.2.25)

= z3m+n
+ zn− − zn+z3m+n

− (2.2.26)

We observe that the hamiltonian (2.2.21) commutes with the total angular
momentum J = La + Lb. An argument in favour of the goodness of our
ansatz is that the functions (2.2.26) diagonalize both the internal hamilto-
nian and the total angular momentum. Specifically they are eigenfunctions
of J with eigenvalue ~M = ~(3m+ 2n).

Normalizing and expressing everything back in the za, zb variables we
find:

ϕmn(za, zb) =
1√
2

1√
26m+4n+1(3m+ n)!n!

·

·
[
(za + izb)

3m − (za − izb)3m
]

(z2a + z2b )n (2.2.27)

Bringing the eigenfunctions back from Bargmann space to physical space
and dividing them by i so that the polynomial part has real coefficients we
finally obtain the eigenfunctions for the unperturbed internal hamiltonian:

Ψmn(za, zb) =
1√

26m+4n+1(3m+ n)!n!π2
·

· (za + izb)
3m − (za − izb)3m

2i

(
z2a + z2b

)n
e−(|za|2+|zb|2)/4

(2.2.28)
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A few observations are due. First of all, even though [Hint, J ] = 0, the M
quantum number is not sufficient to specify an eigenfunction. In fact, except
for the first few values of M there is degeneracy, i.e. for each M there is more
than one possible couple (m,n) such that M = 3m + 2n. Moreover m can
never be zero, otherwise the wavefunction is not admissible. This implies
that M ∈ N \ {0, 1, 2, 4}.

Figure 2.1: Comparison of the contour plots of charge densities for the states Ψ3,0 (left)
and Ψ1,3 (right). The dot represents the center of mass and the cross represents one of
the electrons. Both these points have been fixed to make the plot drawable. Note how the
increase in the n quantum number causes the charge densities to shift towards the fixed
electron and to be generally more spread.

We can now proceed in evaluating the effects of the coulombic interaction
on the unperturbed eigenfunctions. To do this, we need to find the matrix
elements of the electrostatic repulsion operator over the basis {Ψmn} of the
admissible portion of state space i.e.

〈
m,n

∣∣∣∣ 1

|zb|

∣∣∣∣m′, n′〉 (2.2.29)

in units of 3e2/`
√

2. The factor 3 comes from the need to add contributions
to the repulsion from all the three possible layouts of particles, differing
from rotations of 2π/3 of the system. These matrix elements can only be
nonzero if M = M ′ 2, so from now we will only consider this case. To
actually compute the matrix elements, consider a generic M and expand

2Since
[
J, 1
|zb|

]
= 0, evaluation of

〈
m,n

∣∣∣J 1
|zb|

∣∣∣m′, n′〉 gives the relation (M ′ −

M)

〈
m,n

∣∣∣ 1
|zb|

∣∣∣m′, n′〉 = 0. Hence the matrix element can only be non-zero if M = M ′
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the polynomial part of the function (2.2.28):

Ψmn(za, zb) =
1√

26m+4n+1(3m+ n)!n!π2

M∑
k=1

c
(m,n)
k zkb z

M−k
a e−(|za|

2+|zb|2)/4

(2.2.30)

where the c
(m,n)
k are real numbers. Then, neglecting all the normalization

constants:〈
m,n

∣∣∣∣ 1

|zb|

∣∣∣∣m′, n′〉 ∝ (2.2.31)

∝
M∑

k,l=1

∫
C2

dza dzb c
∗(m,n)
k c

(m′,n′)
l

1

|zb|
z∗kb z

l
bz
∗M−k
a zM−la e−(|za|

2+|zb|2)/2

(2.2.32)

∝
M∑
k=1

c
∗(m,n)
k c

(m′,n′)
k

〈
k

∣∣∣∣ 1

|zb|

∣∣∣∣ k〉 (2.2.33)

Since the operator we are considering only depends from zb, we have inte-
grated in za. This resulted in a δkl which turned the double sum into a
single sum. Having done that, the remaining integral in zb was simply the
diagonal matrix element (2.2.18), which we have already calculated.

Substituting it in the previous expression and writing the normalization
constant gives the final expression for the matrix element:〈

m,n

∣∣∣∣ 1

|zb|

∣∣∣∣m′, n′〉 = 2−M

√
2π

(3m+ n)!(3m′ + n′)!n!n′!
·

·
M∑
k=1

c
∗(m,n)
k c

(m′,n′)
k

(2k)!(M − k)!

22kk!
(2.2.34)

The matrices for the first few values of M have been calculated analytically
and are found in Appendix A, together with their respective eigenvalues.
The eigenvalues of the matrices indicate the shift in energy from the LLL
caused by the presence of electrostatic repulsion.

By simple inspection, we see that degeneracy first appears for the value
M = 9, which is three times the smallest possible value of angular mo-
mentum M = 3: hence this case corresponds to a filling factor of roughly
1/3. Looking at the eigenvalues in cases where degeneracy is present we
observe that the energy difference between states of adjacent M is usu-
ally considerably smaller than that between states with the same value of
angular momentum. This observation is reasonable, if we consider Figure
2.1: increasing values of n get the electrons closer to each other, effectively
increasing the overall energy by a tangible amount.
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Now, all of this may seem not significant for the problem of the FQHE,
in which there is an extremely large number of electrons at play. To try
and mimic that situation we can add a potential well to replicate the band
energy. For convenience we choose it quadratic:

U =
α

2
(|z1|2 + |z2|2 + |z3|2) =

3

2
α|z̄|2 +

α

2
(|za|2 + |zb|2) (2.2.35)

Hence, in addition to internal coulombic interaction V ′ we have to account
also for U . Discarding the center of mass portion, we calculate (following
the same logic as in (2.2.33)):〈

m,n

∣∣∣∣α2 (|za|2 + |zb|2
)∣∣∣∣m′, n′〉 ∝

∝ α

2
δmm′δnn′

M∑
k=1

c
∗(m,n)
k c

(m′,n′)
k

(〈
k
∣∣∣|zb|2∣∣∣ k〉+

〈
M − k

∣∣∣|za|2∣∣∣M − k〉)
(2.2.36)

=
α

2
δmm′δnn′

M∑
k=1

c
∗(m,n)
k c

(m′,n′)
k

[
2(k + 1) + 2(M − k + 1)

]
(2.2.37)

∝ δmm′δnn′α(M + 2) (2.2.38)

This tells us that the presence of the potential well adds a contribution that
makes states of lower total angular momentum energetically favorable.

The total potential to which the electrons are subject is thus V ′ + U .
Hence the intensity of the potential well α influences which Ψmn will be the
true ground state. In particular, the ground state has an angular momentum
M which is discontinuous as a function of α: it assumes values that are
integer multiples of 3. This is because M = 3m + 2n and for any α the
eigenstate minimizing the energy has n = 0.

Another relevant observable is the area enclosed by the triangle whose
vertices are the three electrons. The corresponding operator can be written
making use of Gauss’s area formula: namely a triangle whose vertices are
the points {(xi, yi)}3i=1 has an area given by the determinant:

S =
1

2

∣∣∣∣∣∣∣
1 1 1
x1 x2 x3
y1 y2 y3

∣∣∣∣∣∣∣ (2.2.39)

From this result we derive the operator associated to the area observable:

S =
1

2
Im
[
z∗1z2 + z∗2z3 + z∗3z1

]
(2.2.40)

=

√
3

4i

(
zaz
∗
b − zbz∗a

)
(2.2.41)
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Figure 2.2: Total angular momentum M = 3m + 2n of the ground state as a function
of inverse intensity of the potential well. M increases with jumps of 3 as α decreases. α
is measured in units of

√
3/2e2/`3.

The relevant matrix element to be calculated is that of S2, since 〈m,n|S|m′, n′〉 =
0 for all (m,n), (m′, n′). This is computed to be

〈m,n|S2|m′, n′〉 = δmm′δnn′
3

4

[
(3m)2 +M + 2

]
(2.2.42)

So it depends linearly on M . Hence, also the rms of the area will depend
discontinuously on α, resembling the behaviour of the angular momentum
in Figure 2.2. This means that making the potential well deeper does not
get the particles closer to one another: this way the area is conserved on
each plateau. Instead, when α crosses a value corresponding to any plateau,
the ground state changes and with it the configuration of the cluster, as well
as the enclosed area. In other words, the cluster, when considered in any of
the possible ground states, is incompressible.

This is an interesting property: in fact if it were found to hold also for the
case of the many-body problem, then it might provide a basic explanation
to the FQHE. In fact, adding electrons to the sample effectively deepens
the band (i.e. increases α in our model). If incompressibility held, then
this operation would not cause excitations giving rise to plateaux in the
conductivity, since the configuration of the particles would not change.

Sadly, this argument is a feeble one. This is because the many-body
problem deals with a large, indeterminate number of interacting particles.
Hence, the very meanings of configuration and incompressibility of cluster
can be very different from those used in a two or three-body problem. For
example, in the many-body problem, we can add particles to the system and
keep using the same model; adding particles to a three-body problem forces
us to change approach entirely.

All this considered, if incompressibility holds for the ground state of the
many-body problem then it must be proved in a different way. Thus we
must find a more suitable approach to explain the FQHE.
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2.3 Many-body framework

As we said in the conclusion to the previous section, in treating the many-
body problem we must be able to deal with an indeterminate number of
particles. This is more easily done in the framework of second quantization,
in which states are represented by vectors in Fock space:

F := |0〉 ⊕H (1)⊕H (2)⊕ · · · ⊕H (k)⊕ . . . (2.3.1)

where |0〉 is the vacuum state and H (k) is the Hilbert space of k fermions.

2.3.1 The hamiltonian

To formulate the FQHE problem in this framework we first need to write
the second-quantized hamiltonian operator. To achieve this, let N and m be
the Landau level and the angular momentum quantum number respectively.
We introduce the ladder operators aN,m, a

†
N,m which respectively destroy

and create a particle in state |N,m〉. Now, all the approximations we men-
tioned in Section 2.1 remain valid. Thus the only remaining terms in the
hamiltonian are the kinetic one and the coulomb interaction:

Ĥ =
∑
(N,m)

~ωc
(
N +

1

2

)
â†N,mâN,m + Ĥcoul (2.3.2)

The sums are over the Landau level quantum number N ∈ N and over
the angular momentum quantum number m, which varies as discussed in
Section 1.2.2. The interaction hamiltonian in Fock space can be obtained as
a function of ladder operators

V =
1

2

∑
i 6=j

v(zi, zj) =
1

2

∑
i 6=j

e2

|zi − zj |
(2.3.3)

The factor 1/2 is necessary to avoid double counting of interaction energies.
Notice that the terms v(zi, zj) are naturally symmetric under exchange of
particle labels. The image of the V̂ operator in Fock space is given by

Ĥcoul =
1

2

∑
(Nα,mα)

∑
(Nβ ,mβ)

∑
(Nγ ,mγ)

∑
(Nδ,mδ)

â†Nα,mα â
†
Nβ ,mβ

âNδ,mδ âNγ ,mγ ·

· 〈Nα,mα;Nβ,mβ|v|Nγ ,mγ ;Nδ,mδ〉 (2.3.4)

where we have used the condensed notation

|Nα,mα;Nβ,mβ〉 ≡ |Nα,mα〉 ⊗ |Nβ,mβ〉

Now, the strong magnetic field approximation enables us to simplify the
problem a lot more. Since it implies that LL mixing is negligible, there
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cannot be jumps amongst energy levels. This means that the numbers of
electrons in each LL are fixed.
Hence the kinetic term becomes an additive constant and can thus be
dropped from the hamiltonian, together with all matrix elements containing
Landau quantum numbers differing from N := bνc (floor function of the
filling factor). The relevant hamiltonian then becomes:

Ĥ =
1

2

∑
mα

∑
mβ

∑
mγ

∑
mδ

â†N,mα â
†
N,mβ

âN,mδ âN,mγ 〈N,mα;N,mβ|v|N,mγ ;N,mδ〉

(2.3.5)
In particular, since our analysis is limited to the LLL we fix N = 0. It is in-
tended that the domain of this operator must be restricted to the portion of
Fock space corresponding to the LLL. This is done formally through a pro-
jection. Nonetheless wrapping the operator inside projectors |LLL〉 〈LLL|
introduces a complication. To avoid it we agree that the operator will act
solely on LLL vectors. These approaches are operationally different, but
overall equivalent, since by definition the action of an operator on a subspace
of its domain is precisely the same as that of the same operator projected
on that subspace. It is important to bear this argument in mind, otherwise
the hamiltonian (2.3.5) would be effectively classical because it does not
explicitly contain non-commuting operators.

A first look to the hamiltonian uncovers two peculiar features. The first
one is the immense degree of correlation of the FQH system: if we quantify
the strength of correlation in the system by the ratio of the interaction en-
ergy to the kinetic energy then we conclude that the system is completely
correlated, because there is no kinetic term in the hamiltonian.
The other astonishing and worryingly fact is the total absence of any pa-
rameter depending upon the experimental realization of the system. In
particular this means that a perturbative analysis is not possible, because
there is no parameter on which to expand states and eigenvalues. There is
no unperturbed state: if we set the interaction to zero we get an astronom-
ical degeneracy of the ground state, even for unphysical systems with a few
tens of electrons.

We are then left with the perspective that the only realistic path in
solving the FQHE would be to tackle the full problem without any further
help from approximations.

2.3.2 Laughlin’s ansatz

A breakthrough on this problem was operated by Laughlin in 1983: in his
work [3] he found a tentative ground state wavefunction based on observation
of fundamental features of the FQHE.
The reasoning behind Laughlin’s ansatz can be schematized as follows:

• The wavefunction for a system of ne electrons can be written as a
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2. FRACTIONAL QUANTUM HALL EFFECT

linear combination of Slater determinants of the single particle wave-
functions, which we know to be (1.2.32). Thus its general form will
be

ΨM (z1, . . . , zne) = f(z1, . . . , zne) exp

− ne∑
j=1

|zj |2/4

 (2.3.6)

where f is a polynomial of the ne complex representations of the po-
sitions of the electrons zj = xj − iyj .

• As the hamiltonian conserves the total angular momentum we want
the functions ΨM to be simultaneous eigenfunctions of J and H. Now,
every monomial of the polynomial, i.e.∏

j

z
mj
j (2.3.7)

carries a total angular momentum ~M = ~
∑

jmj . Since Ψ must be
an eigenfunction of the total angular momentum, every monomial in
f must carry the same M . In other words f must be an homogeneous
polynomial in z1, . . . , zne .

• Since the exponential part of the eigenfunction is even under permu-
tation of particle labels and the spin degree of freedom is frozen, to
comply with Pauli’s principle, the polynomial f must be completely
antisymmetric.

• To make the shape of the polynomial more specific, we make use of
physical intuition: since the interaction at play is a long range repul-
sion with a strong repulsive core, we expect that it will be less probable
to find two electrons near one another. A way to translate this into
an expression is to look for a polynomial of the form

f(z1, . . . , zne) =

ne∏
j<k

gjk(zj − zk) (2.3.8)

where gjk(z) is a polynomial in a single complex variable. In principle
it could be different for any couple (j, k). This type of wavefunction,
known as Jastrow type, is very popular in the field of superconductiv-
ity, where it is employed in variational approaches. It is widely used
to handle two-body correlations, but is not as effective with higher
degrees of correlation.

• Combining the Jastrow type polynomial with the former conditions,
the simplest function we can write is Laughlin’s ansatz:

Ψ(z1, . . . , zne) =

ne∏
j<k

(zj − zk)q exp

− ne∑
i=1

|zi|2/4

 (2.3.9)
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m 〈ϕ3m|Ψm〉

1 1
3 0.99946
5 0.99468
7 0.99476
9 0.99573
11 0.99652
13 0.99708

Table 2.1: Overlaps of Laughlin’s wavefunction for three particles with the variational
ground state wavefunctions studied in the three-body problem. The variational ground
state wavefunctions for three interacting particles have an angular momentum quantum
number of 3m. Source [3].

with the restriction that q must be an odd integer to preserve antisym-
metry. It is possible to show that rewriting the system’s hamiltonian,
an analogy can be made with plasma systems. This method shows
that the FQH filling factor is given in this case by ν = 1/q. The
extensive proof is given in [20].

Laughlin’s ansatz was written soon after the discovery of the 1/3 plateau,
but it has proved to be very accurate for all filling factors of the form ν = 1/q
and their particle-hole symmetric ν = 1− 1/q. To quantify the accuracy of
the ansatz we report in Table 2.1 the overlaps of Laughlin’s ansatz with the
variational wavefunctions of the three-body problem. As we already said in
the first chapter, there are many more fractions that those of Laughlin’s type
(1/q), that cannot be explained with Laughlin’s argument. So the problem
cannot be said to be solved yet. Even more so, because there is no real
justification at this level for why this ansatz manages to be so accurate.

Different explanations come from different models: in composite fermion
theory a general solution is found, and Laughlin’s ansatz is recovered as a
special case. Another approach was offered by complicated calculations by
Haldane first in [21], then in [5] with Bernevig, where they found that the
bosonic version of Laughlin’s wavefunctions can be mapped on a class of
special functions known in mathematics as Jack symmetric functions.

In the next chapter we find quantitative results for the FQHE making
use of the many-body approach presented in this section. This will be done
by performing the analytical calculations of the coulomb matrix element in
(2.3.5).
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Chapter 3

Coulomb interaction in the
disk geometry

In this chapter we present the derivation of an analytic expression we ob-
tained for the coulombic matrix elements in the disk geometry. The result
is then employed to carry out the exact diagonalization of the hamiltonian
in the LLL by means of a numerical analysis.

3.1 System geometry

Calculating the interaction matrix elements is usually of central importance
for problems that can be treated perturbatively. Nonetheless, matrix ele-
ments have a fundamental role in the FQHE problem as well. This is clear
when we consider that they effectively make up the many-body hamiltonian
(2.3.5).

Since matrix elements are calculated amongst two vectors of a well de-
fined basis of state space, they depend on the system setup. This is because
the choice of a basis must be done in a smart way to reflect the symmetries
and properties of the system, making the calculations as simple as possible.
As in the hamiltonian there are no parameters depending on the experi-
mental setup, the only way the wavefunctions can depend upon the system
realization is through the geometry of the surface on which the 2D electrons
move.

A choice that has become popular again in the last few years is that
of a toroidal surface: this is obtained by taking a rectangular surface and
applying periodic boundary conditions on both sides. In doing so, the ef-
fective topology obtained is that of a torus (the double periodicity amounts
to going through the doughnut and all around it). This method avoids the
problem of a confining potential, which gives rise to edge states. Of course
a basis of eigenstates of the interaction-free hamiltonian in this geometry
must be obtained specifically (a good way to start is adopting the Landau
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3. COULOMB INTERACTION IN THE DISK GEOMETRY

gauge instead of the axial one).
The popularity of this geometry is due to the fact that, in the limit of a

thin torus the ground state can be obtained exactly and it is found to be a
Tao-Thouless (TT) state. Also, in the thin torus limit the matrix elements
only depend on the reciprocal difference amongst angular momentum quan-
tum numbers.
Another very pleasing fact about this geometry is that it is possible to map
the quantum Hall problem onto a one dimensional lattice [22]. In particular,
the ground state at filling factor ν = p/q is a one dimensional crystal with p
electrons in lattice sites of size q. Of course one drawback of the thin torus
limit is that it is quite unphysical.

The spherical geometry was also studied extensively. In particular, Hal-
dane in [23] introduced a translationally invariant version of Laughlin’s state
on a sphere. In the same work he found a hierarchy amongst fractions: he
expressed the filling factor through its continued fraction representation:

ν = [m,α1, p1, . . . , αn, pn] :=
1

m+
α1

p1 +
α2

p2 +
· · ·

pn−1 +
αn

pn

(3.1.1)

where m = 1, 3, 5, . . . , αi = ±1 and pi = 2, 4, 6, . . .
Then he observed the following necessary condition: for any filling fraction
[m,α1, p1, . . . , αn, pn] to be observed it is necessary that the parent filling
factor [m,α1, p1, . . . , αn−1, pn−1] is observed as well. A problem with this
geometry is caused by the necessity to work with magnetic monopoles: in
fact, since the magnetic field must be normal to the surface where the elec-
trons are, it means that it must be oriented in the radial direction. This
implies that it should somehow be generated by a magnetic monopole at the
center of the sphere.

The other popular geometry is that of a flat disk. Here we cannot enjoy
the comfort of an analytic ground state wavefunction or any other simplify-
ing condition on the quantum numbers, except that given by projection on
the LLL, conservation of angular momentum and the fact that it commutes
with the coulombic interaction operator. Nonetheless, even in this general
context, the matrix elements can be computed analytically. As we will show
in the next sections, they can be used to perform numerical diagonaliza-
tions that yield exact wavefunctions for the ground and excited states of the
system.

To be clear, analytical calculation of matrix elements is not something all
theories for the FQHE can rely on: for example, in composite fermion theory
the energy spectrum at a certain filling fraction is obtained by a process
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3.2. ANALYTIC COULOMB INTERACTION MATRIX ELEMENTS

called CF diagonalization, which involves multi-dimensional integrals that
cannot be expressed by means of any known function, even though they are
mathematically well defined.

With all this in mind it is clear that the choice of a geometry must
be done contextually to the goals of the analysis. We choose to work in
the disk geometry in order to obtain exact wavefunctions to compare with
our previous results. It is also the choice that permits us to carry out the
analysis in a framework that is most similar to the experimental setup.

3.2 Analytic Coulomb interaction matrix elements

Our goal in this section is to find an analytic expression for the Coulomb
matrix elements appearing in the many-body hamiltonian (2.3.5), namely〈

m,n

∣∣∣∣ 1

|z|

∣∣∣∣m′, n′〉 (3.2.1)

Where we employed the shorthand notation |m,n〉 ≡ |0,m〉 ⊗ |0, n〉. Our
result will be obtained for a system characterized by disk geometry. For our
discoidal system, the single particle vectors |0,m〉 are represented by the
wavefunctions (1.2.32).

As in the three-body problem, since the eigenstates of the non-interacting
system diagonalize the angular momentum, which in turn commutes with
the Coulomb interaction operator, we have〈

m,n

∣∣∣∣L 1

|z|

∣∣∣∣m′, n′〉 = ~(m+ n)

〈
m,n

∣∣∣∣ 1

|z|

∣∣∣∣m′, n′〉 (3.2.2)

= ~(m′ + n′)

〈
m,n

∣∣∣∣ 1

|z|

∣∣∣∣m′, n′〉 (3.2.3)

(3.2.4)

Subtracting the equalities gives

(m+ n−m′ − n′)
〈
m,n

∣∣∣∣ 1

|z|

∣∣∣∣m′, n′〉 = 0 (3.2.5)

Hence if the matrix element is non-zero the first term must vanish. This
condition can be parametrized by letting l ∈ Z and fixing{

m = m′ + l

n′ = n+ l
(3.2.6)

Hence we only need to calculate matrix elements of the form1

M l
mn :=

〈
m+ l, n

∣∣∣∣ 1

|z|

∣∣∣∣m,n+ l

〉
(3.2.7)

1We have dropped the prime from m′.
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Using the usual coordinate representation where zj = xj − iyj we have

M l
mn =

1

π222+m+n+l
√

(m+ l)!(n+ l)!m!n!
K l
mn (3.2.8)

K l
mn :=

∫
C2

dz1 dz2 z
∗m+l
1 z∗n2

1

|z1 − z2|
zm1 z

n+l
2 e−

|z1|
2+|z2|

2

2 (3.2.9)

Where it is intended that dzj = dxj dyj . To compute K l
mn we start by

performing the following change of variables

z2 = αz1, α ∈ C dz2 = |z1|2 dα

which yields:

K l
mn =

∫
C2

dα dz1 |z1|2(m+n+l)+1|α|2n αl

|1− α|
e−|z1|

2(1+|α|2)/2 (3.2.10)

Choosing polar coordinates for z1 = ρeiφ we get

K l
mn = 2π

∫
C

dα
|α|2nαl

|1− α|

∞∫
0

dρ ρ2(1+m+n+l)e−ρ
2(1+|α|2)/2

Next we intend to express the second integral through a gamma function.
To do this we perform the change of variable

u :=
ρ2

2

(
1 + |α|2

)
dρ =

√
1 + |α|2

2u

du

1 + |α|2

which leads us to the following:

K l
mn = π

∫
C

dα
|α|2nαl

|1− α|

(
1 + |α|2

)−(m+n+l+ 3
2)

2(m+n+l+ 3
2)
∞∫
0

du um+n+l+ 1
2 e−u

= π 2m+n+l+ 3
2 Γ

(
m+ n+ l +

3

2

)∫
C

dα
|α|2nαl

|1− α|

(
1 + |α|2

)−(m+n+l+ 3
2)

(3.2.11)

This takes care of the integration in z. We now focus on the integral in α of
Equation (3.2.11), which we call J lmn. Adopting polar coordinates α = reiθ
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gives:

J lmn :=

∫
C

dα
|α|2nαl

|1− α|

(
1 + |α|2

)−(m+n+l+ 3
2)

(3.2.12)

=

∞∫
0

dr
r2n+l+1(

1 + r2
)m+n+l+ 3

2

2π∫
0

dθ
eilθ√(

1− reiθ
) (

1− re−iθ
)

=

 1∫
0

+

∞∫
1

dr
r2n+l+1(

1 + r2
)m+n+l+ 3

2

2π∫
0

dθ
eilθ√

1− 2r cos θ + r2

For the integral on (1,∞) we change variables again choosing s := 1/r,
obtaining

J lmn =

1∫
0

dr
r2n+l+1(

1 + r2
)m+n+l+ 3

2

2π∫
0

dθ
eilθ√

1− 2r cos θ + r2
+

+

1∫
0

ds
s−2n−l−2(

1 + s−2
)m+n+l+ 3

2

2π∫
0

dθ
eilθ√

1− 2s cos θ + s2
(3.2.13)

Since r and s are merely dummy variables and the θ integral is the same for
both addenda, the integrals in r and s can be grouped together, obtaining

J lmn =

1∫
0

dr
rl+1

(
r2m + r2n

)(
1 + r2

)m+n+l+ 3
2

2π∫
0

dθ
eilθ√

1− 2r cos θ + r2
(3.2.14)

Next we observe that the angular integral is real valued, for parity reasons:

I lmn :=

2π∫
0

dθ
eilθ√

1− 2r cos θ + r2
=

2π∫
0

dθ
cos (lθ)√

1− 2r cos θ + r2
(3.2.15)

Now, this can be expressed through the use of hypergeometric functions[24].
In fact, the following relation holds (cf. Equation (9.112) from [25])

I lmn =
2π

l!

(
1

2

)
l

rl 2F1

(
1

2
, l +

1

2
, l + 1

∣∣∣∣ r2) (3.2.16)

where the function 2F1 is the Gaussian hypergeometric function and (x)n is
the Pochhammer symbol2.

2The Pochhammer symbol is defined by

(x)n :=
Γ(x+ n)

Γ(x)
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Proceeding with the calculation, we must now deal with the radial integral

J lmn =
2π

l!

(
1

2

)
l

1∫
0

dr
r2l+1

(
r2m + r2n

)(
1 + r2

)m+n+l+ 3
2

2F1

(
1

2
, l +

1

2
, l + 1

∣∣∣∣ r2) (3.2.17)

Our final substitution consists in setting x := r2, to get

J lmn =
2π

l!

(
1

2

)
l

·

·
1∫

0

dx
(
xm+l + xn+l

)
(1 + x)−(m+n+l+ 3

2)
2F1

(
1

2
, l +

1

2
, l + 1

∣∣∣∣x)
(3.2.18)

Thanks to linearity, this can be split into two addenda that are completely
symmetric under the exchange of m and n. Hence we can focus on either one
of them, indifferently. For reasons that will be clear in a while we employ
the following trick:

xm+l(1 + x)−(m+n+l+ 3
2) = xl(1 + x− 1)m(1 + x)−(m+n+l+ 3

2)

= xl
m∑
k=0

(
m

k

)
(−1)k(1 + x)m−k−m−n−l−

3
2

Applying this to our integral we obtain

1∫
0

dx xm+l(1 + x)−(m+n+l+ 3
2)

2F1

(
1

2
, l +

1

2
, l + 1

∣∣∣∣x) (3.2.19)

=
m∑
k=0

(−1)k
(
m

k

) 1∫
0

dx xl(1 + x)−(k+n+l+ 3
2)

2F1

(
1

2
, l +

1

2
, l + 1

∣∣∣∣x)

Now, this last integral inside the sum (let’s call it G l
kn) can be solved ex-

actly by employing generalized hypergeometric functions, in particular 3F2.
Setting

γ := l+ 1, ρ := 1, z := −1, σ := k + n+ l+
3

2
, α :=

1

2
, β := l+

1

2

and applying result (7.512.9) of [25] yields:

G l
kn =

Γ(l + 1)

Γ
(
l + 3

2

)
Γ
(
3
2

)
2k+n+l+

3
2

3F2

(
1 k + n+ l + 3

2 1

l + 3
2

3
2

∣∣∣∣∣ 1

2

)
(3.2.20)

40



3.3. EXACT DIAGONALIZATION FOR FINITE CLUSTER

Substituting these results in (3.2.18) we find

J lmn =
π

l!

(
1

2

)
l

 m∑
k=0

(−1)k
(
m

k

)
G l
kn +

n∑
j=0

(−1)j
(
n

j

)
G l
jm

 (3.2.21)

Rearranging and inserting contributions from all constants and integrals we
find our final result:

M l
mn =

(
1

2

)
l

(
3

2

)
m+n+l

C lmn + C lnm

2l+2 Γ
(
l + 3

2

)√
(m+ l)!(n+ l)!m!n!

(3.2.22)

C lmn :=
m∑
k=0

(−1)k
(
m

k

)
2−k−n 3F2

(
1 k + n+ l + 3

2 1

l + 3
2

3
2

∣∣∣∣∣ 1

2

)
(3.2.23)

A few observations about this result are due. First of all, the symmetry
under exchange of m and n that appears in (3.2.7) is explicitly preserved
in the final expression. Moreover, for cases in which l < 0, the following
identity holds

M−lmn = M l
m−l,n−l (3.2.24)

A feature of result (3.2.22) is that it only involves finite sums. This makes
it particularly suited to be employed in numerical calculations, as it is easily
computable. Tsiper has found an equivalent result [26] only containing Γ
functions which makes it even better for efficient numerical experiments. We
give it here for future reference, because our exact diagonalization analysis
employs it.

M l
mn =

√
(m+ l)!(n+ l)!

m!n!

Γ
(
m+ n+ l + 3

2

)
π2m+n+l+2

(
AlmnB

l
nm +Bl

mnA
l
nm

)
(3.2.25)

where the coefficients Almn and Bl
mn are defined by the following finite sums

Almn :=
m∑
i=0

(
m

i

) Γ
(
1
2 + i

)
Γ
(
1
2 + l + i

)
(l + i)! Γ

(
3
2 + n+ l + i

) (3.2.26)

Bl
mn :=

m∑
i=0

(
m

i

)(
1

2
+ l + 2i

) Γ
(
1
2 + i

)
Γ
(
1
2 + l + i

)
(l + i)! Γ

(
3
2 + n+ l + i

) (3.2.27)

3.3 Exact diagonalization for finite cluster

Having an analytical expression for the Coulomb operator matrix elements
permits us to carry out the exact diagonalization of the hamiltonian (2.3.5).
This analysis aims at obtaining the excitation spectrum of the FQHE system
in the disk geometry for a small cluster of electrons.
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Figure 3.1: Representation of the matrix elements (3.2.22). Red and yellow colors
represent regions of the m,n, l space where the matrix elements are large. As their values
decrease the colors are shifted towards blue and finally fade out into white. The symmetry
under exchange of m and n is evident from the plot. Also we observe that an increase in
l causes a more considerable decrease than that caused by an increase in m or n of the
same amount.

3.3.1 Framework

The first step in conducting a numerical analysis rests in setting the problem
in a framework in which it is solvable and organizing it to make the com-
putation efficient. With this in mind, we rewrite the hamiltonian (2.3.5)
using the parametrization (3.2.6) for the single particle angular momentum
quantum numbers:

Ĥ =
1

2

∞∑
m=0

∞∑
n=0

∞∑
l=λmn

〈
m+ l, n

∣∣∣∣ 1

|z|

∣∣∣∣m,n+ l

〉
â†m+l â

†
n ân+l âm (3.3.1)

=
1

2

∞∑
m=0

∞∑
n=0

∞∑
l=λmn

M l
mn â

†
m+l â

†
n ân+l âm (3.3.2)

where λmn := max(−m,−n). Now, one obvious obstacle in diagonalizing
this operator is that it involves infinite sums. In particular the sum indices
going to infinity are single particle angular momentum quantum numbers.
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But from our study of uncorrelated electrons in magnetic field of Section
1.2 we know that angular momentum in this context quantifies the spacial
extension of the electronic states on the surface. So, working with angular
momentum going to infinity is equivalent to working on an infinite plane.

To overcome this practical obstacle we fix a maximum value L for single
particle angular momentum quantum numbers. By doing this we also realize
a much more realistic scenario from the experimental point of view. In fact
a typical setup to study the FQHE is a flat surface with linear dimensions of
a fraction of a millimiter. Applying this condition, the resulting hamiltonian
is:

Ĥ =
1

2

L∑
m=0

L∑
n=0

κmn∑
l=λmn

M l
mn â

†
m+l â

†
n ân+l âm (3.3.3)

where κmn := L−max(m,n).
A convenient choice of basis for the state space is that of occupation

numbers. If we fix the number of particles to N this is composed by the
state vectors:

B :=

|n0 · · ·nL〉 : nj ∈ {0, 1} ∀j = 0, . . . , L;
L∑
j=0

nj = N

 (3.3.4)

where nj can only be zero or one because the involved particles are fermions.
Note that we must fix a finite number of electrons. This is a result of choosing
a cutoff value L for single particle angular momentum quantum numbers: in
fact because of Pauli’s principle there can be at most one particle having a
certain angular momentum mj . Since the possible values for mj range from
0 to L, the maximum possible number of electrons is Nmax = L+ 1.

Now, in this basis, the hamiltonian (3.3.3) is represented by a matrix
whose entries are given by〈

n′0 · · ·n′L
∣∣∣ Ĥ ∣∣∣n0 · · ·nL〉 (3.3.5)

The fact that the system has a finite size, because it implies that the number
of electrons must be finite, causes the total angular momentum

M̂ =
L∑

m=0

m â†mâm (3.3.6)

to be conserved. This simplifies the problem significantly: in fact it implies
that the hamiltonian (3.3.3) in its matrix representation and with our choice
of basis is block diagonal. This is because all matrix elements (3.3.5) with

M̂ |n′0 · · ·n′L〉 = M ′ |n′0 · · ·n′L〉 , M̂ |n0 · · ·nL〉 = M |n0 · · ·nL〉 (3.3.7)

vanish identically every time M 6= M ′. Hence, we can diagonalize separately
all the blocks characterized by different values of total angular momentum.
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Each block has a fixed M and the corresponding Hilbert space is a subspace
of the one spanned by B in which all the state vectors have M total angular
momentum. A basis for this subspace is given by:

BM :=

|n0 · · ·nL〉 ∈ B :
L∑
j=0

j nj ≡M

 (3.3.8)

A simple example is helpful: in the case of N = 3 electrons, with a maximum
single particle angular momentum of L = 8 and with the total angular
momentum of the many-body states fixed to M = 9, our choice of basis for
the state space amounts to:

B9 =
{
|110000001〉 , |101000010〉 , |100100100〉 , |100011000〉 ,
|011000100〉 , |010101000〉 , |001110000〉

}
(3.3.9)

In this case the Hilbert subspace dimension is 7. Consider the difference in
dimension of state space with and without the restriction on M . With the
same parameters, the unrestricted basis B would count a number of vectors
given by

(
L+1
N

)
= 84, i.e. the number of different ways we can switch N zeros

to ones in a string made by L+ 1 zeros.
Since diagonalizing a few small matrices is computationally less intensive

than diagonalizing a single huge matrix, the problem is reduced to a more
practical form. Moreover, if we are able to know in advance the value of
M that identifies the block with the smallest eigenvalue we only need to
diagonalize that one to get the ground state. However, if one wants to
compute the entire excitation spectrum of the system he has to diagonalize
all of the blocks.

There is no known closed form to express the dimension of the Hilbert
space with fixed M . However it can be obtained computationally with ease.
Kasner and Apel have also reported that it can be obtained from the coef-
ficients of the power series representation of a generating function[27].

To build the hamiltonian we must compute the matrix elements (3.3.5).
We already know the coefficients M l

mn, so the only remaining part is the
quantity

K l
mn

(
{n′}, {n}

)
:=
〈
n′0 · · ·n′L

∣∣∣ â†m+l â
†
n ân+l âm

∣∣∣n0 · · ·nL〉 (3.3.10)

We calculate this making use of the following relation, which expresses the
action of a fermionic annihilation operator on occupation number state vec-
tors:

âλ |n0 · · ·nL〉 = δnλ1 (−1)σλ |n0 · · · (nλ − 1) · · ·nL〉 , σλ :=
λ−1∑
j=0

nj

(3.3.11)
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Applying this to (3.3.10), if the â operators act on the right and the â†

operators act on their left we get3

K l
mn

(
{n′}, {n}

)
= (3.3.12)

= δnm1 (−1)σm
〈
n′0 · · ·n′L

∣∣∣ â†m+l â
†
n ân+l

∣∣∣n0 · · · (nm − 1) · · ·nL
〉

(3.3.13)

= δnm1 δ
nn+l
1 (−1)σm+σ̃n+l ·

·
〈
n′0 · · ·n′L

∣∣∣ â†m+l â
†
n

∣∣∣n0 · · · (nm − 1) · · · (nn+l − 1) · · ·nL
〉

(3.3.14)

= δnm1 δ
nn+l
1 δ

n′m+l

1 δ
n′n
1 (−1)σm+σ̃n+l+σ

′
m+l+σ̃

′
n ·

·
〈
n′0 · · ·

(
n′n − 1

)
· · ·
(
n′m+l − 1

)
· · ·n′L

∣∣∣n0 · · · (nm − 1) · · · (nn+l − 1) · · ·nL
〉

(3.3.15)

We have used the prime over σλ to indicate that it must be computed using
the {n′} occupation numbers. Also, a tilde appears in σ̃λ or σ̃′λ whenever
the quantity must be calculated on those vectors on which an annihilation
operator has already acted. The last braket product is left indicated, as it
is promptly computed case by case by the diagonalization program: in any
case it evaluates to another product of Kronecker deltas.

Using this result, the hamiltonian matrix element (3.3.5) evaluates to〈
n′0 · · ·n′L

∣∣∣ Ĥ ∣∣∣n0 · · ·nL〉 =
1

2

L∑
m=0

L∑
n=0

κmn∑
l=λmn

M l
mnK

l
mn

(
{n′}, {n}

)
(3.3.16)

Now, the core of the exact diagonalization problem is in how we choose
the values of L and M to analyze. Ideally, since the hamiltonian is block
diagonal, if we knew where to look it would be very easy to find the ground
state.
The value of L is fixed by the cluster size N and the filling fraction ν. In
particular its value can be specified by considering the following expression
for the filling fraction:

ν = 2π
N

S
=

2N

R2
0

=
N

L+ 1
2

(3.3.17)

If we restrict our analysis to the case of Laughlin type filling fractions ν =
1/2k + 1, with k = 0, 1, 2, . . . we get

L =

⌊
(2k + 1)N − 1

2

⌋
= (2k + 1)N − 1 (3.3.18)

Sometimes it is more fruitful to use another expression for the filling fraction:

ν ′ =
N − 1

L
(3.3.19)

3We use the letter n as an index as well as the symbol for occupation numbers in
general. This will not cause any confusion.
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3. COULOMB INTERACTION IN THE DISK GEOMETRY

This definition is completely equivalent to (3.3.17) in the thermodynamic
limit and it leads to the alternative value of

L = (2k + 1) (N − 1) (3.3.20)

A hint for the value of M comes from Laughlin’s wavefunction, which is
an eigenfunction of total angular momentum with eigenvalue

M = (2k + 1)
N(N − 1)

2

as is clear by considering that each distinct couple of electrons carries an
angular momentum 2k + 1. This tells us that choosing M as above in the
thermodynamic limit of N →∞ gives the inverse filling fraction 2k+1. Still,
we are working with small clusters of electrons and we are nowhere near the
thermodynamic limit. So this value of M as a finite N approximation must
be checked by our analysis.

3.3.2 Numerical study

Amongst our goals is that of comparing the exact ground states that we find
with Laughlin’s wavefunction. Now, usually when an exact diagonalization
result is compared with Laughlin’s state, the wavefunction of the latter is
contructed as the ground state of the first Haldane pseudopotential [23] in
the same restricted space as the exact ground state. In our case, we have
constructed it decomposing Laughlin’s ansatz in Slater determinants follow-
ing Dunne [4]. For the N = 3 problem the decomposition is easy to obtain,
but as the number of involved particles increases, calculating the coefficient
corresponding to any particular term becomes extremely challenging. An
algorithm that delivers this result was perfected by Haldane and Bernevig
[5] but is quite convoluted and computationally intensive, especially starting
from 5 particles onwards. From the decomposition in Slater determinants it
is trivial to obtain the expression of Laughlin’s state in the basis of occupa-
tion numbers.

To search for the ground state we diagonalize the blocks with total angu-
lar momentum ranging from M = L+ 1 to M = N(2L−N + 1)/2 and look
for the minimum energy eigenvalue. We also study how the results change
by varying L (which amounts to tweaking the filling factor). We find that
by increasing L the exact ground state angular momentum grows as well.

Our analysis was carried out making use of a computer program we wrote
in C++, which makes use of the Eigen library4, vastly popular for scientific
purposes.

We start by studying the case of N = 3. Using (3.3.17) with ν = 1/3, the
value of maximum single particle angular momentum is L = 8. In Figure 3.2

4Eigen is Free Software. Think of it as “free as in free speech not as in free beer”. To
learn more visit The Free Software Foundation or The GNU Project.
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3.3. EXACT DIAGONALIZATION FOR FINITE CLUSTER

we plot the ground state energy as a function of total angular momentum.
The lowest energy is found at M = 18, while Laughlin’s state has M = 9.
As we wish to compare the exact ground state with Laughlin’s wavefunction,
this is unsettling because states with different total angular momenta and
same number of particles are necessarily orthogonal.

10 12 14 16 18 20

M

1.7

1.8

1.9

2.0

2.1

ϵ

Figure 3.2: Ground state energy ε as a function of total angular M for the case of N = 3
particles with maximum single particle angular momentum L = 8. The true ground state
is found to be at M = 18.

To try and find a solution to this problem we insert in the hamiltonian
(3.3.3) an additional neutralizing background term. This is different from
what we did in the case of three particles: in fact, there we put the electrons
in a potential well to mimic the band energy. Here we are realizing a form of
homogeneous electron gas (HEG), which is a popular model for interacting
electrons in many-body theory. It consists in setting the electrons on a
positively charged layer, which neutralizes the negative charge. This layer
is usually taken to be uniformly charged, hence the name HEG.

We realize this model by inserting on our disk N additional single par-
ticle wavefunctions (1.2.32) relative to fermions of charge +e. Note that
by doing so we are not precisely introducing a uniform background. How-
ever the background becomes uniform in the thermodynamic limit. The
total hamiltonian must also account for the interaction energies of the back-
ground with itself and with the electrons. If we take complex numbers {wj}
to represent the positions of the positive charges, the two additional terms
are

V+/+ = e2
∑
i<j

1

|wi − wj |
(3.3.21)

V+/− = −e2
N∑
i=1

N∑
j=1

1

|zi − wj |
(3.3.22)
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3. COULOMB INTERACTION IN THE DISK GEOMETRY

The first one is the self interaction of the background. As such, it does not
involve any electronic wavefunction, so from the point of view of the electrons
is a zero-particle interaction, which amounts to a constant. The second term
represents the electron-background binding term which decreases the total
energy. Because the positive and negative fermions can be distinguished
from one another, the sums here are independent. From the point of view
of the electrons, this is a sum of one-particle interactions.

The resulting interaction to be added to the hamiltonian (3.3.3) is ob-
tained by taking the sum of the second quantized form of the operators
(3.3.22):

ĤHEG := −ν
L∑

m=0

L−m∑
l=−m

M l
mmâ

†
mâm +

ν2

2

L∑
m=0

L−m∑
l=−m

M l
mm (3.3.23)

=
ν

2

L∑
m=0

L−m∑
l=−m

M l
mm (ν − 2m) (3.3.24)

This background term has the effect to promote states with lower total
angular momenta. If we repeat the analysis with this additional potential
we find the results of Figure 3.3: this time the exact ground state is found
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Figure 3.3: Ground state energy ε as a function of total angular M for the case with
background potential switched on, N = 3 particles with maximum single particle angular
momentum L = 8. This time the true ground state is found to be at M = 9.

to have the same total angular momentum as Laughlin’s state.
We outline the relationship between the ground states of the hamiltonian

with and without background potential as follows. Laughlin’s wavefunction
is the exact ground state of the short range interaction expressed by Hal-
dane’s first pseudopotential. It resembles the true ground state of the FQHE
system more and more as the thermodynamic limit is approached. Moreover,
because the Coulomb interaction is long range, if Laughlin’s wavefunction
approximates well the exact ground state, it must be that in the presence of
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3.3. EXACT DIAGONALIZATION FOR FINITE CLUSTER

a large number of particles the effective interaction has a short range. We
take the ground state of the hamiltonian with background potential merely
as an indicator of which state (identified by values of L and M) will be
preferred as a ground state as the number of electrons is increased. We
will then use the ground states identified by L and M of the hamiltonian
with the background potential switched off to compare them with Laughlin’s
wavefunction.

Operating in this way for the case N = 3, L = 8 and M = 9 we find a
normalized overlap between the exact FQHE ground state of∣∣∣〈Ψ(L)|Ψ(E)〉

∣∣∣ = 0.997438 (3.3.25)

where L stands for Laughlin and E for Exact. The overlap is particularly
good as we can also see from Figure 3.4 in which we plot the radial charge
densities associated with Laughlin’s wavefunction and with our exact ground
state.

0.5 1.0 1.5 2.0
r

0.1

0.2

0.3

0.4

0.5

ρ(r)

Laughlin's state

Exact ground state

Figure 3.4: Comparison for ν = 1/3 and N = 3 of charge densities obtained from
Laughlin’s wavefunction and the exact ground state wavefunction. The radial coordinate
r is measured in units of magnetic length `.

We ran the same analysis for the case of N = 4 particles. This time
we used the relation involving ν ′ to fix the L quantum number. With 4
electrons and at filling factor 1/3 Laughin’s wavefunction has total angular
momentum quantum number 18. The exact ground state for the interaction
without background potential has M = 21, as shown in Figure 3.5. Hence it
is incompatible with Laughlin’s theory. Similarly to the case with 3 particles,
however, switching on the background potential promotes ground states with
lower total angular momentum: in particular the exact ground state for the
case with background potential switched on is characterized by M = 18,
compatible with Laughlin’s state.

However in this case the normalized overlap between the two wavefunc-
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Figure 3.5: The ground state energies for the case of N = 4, L = 9 with background
interaction switched off. The minimum is found at M = 21.
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Figure 3.6: The ground state energies for the case of N = 4, L = 9 with background
interaction. The total angular momenta are shifted downwards and now the minimum at
M = 18 agrees with that of Laughlin’s wavefunction.

tion is not as good as in the previous case (3.3.25):∣∣∣〈Ψ(L)|Ψ(E)〉
∣∣∣ = 0.627147 (3.3.26)

3.3.3 Remarks

The result for four electrons is clearly worse than that of three: this actually
anticipates a problem that is found in a more fundamental way for the cases
of 5, 6, 7 and 8 electrons. In those cases there appears to be no exact ground
state with angular momenta compatible with Laughlin’s state. To clarify,
in both the cases we studied we observed that there is a unique value of L
that yields a ground state with a value of M compatible with Laughlin’s
wavefunction. Also, that value of L agrees with either one of the filling
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factor definitions (3.3.17) or (3.3.19). Moreover, the ground states have
always resulted to be nondegenerate.

This nondegeneracy is important for a number of reasons: first of all,
because (in the thermodynamic limit) Laughlin’s wavefunction is the non-
degenerate ground state for the FQHE condensate. Hence our exact result
agrees on this level with Laughlin’s ansatz. Moreover, a crucial information
we can extract from the excitation spectra shown before is the size of the
energy gaps. In particular we are interested in the energy gap between the
ground state and the first excited state. We observe that it is fairly small for
the three particles, but starts to get large when N = 4. The presence of a
large energy gap is central to the phenomenology of the FQHE, as it causes
the system to not be easily prone to excitations, which would otherwise
modify the resistance.

Because of the way we obtain it, the Laughlin state we work with is de-
fined on the whole plane, even though the system we are studying is finite.
Maybe by applying some finite size corrections to Laughlin’s wavefunction
the compatibility with the exact ground state might improve. Still it must
be kept in mind that Laughlin’s ansatz validity holds best in the thermody-
namic limit, which our system certainly does not approximate well.

Still, the question remains as why the compatibility is particularly good
for the case of three particles but so bad for the next values of N . Anyhow, it
has been shown that, in the disk geometry, a more appropriate interaction to
model the FQHE for finite clusters of electrons is the short range interaction
without any background potential, instead of the Coulomb interaction [27].
In that case, in fact, the compatibility with Laughlin’s state has been shown
to be preserved independently of the number of particles for up to 9 electrons.

This substantial difference between Coulomb and short range interaction
disappears, at least qualitatively, in the spherical geometry. This probably
indicates that the cause of this discrepancy between the two models is to
be accounted to edge effects, which do not present themselves in the case of
spherical geometry.
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Conclusions

In this work we analyze the FQHE from two different perspectives: we start
by inspecting the problem of three electrons with first-quantized formalism
as a source of insight for the real many-body system, on which we focus
next.

We solve the three-body problem exactly. This is made possible by
restricting the analysis to the lowest Landau level. In this context we find
the full excitation spectrum and illustrate how the ground state of the cluster
is incompressible.

This result is indeed interesting, because in the many-body framework
the ground state of the system is approximated extremely well by Laughlin’s
wavefunction, which at filling factors 1/q (with q ≤ 70) describes an incom-
pressible homogeneous fluid. This qualitative feature of incompressibility
thus represents an important connection between the FQHE ground states
in the two different frameworks.

Next we consider a FQH system with disk geometry and for it we de-
rive an analytical expression for the Coulomb interaction matrix elements
in terms of finite sums. An equivalent expression of these quantities is then
employed to conduct an exact diagonalization of the hamiltonian for a small
cluster of electrons. We found non-degenerate ground states presenting ap-
preciable energy gaps, central to the FQHE phenomenology. The compar-
ison of the exact ground states with Laughlin’s wavefunction unveiled the
importance of edge effects for finite systems in the disk geometry. These
constitute an issue that does not present itself in geometries with periodic
properties.

This last part of the study leaves some open questions, concerning the
compatibility of Laughlin’s wavefunction with exact ground states in the
finite disk geometry for clusters of 5-8 electrons and the relationship between
Haldane’s short range interaction and Coulomb’s interaction.
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Appendix A

Three particles matrix
elements

Below are reported the first 19 matrices of the coulomb operator, in units
of 3e2/`

√
2. (

29
√

π
2

64

)
(M = 3)(

1627
√

π
2

4096

)
(M = 5)(

1373
√

π
2

4096

)
(M = 6)(

46761
√

π
2

131072

)
(M = 7)(

21085
√

π
2

65536

)
(M = 8) 4553723

√
π
2

16777216

19077
√

21π
2

8388608

19077
√

21π
2

8388608

1367831
√

π
2

4194304

 (M = 9)

(
5178219

√
π
2

16777216

)
(M = 10) 142538921

√
π
2

536870912
1560567

√
15π

536870912

1560567
√
15π

536870912

81063847
√

π
2

268435456

 (M = 11)

 62702273
√

π
2

268435456

242895
√

55π
2

268435456

242895
√

55π
2

268435456

79560695
√

π
2

268435456

 (M = 12)

 4463216685
√

π
2

17179869184
83862675

√
33π

34359738368

83862675
√
33π

34359738368

9702956493
√

π
2

34359738368

 (M = 13)
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 986501059
√

π
2

4294967296
11543421

√
143π

17179869184

11543421
√
143π

17179869184

9795308429
√

π
2

34359738368

 (M = 14)


228904177941

√
π
2

1099511627776

208281515
√

455π
2

1099511627776

11449333
√

5005π
2

1099511627776

208281515
√

455π
2

1099511627776

279565302739
√

π
2

1099511627776

7504047565
√

11π
2

1099511627776

11449333
√

5005π
2

1099511627776

7504047565
√

11π
2

1099511627776

292574872017
√

π
2

1099511627776

 (M = 15)

 62140764963
√

π
2

274877906944
280185993

√
455π

549755813888

280185993
√
455π

549755813888

151028152125
√

π
2

549755813888

 (M = 16)


57777681176451

√
π
2

281474976710656

171662211709
√

35π
2

140737488355328
11991788675

√
143π

140737488355328

171662211709
√

35π
2

140737488355328

17515322652905
√

π
2

70368744177664
17343508093

√
5005π

70368744177664

11991788675
√
143π

140737488355328
17343508093

√
5005π

70368744177664

8876098108845
√

π
2

35184372088832

 (M = 17)


53379983866091

√
π
2

281474976710656

12834571655
√

51π
2

35184372088832

982253305
√

4641π
2

140737488355328

12834571655
√

51π
2

35184372088832

979238156329
√

π
2

4398046511104

34646642935
√

91π
2

17592186044416

982253305
√

4641π
2

140737488355328

34646642935
√

91π
2

17592186044416

18664220010163
√

π
2

70368744177664

 (M = 18)


1824430304205045

√
π
2

9007199254740992

11182008347211
√

17π
2

4503599627370496
934663185429

√
221π

9007199254740992

11182008347211
√

17π
2

4503599627370496

548844907077573
√

π
2

2251799813685248
23066331838683

√
13π

4503599627370496

934663185429
√
221π

9007199254740992
23066331838683

√
13π

4503599627370496

1082514117068865
√

π
2

4503599627370496


(M = 19)
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The coulomb matrix eigenvalues have been computed numerically and
are presented in the following table:

M Eigenvalues (10−1 · 3e2/`
√

2)

3 5.67908
5 4.97837
6 4.20117
7 4.4713
8 4.03231
9 4.11131 3.37774
10 3.8683
11 3.85966 3.25272
12 3.72354 2.91866
13 3.68369 3.11162
14 3.60104 2.85063
15 3.55564 2.9709 2.60443
16 3.49887 2.77754
17 3.45685 2.84132 2.55586
18 3.41354 2.70398 2.37408
19 3.37683 2.72767 2.50144

Table A.1: The downward trend of the eigenvalues as M is increased competes with the
effects of the potential well, which lowers the energy of states with small M , compared to
those with large M . As α is tweaked, the state minimizing the overall interaction energy
(potential well and electrostatic repulsion) becomes the new ground state.
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