
Corso di Laurea Triennale in Fisica

Landau diamagnetism
and

de Haas-van Alphen oscillations

Relatore:
prof. Luca Guido Molinari

Tesi di Laurea di:
Lorenzo De Ros

Matricola: 907979

Anno Accademico 2019/2020



Contents

1 Introduction 3
1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 History of the observations . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The external magnetic field H . . . . . . . . . . . . . . . . . . . . . 7

2 Statistical mechanics 8
2.1 Classical statistical mechanics . . . . . . . . . . . . . . . . . . . . . 8
2.2 Quantum statistical mechanics . . . . . . . . . . . . . . . . . . . . . 9

3 Classical treatment 11

4 Onsager semiclassical treatment 13
4.1 Semiclassical motion . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Bohr-Sommerfeld quantization . . . . . . . . . . . . . . . . . . . . . 14
4.3 Onsager derivation of the de Haas-van Alphen oscillations frequency 15
4.4 Tomography of the Fermi surface . . . . . . . . . . . . . . . . . . . 17

5 Quantum treatment 18
5.1 Landau levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Degeneracy of Landau levels . . . . . . . . . . . . . . . . . . . . . . 20

6 Landau’s approach 22
6.1 Landau’s derivation of diamagnetism . . . . . . . . . . . . . . . . . 22
6.2 Simplified model of de Haas-van Alphen oscillations . . . . . . . . . 24

7 Peierls’ method 26
7.1 Mathematics behind the method . . . . . . . . . . . . . . . . . . . . 26
7.2 2D derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.2.1 Boltzmann partition function . . . . . . . . . . . . . . . . . 28
7.2.2 The integral in 2D . . . . . . . . . . . . . . . . . . . . . . . 28
7.2.3 Pauli paramagnetism and Landau diamagnetism . . . . . . . 29
7.2.4 The de Haas-van Alphen effect . . . . . . . . . . . . . . . . 30

7.3 3D derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3.1 Boltzmann partition function . . . . . . . . . . . . . . . . . 32
7.3.2 The integral in 3D . . . . . . . . . . . . . . . . . . . . . . . 33
7.3.3 Pauli paramagnetism and Landau diamagnetism . . . . . . . 34
7.3.4 The de Haas-van Alphen effect . . . . . . . . . . . . . . . . 35

7.4 Comparing semiclassical and quantum results . . . . . . . . . . . . 36

1



CONTENTS 2

A 37
A.1 Proof of the resultant formula . . . . . . . . . . . . . . . . . . . . . 37
A.2 Hankel representation of Euler Γ function . . . . . . . . . . . . . . . 37
A.3 The integral of cos(αt)

cosh2(t)
. . . . . . . . . . . . . . . . . . . . . . . . . . 38

B The free electron gas 39
B.1 2D calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
B.2 3D calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



Chapter 1

Introduction

1.1 Summary
An electron can interact with a uniform magnetic field in 2 ways: through spin-field
coupling and through orbit-field coupling. The first interaction is at the base of
Pauli paramagnetism, discovered by Wolfgang Pauli in 1927, and the second inter-
action underlies Landau diamagnetism and de Haas-van Alphen effect, predicted
and observed in 1930.

In this work we will concentrate on the consequences of this second coupling.
In particular we will first analyse the case of a Bloch electron (electron in a lat-
tice subject to a periodic potential) in a semiclassical context and we will obtain
the quantization of the orbits’ radius and energy. Moreover, we will deduce a
periodicity in the structure of orbits to vary the field strength.

Then we will take into consideration the case of an almost free electron gas,
which is a good approximation of the weakly bound electrons inside a metal. In
this context it is possible to calculate analitically the magnetization, which happens
to be composed of 2 factors: the first one linear in the field and the second one
oscillating.

The frequencies of the oscillations for the Bloch electron and for the almost free
electron gas are coherent and they are directly related to the geometry of the Fermi
surface. The shape of the Fermi surface is involved in a lot of different phenomena
(such as transport coefficients and optical characteristics) and the cited relation
turns out to be a tool to measure it.

In particular, we now outline the major points of this work. First of all, we con-
textualise the canonical and grand canonical partition functions and free energies
in the classical and quantum case for an electron gas assumed to be non interacting.
In this treatment the classical Boltzmann single particle partition function

Z1 =

∫︂
Ω1

d3xd3p

h3
e−βϵ(x⃗,p⃗)

the quantum Boltzmann single particle partition function

Z1 =
∑︂
α

gαe
−βϵα

3
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and the quantum grand canonical potential

Ω = − 1

β

∑︂
α

gα ln
(︁
1 + e−β(ϵα−µ)

)︁
have been used. The quantum grand canonical potential is directly connected with
the average magnetization thanks to the relation ⟨M⟩ = − 1

V
∂Ω
∂H

⃓⃓
N

, hence to the
magnetic susceptibility, which is defined as χ = ∂⟨M⟩

∂H
.

We start by analysing the response of a free electron gas in a classical framework,
which leads to the absence of diamagnetism. This result is known as Bohr-van
Leeuwen theorem and it proves that paramagnetism and diamagnetism must have
a quantum origin.

Then we study the behaviour of a Bloch electron in a semiclassical framework
and, using Bohr-Sommerfeld quantization of the action, we obtain an estimate
of the fundamental frequency of de Haas-van Alphen oscillations in the magnetic
susceptibility and its relation with the geometry of the Fermi surface

∆

(︃
1

H

)︃
=

2πe

ℏcSex(ϵF )

where Sex(ϵF ) is the extremal cross section in k space of the Fermi surface evaluated
at the Fermi energy.

At this point, we give an exact quantum treatment of an electron in a uniform
magnetic field (Landau quantization and degeneracy of Landau levels) starting
from the Hamiltonian

h =
1

2m∗

(︄
p⃗+ e

A⃗(r⃗)

c

)︄2

− µ⃗ · H⃗

and obtaining the eigenvalue spectrum

ϵkzmsn = ℏωc

(︃
n+

1

2

)︃
+

ℏ2k2z
2m∗ +msµBH

with degeneracy at fixed kz equal to g = AeH
2πℏc and the eigenfunctions

ψkxkzmsn(y) =
1√

2nn!lπ1/4
e−

(y−y0)
2

2l2 Hn

(︃
y − y0
l

)︃
ei(kxx+kzz)

Afterwards, we follow Landau’s original derivation of the diamagnetic suscepti-
bility of an electron gas in the case of low fields. He calculated the grand canonical
potential by approximating the series

Ωdia = − eHV

β2π2ℏc

∞∑︂
n=0

∫︂ +∞

−∞
dkz ln

(︄
1 + e

−β

(︃
ℏ2k2z
2m∗ +ℏωc(n+ 1

2)−µ

)︃)︄
with an integral thanks to Euler-Maclaurin formula. This leads to

χdia = −1

3

(︂ m
m∗

)︂2 µ2
B

V
ρ(ϵF ) = −1

3

(︂ m
m∗

)︂2
χpara
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which highlights the relation between the magnetic susceptibility due to the spin-
field coupling (Pauli paramagnetism) and the one due to the orbit-field coupling
(Landau diamagnetism).

In the end we obtain the magnetization and the magnetic susceptibility of a 2D
and 3D electron gas by using Peierls’ method. This exploits the relation between
the grand canonical potential and the Boltzmann single particle partition function

Ω =

∫︂ +∞

0

dϵ
df(ϵ)

dϵ
L −1

[︃
Z(s)

s2

]︃
(ϵ)

The calculation of the inverse Laplace transform requires an integral in the com-
plex plane, done thanks to the residue theorem. It results that the grand canonical
potential, hence also its derivatives (the magnetization and the magnetic suscep-
tibility), is composed of 3 addends: Pauli paramagnetism, Landau diamagnetism
and de Haas-van Alphen oscillations.

The first two addends are identical to the ones found by Landau, as long as we
substitute the 2D or 3D density of states at the Fermi energy. The last addend, in
the case of a 2D gas, is

Ωosc =
AeH

πℏcβ

+∞∑︂
n=1

(−)n

n
cos

(︃
nπ

m∗

m

)︃ cos
(︂

2nπµ
ℏωc

)︂
sinh

(︂
2nπ2

βℏωc

)︂
and in the case of a 3D gas becomes

Ω =
V

2π2β

(︃
eH

ℏc

)︃3/2 +∞∑︂
n=1

(−)n

n3/2
cos

(︃
nπ

m∗

m

)︃ cos
(︂

2nπµ
ℏωc

− π
4

)︂
sinh

(︂
2π2n
βℏωc

)︂
This result is coherent with the semiclassical one obtained by Onsager, but less
general, since it requires the electron gas to be almost free, which means that the
Fermi surface is required to be almost spherical.
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Figure 1.1: First observation of de Haas-van Alphen effect made by de Haas and
van Alphen. We can see the experimental values of the magnetic susceptibility
χ as a function of the external field H. The dependence of the susceptibility of
diamagnetic metals upon the field, W. J. De Haas and P. M. Van Alphen, 1930.

1.2 History of the observations
W. J. de Haas was a physicist and a professor at Leiden university, Netherlands.
In the late 1920s, he discovered, together with L. V. Shubnikov, the Shubnikov-de
Haas effect, which is an oscillation in the conductivity of a material that occurs
at low temperatures as a function of very intense magnetic fields. This was the
inspiration that led De Haas and his student P. M. van Alphen in 1930 to measure
the magnetization M of a sample of bismuth as a function of magnetic field in
conditions of high fields at 14.2 K and to find oscillations in M/H (figure 1). The
main technique exploited to measure the oscillations is based on the fact that
in a field a magnetized sample experiences a torque proportional to its magnetic
moment. This leads to the measure of the oscillations in angular postion of a
sample of the metal, attached to a filar suspension, as the magnetic field strength
varies.

Earlier that year, the 22-year-old Lev Landau, a Soviet physicist, was able to
account for the oscillations in free electron theory, as a direct consequence of the
quantization of closed electronic orbits in a magnetic field, and thus as a direct
observational manifestation of a purely quantum phenomenon. He also pointed
out a -1/3 ratio between the diamagnetic susceptibility he found and the already
known paramagnetic susceptibility discovered by Pauli in 1927.

The theory for anisotropic system was put forward by Blackman in 1937 and
compared with the experimental datas for the bismuth susceptibility (figure 2). In
1951, Sondheimer and Wilson were the first to evaluate the grand canonical po-
tential for the electron gas immersed in a uniform magnetic field exploting Peierls’
method, as it is done in this work.

The full extent of the usefulness of measuring the oscillations of the diamagnetic
suscpetibility of the metals was only pointed out in 1952 by Onsager. He related
the frequency of the oscillations to the shape of the Fermi surface, building a tool
for its measurement. In 1952, Dingle explained that if collision broadening of the
energy levels is taken into account, an extra damping factor must be included in
equation (Dingle factor).
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Figure 1.2: Blackman’s comparison of the experimental χ − H curves with the
theoretical curves for T = 0, (a) when the field is along the binary axis, (b) when
the field is perpendicular to the binary axis. The experimental points are indicated
in the curves. The susceptibility per unit volume is obtained by multiplying the
ordinate by 9 · 8 × 10−6, the susceptibility per unit mass by multiplying by 10−6.
The unit for the abscissa is 103G. On the diamagnetic susceptibility of bismuth, M.
Blackman, 1938.

1.3 The external magnetic field H

In this work we calculate the average magnetization per unit volume, which will
be derived thanks to the relation ⟨M⟩ = − 1

V
∂F
∂H

⃓⃓
N

. F represents the canonical
free energy (it can be replaced with the grand canonical free energy Ω), which will
be defined in the next chapter. The magnetic susceptibility is defined as χ := ∂M⃗

∂H
,

where H is the external magnetic field, which is related to B through the equation
B = H + 4πM .

Since in an experiment we have control on H and 4πM is a negligible correction
in comparison with H, we calculate M taking the derivative with respect to H and
substituting H in place of B everywhere in the following derivations.



Chapter 2

Statistical mechanics

2.1 Classical statistical mechanics
From a classical point of view, our system is a gas composed of point particles with
electric charge −e. We define the canonical partition function of the system

Z :=

∫︂
Ω

d3Nxd3Np

N !h3N
e−βE (2.1)

where E is the total energy of the gas and the N ! factor is due to the fact that
interchanging the coordinates of two electrons gives rise to a classically equivalent
configuration of the system. The integral is taken over the phase space volume Ω
of allowed configurations of the system and the presence of the Planck constant is
just an arbitrary normalization.

The considered system is an ideal gas in the sense that we assumed the electrons
to be non interacting, and thanks to this hypothesis we can write the total energy of
the gas as E =

∑︁N
i=1 ϵ(x⃗i, p⃗i), where ϵ(x⃗i, p⃗i) is the single particle energy, function

of the 6 coordinates x⃗i and p⃗i in the phase space.

Therefore the partition function can be factored as Z = 1
N !

N∏︁
i=1

Zi = 1
N !
ZN

1 ,

where
Z1 =

∫︂
Ω1

d3xd3p

h3
e−βϵ(x⃗,p⃗) (2.2)

since the energy of each electron ϵ is the same function of the coordinates x⃗i and p⃗i.
The canonical partition function Z contains all the information about the system
and it can be used to calculate the canonical free energy

F := − 1

β
ln(Z) (2.3)

which for a non interacting gas becomes

F = −N
β

ln

(︃
Z1

N !

)︃
(2.4)

The average magnetization, which we are interested in, is defined in the canonical
ensemble as < M >= − ∂F

∂H
.

8
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2.2 Quantum statistical mechanics
Electrons are fermions with s = 1/2. In our system we have a certain number of
electrons confined inside a box. The global wave function of all electrons, since
they have semi-integer spin, must be antisymmetric under interchange of any 2
electrons. Pauli exclusion principle is a direct consequence of this global wave
function characteristic and it states that 2 identical fermions (in our case electrons)
can never occupy the same quantum state, otherwise the global wave function
would be symmetric under their interchange. This fact plays a very important role
in the behaviour of an electron gas, expecially at low temperature, which is our
case.

In our analysis the electrons are assumed to be non interacting, therefore the
global Hamiltonian H can be decomposed as the sum of the N single electron
Hamiltonians h

H =
N∑︂
j=1

h(pj⃗, rj⃗, σ⃗j) (2.5)

where p⃗j, r⃗j and σ⃗j are respectively the momentum, position and spin operators
of the j-th electron. The operators relative to different electrons commute, hence
the single particle Hamiltonians [h(p⃗i, r⃗i, σ⃗i), h(p⃗j, r⃗j, σ⃗j)] = 0 So, in general, the
single electron wave function is a solution of the equation hψk = ϵkψk, with ϵk
eigenvalue of the k-th eigenstate of the single electron Hamiltonian. Now the wave
function of a generic state of the system is built antisymmetrising the considered
single particle eigenfunctions (Slater determinant) as follows

Ψ(r⃗1, σ⃗1, ..., r⃗N , σ⃗N) =
1√
N !

∑︂
P

(−)P
∏︂
k

ψk(r⃗P (1), σ⃗P (1), ..., r⃗P (N), σ⃗P (N)) (2.6)

where the sum is taken over all possible permutations P of the electron index and
the product is taken over the k single particle eigenstates considered.

Ψk̄ is the k̄-th solution of the Schrödinger equation HΨk̄ = Ek̄Ψk̄ and using the
relations (2.5) and (2.6), we obtain E =

∑︁
k ϵk which means that the energy of the

state of a set of non interacting electrons is the sum of the energies of the states
that have been antisymmetrised to build it.

Now we analyse in a quantum context the already mentioned single particle
canonical partition function particle (2.2)

Z1 := tr
(︁
e−βh

)︁
=
∑︂
k

e−βϵk =
∑︂
α

gαe
−βϵα (2.7)

where the trace is taken over all possible eigenfunction ψk of the operator h. This
is equivalent to summing over all possible ϵα eingenvalues of h taking into account
the degeneracy of each eigenvalue gα.

We also introduce the grand canonical partition function Ξ of the system, which
is defined as

Ξ := tr
(︁
e−β(H−µN)

)︁
(2.8)
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where N intended as an operator and µ is called the chemical potential. Now we
elaborate the formula in our conditions

Ξ =
∞∑︂

N=0

∑︂
k̄

e−β(
∑︁

k ϵk−µN) =

where the first sum is taken over all possible N numbers of electrons and the second
sum is taken over all possible k̄ eigenstates of the system’s Hamiltonian H. This
is equivalent to the summation

=
∞∑︂

N=0

∑︂
nk

e−β
∑︁

k(ϵk−µ)nk =
∞∑︂

N=0

∑︂
nk

∏︂
k

e−β(ϵk−µ)nk =

where nk is the number of electrons occupying the k-th eigenstate with the restric-
tion

∑︁
k nk = N . Extending the second summation over all possible nk, we can

remove the last condition and the summation over all possible N . Therefore

=
∑︂
nk

∏︂
k

e−β(ϵk−µ)nk =
∏︂
k

∑︂
n

e−β(ϵk−µ)n =
∏︂
k

(︁
1 + e−β(ϵk−µ)

)︁
since two fermions can never occupy the same quantum state, so the only possibil-
ities are n = 0, 1

Ξ =
∏︂
k

(︁
1 + e−β(ϵk−µ)

)︁
(2.9)

The last quantity we introduce is the grand canonical potential (grand canonical
free energy), which is defined as

Ω := − 1

β
ln Ξ (2.10)

and thanks to equation (2.9) we can write in our context

Ω = − 1

β

∑︂
k

ln
(︁
1 + e−β(ϵk−µ)

)︁
= − 1

β

∑︂
α

gα ln
(︁
1 + e−β(ϵα−µ)

)︁
(2.11)

From the grand canonical potential, the average magnetization, which we are
interested in, is defined in the grand canonical ensemble as < M⃗ >:= − 1

V
∂Ω
∂H

and
similarly the average number of electrons < N⃗ >:= −∂Ω

∂µ
.



Chapter 3

Classical treatment

Bohr-van Leeuwen theorem states that diamagnetism can not occur in a classical
system at the equilibrium. First we give a non-formal insight on the 2D phe-
nomenon.

We consider N electrons confined inside a 2D large circular box of radius R as
in figure 3.1. The collisions of the electrons with the edge of the box are assumed
to be elastic. The area of the box is A = πR2 and the density of the electrons
n = N

A
is uniform inside the box. The electrons are immersed in a magnetic field

orthogonal to the 2D box, therefore each electron is subject to the Lorentz force
F⃗ = − e

c
v⃗×H⃗, which is a centripetal force since it is by definition orthogonal to the

velocity. We obtain the relation for the magnitude mv2

r
= e

c
vH. This causes the

trajectories to be circumferences of radius r = v
ωc

, where ωc :=
eH
mc

is the cyclotron
frequency, all run in the same direction.

The magnetic moment of each electron can be calculated as µ = − eL⃗
2m

where
L⃗ = ρ⃗ × mv⃗ is the angular momentum of the considered electron with respect
to an origin common to every electron. We choose the common origin to be, for
instance, the point B in figure 3.1. When electron 2 passes through the small
element enclosed by the square, it has the same angular momentum of electron 1
when it passes through this element, but with opposite direction. Since electrons
are uniformly distributed in the box, it is clear that for each electron passing
through a given point in the box with a certain velocity, there is another electron
passing through the same point with the same velocity but with opposite direction.
The electrons near the boundary, like electron 1, collide with the edge and bounce
elastically along the edge, forming a sequence of arcs of circumference. These
electrons play a fundamental role in the absence of diamagnetism in classical models
because, without them, electrons passing near the edge can not be compensated.

Now we exhibit a formal proof. We consider N electrons as a 3D classical ideal
(non interacting) gas of charged particles in a volume V . The magnetization M⃗ of
the gas is the total magnetic moment of the electrons per unit volume.

The total Hamiltonian of the system, in the case of an electron gas, it can be
written in the form

H =
1

2m

N∑︂
i=1

(︄
p⃗i +

eA⃗(r⃗i)

c

)︄2

(3.1)

where p⃗i is the generalised momentum of the i-th electron and A⃗ is the vector

11
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Figure 3.1: A representation of the behaviour of classical charged particles con-
fined in a circular 2D box with elastic edge. The theory of electric and magnetic
susceptibilities, J. H. van Vleck, 1932.

potential of the field H⃗. In the canonical ensemble formalism, we calculate the
average value of the magnetization as < M⃗ >= − 1

V
∂F
∂H

and from equation (2.4) we
write

F = −N
β

ln

(︃∫︂
V

d3x

N !h3

∫︂ +∞

−∞
d3p e

− β
2m

(︂
p⃗+

eA⃗(r⃗)
c

)︂2
)︃

Defining the mechanical momentum Π⃗i = pi +
e
c
A⃗ of the i-th electron and

substituting it makes the integrand independent on the field H⃗ and does not affect
the ends of the integral (since they are ±∞). Therefore the derivative of F with
respect to H must vanish and no magnetization can occur.



Chapter 4

Onsager semiclassical treatment

4.1 Semiclassical motion
A semiclassical treatment has been provided by Onsager using Bohr-Sommerfeld
quantization. This consists, first, in deriving the motion of an electron inside a
lattice (Bloch electron) immersed in a magnetic field H⃗ from the known Hamilton’s
equations of motion.

Denoting by k⃗ the generalised wave vector of the electron and by A⃗(r⃗) the
vector potential of the magnetic field, we define the mechanical wave vector of the
electron as

K⃗ := k⃗ +
e

ℏc
A⃗(r⃗) (4.1)

The equations of motion are

ℏ
dki
dt

= − ∂h

∂ri
(4.2)

vi =
∂h

ℏ∂ki
(4.3)

where h is the single particle Hamiltonian and i stands for the i-th component of
the vectors. Keeping in mind the aim of taking into account the presence of the
lattice (that is a periodic potential), we make the general assumption of a single
electron Hamiltonian of the form h = ϵ

(︂
k⃗ + e

ℏcA⃗(r⃗)
)︂
= ϵ(K⃗).

Introducing the wave vector K⃗ in equation (4.2) we can write

ℏ
dKi

dt
− e

c

dAi(r⃗)

dt
= − ∂h

∂ri
= −∂Kj

∂ri

∂h

∂Kj

(4.4)

and in equation (4.3)

ℏvi =
∂Kj

∂ki

∂h

∂Kj

=
∂h

∂Ki

(4.5)

Considering the last term in equation (4.4), we calculate the first factor and we
recognise in the second factor equation (4.5), obtaining

ℏ
dKi

dt
= − e

ℏc
∂Aj(r⃗)

∂ri
ℏvj +

e

c

dAi(r⃗)

dt
= −e

c

(︃
vj
∂Aj(r⃗)

∂ri
− vj

∂Ai(r⃗)

∂rj

)︃
13
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In the last term of the above expression we can recognise
(︂
v⃗ × (∇⃗ × A⃗)

)︂
i
, and in

the end the equations of motion become

ℏvi =
∂ϵ

∂Ki

(4.6)

ℏ
dKi

dt
= −e

c
(v⃗ × H⃗)i (4.7)

where we have used the relation H⃗ = ∇⃗ × A⃗.
Since H⃗ is uniform, without loss of generality we assume it in the z direction

H⃗ = (0, 0, H). The first equation of motion (4.6) can be written in the form

d

dt

(︂
ℏK⃗ +

e

c
r⃗ × H⃗

)︂
= 0

since H⃗ does not vary with time. Solving and projecting the above equation in the
Kx −Ky plane leads to

K⃗⊥ = − e

ℏc
(r⃗⊥ − r⃗0⊥)× H⃗ (4.8)

At fixed ϵ and Kz, calling A⃗(ϵ,Kz) the area of the orbit of the electron in the
x−y plane and S⃗(ϵ,Kz) the area of the orbit of the electron in the Kx−Ky plane,
we now prove that

S⃗(ϵ,Kz) =

(︃
eH

ℏc

)︃2

A⃗(ϵ,Kz) (4.9)

Differentiating equation (4.8) we obtain

dK⃗⊥ = − e

ℏc
(dr⃗⊥ × H⃗)

and, thanks to this, we can write

S⃗(ϵ,Kz) =
1

2

∮︂
K⃗⊥ × dK⃗⊥ =

(︂ e
ℏc

)︂2 1
2

∮︂
(r⃗⊥ × H⃗)× (dr⃗⊥ × H⃗) =

which, using the properties of the vector product, becomes

=

(︃
eH

ℏc

)︃2
1

2

∮︂
r⃗⊥ × dr⃗⊥ =

(︃
eH

ℏc

)︃2

A⃗(ϵ,Kz)

4.2 Bohr-Sommerfeld quantization
Bohr-Sommerfeld relation for the quantization of the action is⃓⃓⃓⃓∮︂

γn

k⃗ · dl⃗
⃓⃓⃓⃓
= 2π

(︃
n+

1

2

)︃
(4.10)

where the integral is taken along the n-th electron orbit γn and the addend 1
2

is a
correction made for the system under consideration.
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Substituting the definition of the generalised wave vector (4.1), we obtain⃓⃓⃓⃓∮︂
γn

K⃗ · dl⃗ − e

ℏc

∮︂
γn

A⃗ · dl⃗
⃓⃓⃓⃓
= 2π

(︃
n+

1

2

)︃
We can replace K⃗ with this expression in the first integral and, thanks to Stokes’
theorem, we can write⃓⃓⃓⃓

− e

hc

∮︂
γn

[︂
(r⃗ − r⃗0)× H⃗

]︂
· dr⃗ − e

hc

∫︂
An

(∇× A⃗) · dA⃗
⃓⃓⃓⃓
= n+

1

2

where An is the area within the orbit γn.
The integral along the closed path γn of r⃗0 × H⃗ vanishes since it is a constant

vector and by definition H⃗ = ∇×A, so calling Φ the flux of the magnetic field H⃗
across S it results ⃓⃓⃓⃓

− e

hc

∮︂
γn

(r⃗ × H⃗) · dr⃗ − e

hc
Φ

⃓⃓⃓⃓
= n+

1

2

Using the triple product relation, the formula
∮︁
γn

1
2
r⃗ × dr⃗ = A⃗n and defining

Φ0 :=
eh
c
, in the end the equation becomes Φ =

(︁
n+ 1

2

)︁
Φ0.

The flux quantization impose a minimal circular orbit dimension Φ0 = Hπl2

which have radius l =
√︂

ℏc
eH

, also called magnetic length, and the more energetic

orbits have quantized radius Rn = l
√︂
n+ 1

2
.

4.3 Onsager derivation of the de Haas-van Alphen
oscillations frequency

In addition, we can elaborate differently the semiclassical condition for the quanti-
zation (4.10), in order to obtain an estimate for the frequency of the de Haas-van
Alphen oscillations.

Although it may seem unnatural in a system with cylindrical symmetry not to
choose a symmetric vector potential A⃗ in the x ⇔ y interchange, the following is
the easiest way of derivation. The choice A⃗ = (−Hy, 0, 0) is called the Landau
gauge and it leads to the correct magnetic field H⃗ = ∇× A⃗.

We can write the components of the relation (4.1) in the form⎧⎪⎨⎪⎩
Kx = kx − eHy

ℏc
Ky = ky

Kz = kz

hence the quantization condition as follows⃓⃓⃓⃓∮︂
γn

kxdx+

∮︂
γn

kydy

⃓⃓⃓⃓
= 2π

(︃
n+

1

2

)︃
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Since we have chosen the vector potential A⃗ only dependent on y coordinate,
the motion of the electron in the x direction remains the same as in the lattice
without the magnetic field. Therefore kx is constant and its integral along a closed
path vanishes.

Differentiating the first relation of the system dKx = − eH
ℏc dy we can write

Sn(ϵ, kz) =

∮︂
γn

KydKx =
2πeH

ℏc

(︃
n+

1

2

)︃
= ∆S(ϵ, kz)

(︃
n+

1

2

)︃
(4.11)

where we have recognised in the first term the area Sn(ϵ, kz) of the circle in the k-
space at fixed kz and energy up to ϵ and ∆S(ϵ, kz) the difference between the areas
of two succeeding levels. Equation (4.11) is known as Onsager relation and it is
directly connected to the flux quantization Φ =

(︁
n+ 1

2

)︁
Φ0 through equation (4.9).

At fixed kz we can approximate the quantity

(ϵn+1 − ϵn)
Sn+1(ϵn+1, kz)− Sn(ϵn, kz)

ϵn+1 − ϵn
=

2πeH

ℏc

in the limit n≫ 1 (equivalent to the limit H weak field) with

(ϵn+1 − ϵn)
∂S(ϵ, kz)

∂ϵ
=

2πeH

ℏc

Classically the cyclotron frequency is defined as ωc :=
eH
mc

. In our context we can
generalise this definition at costant kz in the form ℏωc = ϵn+1 − ϵn, and this leads
to a natural definition of the effective mass of the electron

m∗ =
ℏ2

2π

(︃
∂S(ϵ, kz)

∂ϵ

)︃−1

(4.12)

We can notice that, for an increase in H such that Sn+1(ϵ, kz) = Sn(ϵ, kz) =
S(ϵ, kz), the electron orbit are the same as before the increase, hence the magnetic
properties in which we are interested. We obtain the conditions

S(ϵ, kz)

Hn

=
2πe

ℏc

(︃
n+

1

2

)︃
S(ϵ, kz)

Hn+1

=
2πe

ℏc

(︃
n+

3

2

)︃
and in the end the relation

∆

(︃
1

H

)︃
=

2πe

ℏcS(ϵ, kz)

From the formula, it appears evident that the period is dependent on the kz
value, therefore we would expect an almost continuous period spectrum. However,
it can be shown that the main contributions to the magnetization at fixed ϵ are
due to the kz values such that S is extremal (maximum or minimum), that is
∂S(ϵ,kz)

∂kz

⃓⃓⃓
kzex

= 0 and Sex(ϵ) = S(ϵ, kzex(ϵ)). Since Sex(ϵ) is in general a growing

function of the energy, the fundamental period (the shortest) is

∆

(︃
1

H

)︃
=

2πe

ℏcSex(ϵF )
(4.13)
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Figure 4.1: Extremal surfaces of a general shape of the Fermi surface, with repsect
to different directions of the magnetic field.

4.4 Tomography of the Fermi surface
The equation (4.13) shows that the de Haas-van Alphen phenomenon can be used as
a tool for the tomography of the Fermi surface of a metal. In fact, the measurement
of the area of the extremal surfaces in k-space orthogonal to the field leads to a
complete map of the Fermi surface. This is carried out by measuring the period of
the oscillations as a function of the field direction. The importance of the knowledge
of the Fermi surface is that it is involved in the derivation of a lot of properties of
the material, such as the transport coefficients and optical characteristics.



Chapter 5

Quantum treatment

5.1 Landau levels
We start now with an exact quantum approach of the motion of an electron im-
mersed in a magnetic field.

We will take into consideration the presence of the lattice allowing the possi-
bility for an effective mass m∗, as already done above. For a matter of simplicity
in the following derivations we will exclude the possibility for m∗ to be dependent
from E, from kz, or from the direction of the magnetic field. In practice, this means
that m∗ will replace m in every kinetic term, but obviously not in the interaction
between the intrinsic magnetic moment of the electrons and the magnetic field.
This is accurate only for the electrons in the metal which are very weakly bound
to atoms’ nuclei and which are near the bottom of a symmetric band, where the
energy may be assumed proportional to k2, and where the Fermi surface is almost
spherical.

The general Hamiltonian of such a system is

h =
1

2m∗

(︄
p⃗+ e

A⃗(r⃗)

c

)︄2

− µ⃗ · H⃗ (5.1)

and introducing the conditions H⃗ = (0, 0, H) of uniform field and µ⃗ = −2µB
S⃗
ℏ for

the electron, we obtain

h =
p2

2m∗ − e

m∗

(︁
2A⃗ · p⃗+

[︂
p⃗, A⃗

]︂)︁
+

e2A2

2m∗c2
+ 2

µB

ℏ
SzH

As already done above, we impose the Landau gauge A⃗ = (−Hy, 0, 0). Thanks to
the relation

[︂
p⃗, A⃗

]︂
= −iℏ∇ · A⃗ = 0, the Hamiltonian becomes

h =
1

2m∗

[︃(︂
px − eH

y

c

)︂2
+ p2y + p2z

]︃
+ 2

µB

ℏ
SzH

It follows that h, px, pz and Sz are a complete set of commuting observables, the
eigenfunctions can be labelled with the quantum numbers kx, kz (whose allowed
values are all the real numbers) and ms = ±1 and they can be written in the form
ψkxkzms = ei(kxx+kzz)χms(y).

18
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Substituting this expression in the Schrödinger equation hψ = ϵψ together with
the quantities y0 = ℏckx

eH
centre of the armonic oscillator and ωc = eH

m∗c
cyclotron

frequency and simplifying the plane wave component, the result is

− ℏ2

2m∗χ
′′
ms

+
m∗ω2

c

2
(y − y0)

2χms =

(︃
ϵ− ℏ2k2z

2m∗ −msµBH

)︃
χms (5.2)

This is the equation for a monodimensional harmonic oscillator centred in y0, with
angular frequency ωc. Then, it is known that the energy eigenvalues are

ϵkzmsn = ℏωc(n+
1

2
) +

ℏ2k2z
2m∗ +msµBH (5.3)

for n = 0, 1, 2, ... and the eigenfunctions are

χkxkzmsn(y) =
1√

2nn!lπ1/4
e−

(y−y0)
2

2l2 Hn

(︃
y − y0
l

)︃
(5.4)

where Hn is the n-th Hermite polinomial and l is the already defined magnetic
length. l can be thought as a measure of the localization of the electron, and in
the mentioned experiments, for a magnetic field of 103G and an electron of 2eV of
energy, it is approximately lt ≈ 5 · 10−3cm.

For what has been said so far, in the Hamiltonian spectrum there are three
components: Landau levels (descrete and due to the armonic oscillator), spin-field
coupling (descrete) and kinetic energy (continuous and due to the free motion in
the z direction). Since its eigenvalues do not depend on kx, they are infinitely many
times degenerate.
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Figure 5.1: States’ rearrangement of the electrons of a free gas when immersed in
a magnetic field.

5.2 Degeneracy of Landau levels
The next condition that has to be applied to the electron is the confinement in a
box of dimensions L× L× L.

First we consider an electron with fixed kz value and we assume an infinite
potential outside the 2D region of coordinates [0, L]× [0, L]. This implies that the
wave function has to vanish on the boundary ψ(0, y, z) = ψ(L, y, z) = ψ(x, 0, z) =
ψ(x, L, 0) = 0, hence kx = 2πnx

L
and ky =

2πny

L
for nx, ny ∈ Z.

The eigenfunctions ψ for which the centre y0 lies well inside the volume will not
be affected by the presence of the walls. No solutions exist if y0 lies well outside the
volume and for a small range of y0 near the wall, the presence of the wall modifies
the oscillator eigenfunction and raises the energy value. This can be justified by
the Heinsberg uncertainty principle ∆x∆p ≥ ℏ

2
since, as the centre y0 gets closer to

the boundary, the electron is subject to the overlap of the armonic potential and
of the increasingly dominant wall potential. This implies that the electron is more
and more localised, therefore its momentum has to rise, hence its energy. In the
following discussion we will neglect the border region effect and we will impose the
condition for the centre of the armonic oscillator 0 < y0 < L. This approximation
is valid assuming that L >> lt.

Substituting the definition of y0 we obtain 0 < nx <
L2eH
2πℏc . So the number of

allowed nx values is exactly g = L2eH
2πℏc , which is the degeneracy of each Landau level

at fixed kz. In the last relation we can recognise the flux Φ = L2H of the magnetic
field and the quantum of flux Φ0 = 2πℏc

e
. The degeneracy, that is the number of

states available for the electron, can be rewritten in the form of the number of flux
quanta Φ0 flowing through the cross-section.
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Figure 5.2: Fermi surface of a free electron gas immersed in a uniform magnetic
field, also known as Landau tubes.

Another way of deriving this result is to start from the electron in the box
without any magnetic field. The available states (points in the k⃗ space) form a 3D
equally 2π

L
spaced grid inside the Fermi sphere. Fixing kz leaves us with 2D grid

inside a circle in the kx − ky plane (left image in figure 5.1). The squared radius
(in k-space) is R2 = ϵF − ℏ2k2z

2m∗ .
Introducing the magnetic field causes a rearrangement of these states in a dif-

ferent configuration. Landau levels can be viewed as concentric circumferences of
squared radius R2 = 2m∗

ℏ ωc(n+
1
2
) labelled with the quantum number n. Therefore,

a level consists of those states which were located between the circumference of the
level taken into consideration, and the subsequent one (right image in figure 5.1).

So the degeneracy of a level can be calculated by dividing the area of an annulus
by the area that each state occupied

g =
π 2m

ℏ2 (ℏωc(n+ 3/2)− ℏωc(n+ 1/2))(︁
2π
L

)︁2 =
eHL2

2πℏc
(5.5)

Fixing the energy ϵ, and adding the possibility for kz to assume all the values
kz =

2πnz

L
compatible with this energy, we obtained the Landau tubes represented

in figure 5.2.



Chapter 6

Landau’s approach

6.1 Landau’s derivation of diamagnetism
Now, we will follow Landau’s original way of deriving the diamagnetism of a free
electron gas. We consider our system in the limit of weak field H.

First we calculate the spin-field coupling contribution to the magnetic suscep-
tibility. The grand canonical potential of a free electron gas is, thanks to the
relation (2.11)

Ω0 = − 2

β

∑︂
nx∈Z

∑︂
ny∈Z

∑︂
nz∈Z

ln
(︂
1 + e−β( ℏ

2k2

2m∗ −µ)
)︂

where the factor 2 is due to the spin degeneracy of each state. Multiplying and
dividing by ∆ki = 2π

L
, for i = x, y, z we can approximate the last sum with an

integral thanks to the fact that the box considered has L≫ 1. In fact it becomes

Ω0 = − 2

β

(︃
L

2π

)︃3 ∫︂ +∞

−∞
dkx

∫︂ +∞

−∞
dky

∫︂ +∞

−∞
dkz ln

(︂
1 + e−β( ℏ

2k2

2m∗ −µ)
)︂

and changing to spherical coordinates in k space we obtain

Ω0(µ) = − V

βπ

∫︂ ∞

0

dk ln
(︂
1 + e−β( ℏ

2k2

2m∗ −µ)
)︂

Including in the Hamiltonian the spin-field coupling contribution cancels the 2
factor of the spin degeneracy and makes a translation of the chemical potential,
that is

Ωpar =
1

2
(Ω0(µ− µBH) + Ω0(µ+ µBH))

This leads to a second order H correction

Ωpar = Ω0 +
µ2
BH

2

2

∂2Ω0

∂µ2
+ o(H2)

and a contribution to the magnetic susceptibility

χpar = −µ
2
B

V

∂2Ω0

∂µ2
=
µ2
B

V
ρ(ϵF ) (6.1)

22
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where in we have substituted the relation (B.4) of appendix B.2 and we have
identified ϵF = µ in the limit of T = 0.

On the other hand, including in the Hamiltonian the Landau levels contribution
maintains the spin degeneracy factor and the grand canonical potential, thanks to
the relation (2.11), becomes

Ωdia = − 2

β

+∞∑︂
n=0

∑︂
nz∈Z

eHL2

2πℏc
ln
(︁
1 + e−β(ϵnnz−µ)

)︁
Taking the limit to continuum we can write

Ωdia = − eHV

β2π2ℏc

∞∑︂
n=0

∫︂ +∞

−∞
dkz ln

(︄
1 + e

−β

(︃
ℏ2k2z
2m∗ +ℏωc(n+ 1

2)−µ

)︃)︄

To make this calculation, Landau used the Euler-Maclaurin summation formula

+∞∑︂
n=0

F (n+
1

2
) ≈

∫︂ +∞

0

F (x)dx+
1

24
F ′(0) (6.2)

which is a reasonable approximation in the limit in which F makes a small vari-
ation when evaluated in two consecutive Landau levels. This is equivalent to the
condition βℏωc ≪ 1, which will also be assumed in Peierls’ derivation (7.1).

Proceeding we obtain

Ωdia = − eHV

β2π2ℏc

∫︂ +∞

0

dx

∫︂ +∞

−∞
dkz ln

(︄
1 + e

−β

(︃
ℏ2k2z
2m∗ +ℏωcx−µ

)︃)︄
+

− 1

24

eHV

β2π2ℏc

∫︂ +∞

−∞
dkz

−βℏωc

1 + e
β

(︃
ℏ2k2z
2m∗ −µ

)︃

Changing tha variable µ′ → µ − ℏωcx in the first integral makes the first addend
independent from H, so it can be identified with Ω0. The second addend can be
recognised as a factor times the second derivative of the first addend with respect
to µ.

In particular, using the relations ωc =
eH
m∗c

and µB = eℏ
2mc

we can write

Ωdia = Ω0 −
ℏ2ω2

c

24

∂2Ω0

∂µ2
= Ω0 −

µ2
BH

2

6

(︂ m
m∗

)︂2 ∂2Ω0

∂µ2

and in the end we obtain

χdia = −µ
2
B

3V

(︂ m
m∗

)︂2 ∂2Ω0

∂µ2
= −1

3

(︂ m
m∗

)︂2
χpar (6.3)

where we have recognised equation (6.1). χpar can be derived analytically with
standard techniques.
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6.2 Simplified model of de Haas-van Alphen oscil-
lations

To understand the underlying principle of this phenomenon, we take a 2D free
electron gas, composed of N electrons at zero temperature in a very strong magnetic
field. The zero temperature limit implies that the occupation of the levels, as a
function of the energy, is a Heaviside Θ as it will be discussed in the Peierls’ method
chapter.

Trying to make a more rigorous sense to the expression "very strong", we callH0

a field such that all electrons lie in the ground state (first Landau level). Recalling
equation (5.5), the degeneracy of each Landau level is g = AeH

πℏc (there is an extra
factor 2 due to spin degeneracy), hence H0 =

Nπℏc
Ae

.
Since T = 0, for H > H0 every electron lies in the ground state and the

total energy of the gas is simply N times the energy of the ground state, that is
E0 = Nϵ0 = N ℏωc

2
.

Instead, if H < H0, there exists a number n such that the n-th Landau level
is completely full and the n+ 1-th Landau level can be from empty to almost full.
This is represented by the condition (n+1)g < N < (n+2)g, and substituting the
expression for g it becomes 1

n+1
< H

H0
< 1

n+2
. The total energy of such a system

can be calculated by summing the energy of every electron. (n + 1)g of them lie
in Landau levels with energy ϵn = ℏωc(n+ 1

2
) for n = 0, 1, ..., n and the remaining

N − (n+ 1)g electrons have energy ϵn+1 = ℏωc(n+ 3
2
). Therefore we obtained the

total energy

E = g

n∑︂
n=0

ℏωc(n+
1

2
) + (N − (n+ 1)g)ℏωc(n+

3

2
)

which can be elaborated in the form

E =
Neℏ
mc

[︃
H

H0

(︃
n+

3

2

)︃
− (n+ 1)(n+ 2)

2

H2

H2
0

]︃
The magnetization and the magnetic susceptibility can be derived from the

already mentioned formulas M = − 1
V

∂E
∂H

and χ = ∂M
∂H

. Substituting the constant
µB = eℏ

2mc
, we find the following functions (represented in figure 6.1)

M =

{︄
−µB

N
V

H > H0

µB
N
V

[︂
2(n+ 1)(n+ 2) H

H0
− (2n+ 3)

]︂
1

n+2
< H

H0
< 1

n+1

(6.4)

χ =

{︄
0 H > H0

µB
N
V

[︂
2(n+ 1)(n+ 2) H

H0
− (2n+ 3)

]︂
1

n+2
< H

H0
< 1

n+1

(6.5)

It is then evident the oscillatory behaviour in the magnetization and its interpre-
tation.

In fact, starting from a H0 field, all electrons lie in the ground state. The
moment the condition H < H0 is fulfilled, electrons are excited to the n = 1 state,
beacuse there is no more space for them in the ground state.
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Figure 6.1: Magnetization and magnetic susceptibility in an electron gas at T = 0,
as functions of the magnetic field strength B. Meccanica Statistica, K. Huang,
1997.

So the variation of energy due to the decreasing in the field is composed of 2
factor: the energy of each state decreases with the field, but some electrons increase
their energy moving to the above level. Of these 2 contributions, at the beginning
the excitations of the electrons has a bigger effect and it raises the total energy
(negative value of the magnetization), but then the lowering of the energy states
takes over (the magnetization value increases till it becomes positive) and when
also the second level is filled, the energy is back to the value we started with.

Lowering further the field makes what said above to start over, and it makes the
magnetization to quickly change (at T = 0 instantly) from a positive to a negative
value. M can be viewed as an oscillating function in 1

H
with period 1

H0
.



Chapter 7

Peierls’ method

The following derivations are aimed to describe the motion of the electrons inside
a metal immersed in a uniform magnetic field in order to identify some character-
istics when the system is under certain conditions. The effects analysed are Pauli
paramagnetism, Landau diamagnetism and de Haas-van Alphen oscillations of the
magnetization.

The value range for the magnetic field is

ϵF ≫ ℏωc ≫ kBT (7.1)

The physical meaning of this assumption is that there is an almost continuous
structure of Landau levels that electrons can occupy up to the Fermi energy and
that very few electrons occupy energy levels over the Fermi energy, so the statistic
of the electrons is almost the one of a Fermi gas (T = 0).

7.1 Mathematics behind the method
To avoid the difficulty of deriving directly from the definition the grand canonical
potential, Peierls’ method exploits the relation of this quantity with Boltzmann
partition function, which can be obtained exactly by an analitical calculation.

In particular, considering equation (2.11)

Ω = − 1

β

∑︂
a

ga ln
(︁
1 + e−β(ϵa−µ)

)︁
it is useful to call

F (ϵ) := − 1

β
ln
(︁
1 + e−β(ϵ−µ)

)︁
so that Ω =

∑︁
a

gaF (ϵa) and we can recognise that F (ϵ) is indeed the primitive of

the Fermi-Dirac distribution of the density of states f(ϵ) = 1
1+eβ(ϵ−µ) represented in

figure 7.1.
We denote the Laplace transform of F (ϵ) by

F̃ (s) = L [F ](s) =

∫︂ +∞

0

e−sϵF (ϵ) dϵ

26



CHAPTER 7. PEIERLS’ METHOD 27

Figure 7.1: Fermi-Dirac distribution of the density of states f(ϵ) = 1
1+eβ(ϵ−µ)

and the Laplace antitransform (Laplace inversione theorem)

L −1[F̃ ](ϵ) =

∫︂ c+i∞

c−i∞

ds

2πi
esϵF̃ (s) =

{︄
F (ϵ) ϵ > 0

0 ϵ < 0

with c ∈ R and such that it is greater than the real part of every pole of F̃ . So we
write

Ω =
∑︂
a

ga

∫︂ c+i∞

c−i∞

ds

2πi
esϵaF̃ (s)

and here we substitute the single particle Boltzmann partition function (2.7), where
we allow the β coefficient to assume complex values Z(s) =

∑︁
a gae

−sϵa , obtaining

Ω =

∫︂ c+i∞

c−i∞

ds

2πi
F̃ (s)s2

Z(−s)
s2

=

Now we define Ã(s) := F̃ (s)s2 and B̃(s) := Z(s)
s2

and using the formula for the
resultant (proof in appendix A.1)

=

∫︂ c+i∞

c−i∞

ds

2πi
Ã(s)B̃(−s) =

∫︂ +∞

0

A(ϵ)B(ϵ) dϵ

the problem reduces to the calculation of

A(ϵ) =

∫︂ c+i∞

c−i∞

ds

2πi
esϵF̃ (s)s2 =

d2F (ϵ)

dE2
=
df(ϵ)

dϵ

B(ϵ) =

∫︂ c+i∞

c−i∞

ds

2πi
esϵ
Z(s)

s2
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7.2 2D derivation

7.2.1 Boltzmann partition function

The first task is now to obtain explicitly the single particle Boltzmann partition
function. Recalling the relation (2.7)

Z =
∑︂
a

gae
−βϵa =

∑︂
msn

ge−βϵmsn

and the degeneracy of each Landau level (5.5) g = AeH
2πℏc , the eigenvalues of the

single particle Hamiltonian are

ϵ = ℏωc(n+
1

2
) +msµBH (7.2)

Calculating the sum over the quantum numbers

Z =
AeH

2πℏc

1∑︂
ms=−1

e−βmsµBH

∞∑︂
n=0

e−βℏωc(n+1/2)

leads to
Z(β) =

AeH

2πℏc
cosh (βµBH)

sinh
(︁
βℏωc

2

)︁ (7.3)

Now we substitute Z(s) in the formula for B(E) obtaining

B(ϵ) =
AeH

2πℏc

∫︂ c+i∞

c−i∞

ds

2πi

esϵ

s2
cosh (sµBH)

sinh
(︁
sℏωc

2

)︁
We change variables into the simpler units z := sℏωc

2
and x := 2ϵ

ℏωc
, for which z ≫ 1

and x≫ 1 hold because of approximation (7.1), so that it becomes

B =

(︃
AeH

2πℏc

)︃(︃
ℏωc

2

)︃
I(x) (7.4)

where

I(x) =

∫︂ c+i∞

c−i∞

dz

2πi

ezx

z2
cosh

(︁
zm∗

m

)︁
sinh z

(7.5)

7.2.2 The integral in 2D

The integral I(x) is along the vertical line of real part c in the complex plane.
This line can be viewed as the limit for M → ∞ of the segment with endpoints
(c,−iM) and (c,+iM). Therefore, taking into consideration the presence of poles
on the imaginary axe, we connect the segment endpoints to get the path in figure
7.2.

We can now apply the residue theorem and obtain I(x) + ISC =
∑︁

Res, where
ISC is the integral along the semicircumference followed counter clockwise, and∑︁
Res is the sum over the poles of the residues of the integrand.
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Figure 7.2: It is represented the path which is followed during the integration.

Beacuse of sinh z term in the denominator, there are infinite simple poles of
the form nπi for n ∈ Z and because of z2 term, the pole in z = 0 becomes of
third order. Isc vanishes in the limit of M → ∞, so to evaluate the integral we
need to calculate the sum of the residues. The pole in the origin contribution can
be identified with Pauli paramagnetism and Landau diamagnetism, and the other
poles contribution with the de Haas-van Alphen effect.

7.2.3 Pauli paramagnetism and Landau diamagnetism

We proceed with the evaluation of

Res

(︄
ezx

z2
cosh

(︁
zm∗

m

)︁
sinh z

, z = 0

)︄
Laurent expanding the function in z = 0 and obtaining the residue as the coefficient
of the 1

z
term of the serie.

In particular we write

1

z2

(︄
1

z + z3

6
+O(z4)

)︄(︃
1 + xz +

x2z2

2
+O(z3)

)︃(︃
1 +

(m∗)2z2

2m2
+O(z3)

)︃
=

=
1

z3
+
x

z2
+

1

2z

(︄
x2 +

(︃
m∗

m

)︃2

− 1

3

)︄
+O(1)

which leads to Resz=0 =
1
2

(︂
x2 +

(︁
m∗

m

)︁2 − 1
3

)︂
.
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A(ϵ) is the derivative of the Fermi-Dirac distribution and in the limit of low
temperature f(ϵ) → Θ(µ − ϵ), so A(ϵ) → −δ(ϵ − µ), while B(ϵ) is slowly varying
with the energy, therefore we calculate

Ω = −B(µ) = Ω0 −
Am∗

2πℏ2
µ2
BH

2

(︃
1− 1

3

(︂ m
m∗

)︂2)︃
(7.6)

where
Ω0 = −Am

∗µ2

2πℏ2
is the grand canonical potential of a 2D free electron gas (obtained in appendix B.1)
and it is H independent.

There is no difference between the chemical potential µ and the Fermi energy
ϵF of a 2D free electron gas (obtained in appendix B.1). In fact, since the magnetic
correction to the grand canonical potential is independent from µ, imposing the
average value of the number of electrons N for the free electron gas and for our
system thanks to the relation N = −∂Ω

∂µ
, implies that µ = ϵF . Therefore the

magnetization and the magnetic scusceptibility are

M = µ2
BHρ(ϵF )

[︃
1− 1

3

(︂ m
m∗

)︂2]︃
(7.7)

χ = µ2
Bρ(ϵF )

[︃
1− 1

3

(︂ m
m∗

)︂2]︃
(7.8)

where ρ(ϵF ) is the density of states at the Fermi energy for the free electron gas
(obtained in appendix B.1).

7.2.4 The de Haas-van Alphen effect

Here we derive the contribution of the poles to grand canonical potential

∑︂
Res =

∑︂
n∈Z
n̸=0

lim
z→nπi

(z − nπi)
ezx cosh

(︁
zm∗

m

)︁
z2 sinh z

=

= −
∑︂
n∈Z
n̸=0

lim
t→nπ

(t− nπ)einπx cos(nπm∗

m
)

(nπ)2 sin(t)
=

calculating the limit we obtain

= −
∑︂
n∈Z
n̸=0

(−)n

(nπ)2
einπx cos

(︃
nπ

m∗

m

)︃
=

In the sum only even function contribute, hence

= −2
+∞∑︂
n=1

(−)n
cos(xnπ)

(nπ)2
cos

(︃
m∗

m
nπ

)︃
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In this case, we can not approximate A(ϵ) with the Dirac delta function since
B(ϵ) is a quickly varying function with respect to the energy, so we have to calculate
the integral before taking the low temperature limit. In particular

Ω =

(︃
βAeH

4πℏc

)︃(︃
ℏωc

2

)︃ +∞∑︂
n=1

(−)n
cos(m

∗

m
nπ)

(nπ)2

∫︂ +∞

0

dϵ
cos
(︂

nπ2ϵ
ℏωc

)︂
cosh2

(︁
β ϵ−µ

2

)︁
Making the substitution t := β ϵ−µ

2
allow us to recognise a known integral and

to clarify what is involved in the limit T → 0. So we obtain

Ω =

(︃
AeH

2πℏc

)︃(︃
ℏωc

2

)︃ +∞∑︂
n=1

(−)n
cos(m

∗

m
nπ)

(nπ)2
cos

(︃
2nπµ

ℏωc

)︃
J

where J is the following integral (calculated in appendix A.3)

J =

∫︂ +∞

−βµ
2

dt
cos
(︂

4nπ
βℏωc

t
)︂

cosh2 t
=

4nπ2

βℏωc

1

sinh
(︂

2π2n
βℏωc

)︂
where, since µ ≫ kBT thanks to the approximation (7.1), we have extended the
integral till −∞. In the end we elaborate the grand canonical potential in the form

Ω =
AeH

πℏcβ

+∞∑︂
n=1

(−)n

n
cos

(︃
nπ

m∗

m

)︃ cos
(︂

2nπµ
ℏωc

)︂
sinh

(︂
2nπ2

βℏωc

)︂ (7.9)

It appears evident that the magnetization can be viewed as an oscillating func-
tion of the variable 1

H
with fundamental (shortest) period ∆

(︁
1
H

)︁
= eℏ

ϵFm∗c
. This

result is coherent with the simplified (T = 0) derivation already done, where we
found ∆

(︁
1
H

)︁
= 1

H0
= Ae

Nπℏc . These 2 expression coincide if we substitute N = m∗ϵFA
πℏ2

the number of electrons for a T = 0 electron gas.
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7.3 3D derivation

7.3.1 Boltzmann partition function

The first task is again to obtain explicitly the single particle Boltzmann partition
function. Recalling the relation (2.7)

Z =
∑︂
a

gae
−βϵa =

∑︂
msnkz

ge−βϵmsnkz

and introducing the degeneracy of each Landau level g = AeH
2πℏc , the eigenvalues of

the single particle Hamiltonian are

ϵ =
ℏ2k2z
2m∗ + ℏωc(n+

1

2
) +msµBH (7.10)

Taking the limit to continuum as done above we write

Z =
V eH

4π2ℏc

1∑︂
ms=−1

e−βmsµBH

∞∑︂
n=0

e−βℏωc(n+1/2)

∫︂ +∞

−∞
dkze

−β
ℏ2k2z
2m∗

which leads to

Z(β) =
V eH

2πℏc

(︃
m∗

2πℏ2β

)︃ 1
2 cosh (βµBH)

sinh
(︁
βℏωc

2

)︁ (7.11)

Now we substitute Z(s) in the formula for B(ϵ) obtaining

B(ϵ) =
V eH

2πℏc

(︃
m∗

2πℏ2

)︃ 1
2
∫︂ c+i∞

c−i∞

ds

2πi

esϵ

s3/2
cosh (sµBH)

sinh
(︁
sℏωc

2

)︁
We change variables into the simpler units z := sℏωc

2
and x := 2ϵ

ℏωc
, for which z ≫ 1

and x≫ 1 hold thanks to approximation (7.1), so that it becomes

B(x) = 2V

(︃
m∗

2πℏ2

)︃ 3
2
(︃
ℏωc

2

)︃ 5
2

I(x) (7.12)

where

I(x) =

∫︂ c+i∞

c−i∞

dz

2πi
ezx

cosh
(︁
zm∗

m

)︁
z5/2 sinh z

(7.13)
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Figure 7.3: It is represented the path which is followed during the integration. We
refer to σ as the key hole path followed in the opposite direction compared to this
figure

7.3.2 The integral in 3D

The integral I(x) is along the vertical line of real part c in the complex plane. This
line can be viewed as the limit for M → ∞ of the segment with endpoints (c,−iM)
and (c,+iM). Therefore, taking into consideration the presence of the branch in
the negative real axe, we connect the segment endpoints to get the path in figure
7.3.

We can now apply the residue theorem and obtain I(x)+ISC+Isc = Iσ+
∑︁

Res,
where Iσ is the path along the key-hole followed clockwise, ISC is the integral along
the outer semicircumference followed counter clockwise, Isc is the integral along the
inner semicircumference fllowed clockwisen and

∑︁
Res is the sum over the poles of

the residues of the integrand.
In the case of sinh, these are nπi for n ∈ Z but n ̸= 0 since it is outside the path.

Isc vanishes in the limit of M → ∞, so the only 2 addens left are Iσ, which can be
identified with Pauli paramagnetism and Landau diamagnetism contribution, and∑︁

Res, which is the contribution of the de Haas-van Alphen effect.
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7.3.3 Pauli paramagnetism and Landau diamagnetism

We proceed with the evaluation of

Iσ =

∫︂
σ

dz

2πi

ezx

z5/2
cosh

(︁
zm∗

m

)︁
sinh z

=
1

2

∫︂
σ

dz

2πi

ez(x+
m∗
m ) + ez(x−

m∗
m )

z5/2 sinh z

expanding the denominator in z = 0 (as it will be explained, only the first 2 orders
give rise to non neglectable terms) we can write

Iσ =
1

2

[︄(︃
x+

m∗

m

)︃ 5
2

+

(︃
x− m∗

m

)︃ 5
2

]︄∫︂
σ

dz

2πi

ez

z7/2
+

− 1

12

[︄(︃
x+

m∗

m

)︃ 1
2

+

(︃
x− m∗

m

)︃ 1
2

]︄∫︂
σ

dz

2πi

ez

z3/2
+

∫︂
σ

dz

2πi
ezx cosh

(︃
z
m∗

m

)︃
O(

√
z)

We can recognise Hankel representation of Euler Γ function (proof in ap-
pendix A.2)

1

Γ(α)
=

∫︂
σ

dz

2πi
ezz−α (7.14)

and the last addend is O(x−3/2), therefore, since x≫ 1., taking into consideration
higher order terms in sinh expansion will generate neglectable addends. Substitut-
ing Γ(7

2
) = 15

√
π

8
and Γ(5

2
) =

√
π
2

and developing the expansion, we obtain

Iσ =
8

15
√
π
x5/2 +

1√
π

(︄(︃
m∗

m

)︃2

− 1

3

)︄
x1/2 +O(x−3/2)

A(ϵ) is the derivative of the Fermi-Dirac distribution and in the limit of low
temperature f(ϵ) → Θ(µ − ϵ), so A(ϵ) → −δ(ϵ − µ) while B(ϵ) is slowly varying
with the energy, so in the end we calculate

Ω = −B(µ) = Ω0 −
2V√
π

(︃
m∗

2πℏ2

)︃3/2

µ2
BH

2√µ
(︃
1− 1

3

(︂ m
m∗

)︂2)︃
(7.15)

where

Ω0 = − 16V

15
√
π

(︃
m∗

2πℏ2

)︃3/2

µ5/2

is the grand canonical potential of a 3D free electron gas (obtained in appendix B.2)
and it is H independent.

The difference between the chemical potential µ and the Fermi energy EF of a
free electron gas (obtained in appendix B.2) can be neglected. In fact, imposing
the average value of the number of electrons N for the free electron gas and for
our system, and thanks to the relation N = −∂Ω

∂µ
, we derive the equation

µ

ϵF
= 1− µ2

BH
2

4
√
µϵ

3/2
F

(︃
1− 1

3

(︂ m
m∗

)︂2)︃
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where we can see that the correction is approximately of second order in ℏωc

ϵF
.

Therefore the magnetization and the magnetic scusceptibility are

M = µ2
BHρ(ϵF )

[︃
1− 1

3

(︂ m
m∗

)︂2]︃
(7.16)

χ = µ2
Bρ(ϵF )

[︃
1− 1

3

(︂ m
m∗

)︂2]︃
(7.17)

where ρ(ϵF ) is the density of states at the Fermi energy for the free electron gas
(obtained in appendix B.2). This is the same result obtained by Landau in his
treatment.

7.3.4 The de Haas-van Alphen effect

Here we derive the contribution of the poles to the grand canonical potential

∑︂
Res =

∑︂
n∈Z
n̸=0

lim
z→nπi

(z − nπi)
ezx cosh

(︁
zm∗

m

)︁
z5/2 sinh(z)

=

=
∑︂
n∈Z
n̸=0

lim
t→nπ

(t− nπ)einπx cos(nπm∗

m
)

e
5
2
(ln(nπ)+iπ/2) sin(t)

=

Calculating the limit we obtain

= −
∑︂
n∈Z
n̸=0

(−)n

(nπ)5/2
ei(nπx−π/4) cos

(︃
nπ

m∗

m

)︃
=

In the sum only even function contribute, hence

= −2
+∞∑︂
n=1

(−)n
cos(xnπ − π

4
)

(nπ)5/2
cos

(︃
m∗

m
nπ

)︃
In this case, we can not approximate A(ϵ) with the Dirac delta function since

B(ϵ) is a quickly varying function with respect to the energy, so we have to calculate
the integral before taking the low temperature limit. In particular

Ω = βV

(︃
m∗

2πℏ2

)︃3/2(︃ℏωc

2

)︃5/2 +∞∑︂
n=1

(−)n
cos(m

∗

m
nπ)

(nπ)5/2

∫︂ +∞

0

dϵ
cos
(︂

2nπϵ
ℏωc

− π
4

)︂
cosh2

(︁
β ϵ−µ

2

)︁
Making the substitution t := β ϵ−µ

2
allow us to recognise a known integral and to

clarify what is involved in the limit T → 0.
So we obtain

Ω = 2V

(︃
m∗

2πℏ2

)︃3/2(︃ℏωc

2

)︃5/2 +∞∑︂
n=1

(−)n
cos(m

∗

m
nπ)

(nπ)5/2
cos

(︃
2nπµ

ℏωc

− π

4

)︃
J
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where J is the following integral (calculated in appendix A.3)

J =

∫︂ +∞

−βµ
2

dt
cos
(︂

4nπ
βℏωc

t
)︂

cosh2 t
=

4nπ2

βℏωc

1

sinh
(︂

2π2n
βℏωc

)︂
where, since µ ≫ kBT , we have extended the integral till −∞. In the end we
elaborate the grand canonical potential in the form

Ω =
V

2π2β

(︃
eH

ℏc

)︃3/2 +∞∑︂
n=1

(−)n

n3/2
cos

(︃
nπ

m∗

m

)︃ cos
(︂

2nπµ
ℏωc

− π
4

)︂
sinh

(︂
2π2n
βℏωc

)︂ (7.18)

7.4 Comparing semiclassical and quantum results
In the limit (7.1), we can identify µ with the ϵF of a free electron gas and it appears
evident that the magnetization, both in 2D e 3D, oscillates as a function of 1

H
with

fundamental period ∆
(︁

1
H

)︁
= eℏ

m∗cϵF
. This result is coherent with the semiclassical

one (4.13) ∆
(︁

1
H

)︁
= 2πe

ℏcSex(ϵF )
.

Thanks to Onsager relation (4.11) Sn(ϵ, kz) = ∆S(ϵ, kz)
(︁
n+ 1

2

)︁
, there exist an

n̄ such that Sex(ϵF ) = ∆Sex(ϵF )
(︁
n̄+ 1

2

)︁
. We can now approximate ∆Sex(ϵF ) ∼=

∂Sex(ϵ)
∂ϵ

⃓⃓⃓
ϵ=ϵF

∆ϵ where, since our Fermi surface is assumed to be almost spherical we

obtain kzex = 0, hence ∆ϵ = ℏωc and ϵF =
(︁
n̄+ 1

2

)︁
∆ϵ.

Therefore, the relation we obtain is Sex(ϵF ) =
∂Sex(ϵ)

∂ϵ

⃓⃓⃓
ϵ=ϵF

ϵF where, in the par-

tial derivative, we can recognise the definition of the effective mass m∗(ϵF , kzex) =
ℏ2
2π

∂Sex(ϵ)
∂ϵ

⃓⃓⃓
ϵ=ϵF

, evaluated at ϵF and kzex.
Making this substitution, the 2 periods coincide. The semiclassical period is

more general than the one found by Peierls’ method for an almost free electron gas,
since it can take into account not only ellipsoid Fermi surfaces, but very different
shapes.



Appendix A

A.1 Proof of the resultant formula
Here we provide a proof to the resultant formula, which is∫︂ c+i∞

c−i∞

ds

2πi
Ã(s)B̃(−s)esx =

∫︂ +∞

max(0,x)

dϵA(ϵ)B(ϵ− x) (A.1)

where Ã(s) = L [A](s) and B̃(s) = L [B](s).
Replacing B̃(s) with the definition of the Laplace transform we obtain for the

first term∫︂ c+i∞

c−i∞

ds

2πi
Ã(s)esx

∫︂ +∞

0

dy B(y)esy =

∫︂ c+i∞

c−i∞

ds

2πi

∫︂ +∞

0

dyB(y)Ã(s)es(x+y)

We can now interchange the integrals and recognise the Laplace antitrasform of
Ã(s) and substitute it∫︂ +∞

0

dy B(y)

∫︂ c+i∞

c−i∞

ds

2πi
Ã(s)es(y+x) =

∫︂ +∞

0

dy B(y)A(y + x)Θ(y + x)

which gives the expressione above after the variable change E := x+ y.

A.2 Hankel representation of Euler Γ function
Here we provide a proof to the formula known as Hankel representation of Euler γ
function

1

Γ(α)
=

∫︂
σ

dz

2πi
ezz−α = (A.2)

We choose the convention for the logarithm discontinuity at the negative part of
the real axis (principal logarithm).

Therefore we can write more explicity

= lim
ϵ→0

∫︂ iϵ

−∞−iϵ

dz

2πi

ez

eα(ln |z|+i arg z)
+

∫︂ −∞+iϵ

iϵ

dz

2πi

ez

eα(ln |z|+i arg z)
=

With the convention chosen, we obtain that arg z = −π and arg z = π respectively
in the first and in the second integral. Changing the variable with t := −z ± iϵ
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and calculating the limit, we obtain

=

∫︂ +∞

0

dy

2πi

e−y

yα
(︁
eiαπ − e−iαπ

)︁
=

sin(απ)

π

∫︂ +∞

0

dy e−yy−α =

In the last term we can recognise the definition of Euler’s Γ function, and in
the end the expression becomes

=
sin(απ)

π
Γ(1− α) =

1

Γ(α)

where the last equal sign is due to Euler’s reflection formula, which is valid if α /∈ Z.
In the present case α = n

2
where n is an odd integer, so no domain problems arise.

A.3 The integral of cos(αt)

cosh2(t)

In the calculations above we encountered an integral of the form

I(α) =

∫︂ +∞

−∞
dt

cos(αt)

cosh2(t)
(A.3)

which can be also calculated thanks to the residue theorem. We can write the
integral above as the limit for M → ∞ of the integral along the segment [−M,M ]
on the real axe, allowing the variable t to take also complex values.

We close this segment creating a rectangle of vertices −M , M , M+iπ, −M+iπ.
This path sorrounds the t = iπ/2 second order pole due to the denominator.
The integrals along the vertical segments vanish in the M → ∞ limit because
the numerator of the integrand is a limited quantity meanwhile the denominator
diverges.

So we obtain

lim
M→∞

IM(α) +

∫︂ −M

M

dt
cos(α(t+ iπ))

cosh2(t+ iπ)
= 2πiRes

(︃
cos(αt)

cosh2(t)
,
iπ

2

)︃
=

In the second addend of the first term of the equation above, we can recognise
− cosh(απ)IM(α) and the residue can be calculated as follows

= 2πi lim
t→iπ/2

d

dt

(︄(︃
t− iπ

2

)︃2
cos(αt)

cosh2(t)

)︄
= −2πα sinh

(︂
α
π

2

)︂
which becomes the value above after some algebra.

In the end it results

I(α) =
−2πα sinh

(︁
απ

2

)︁
1− cosh(απ)

=
πα

sinh
(︁
απ

2

)︁



Appendix B

The free electron gas

B.1 2D calculations
In this appendix we aim to calculate the grand partition function Ω0 of a 2D free
electron gas at T = 0 using Peierls’ method. So the single particle energy is ϵ = ℏ2k2

2m∗

and the canonical partition function is Z(β) = gs
∑︁
kxky

e−βϵkxky , where gs = 2 is the

spin degeneracy of each electron.
The electrons are confined in L × L box, so imposing the period boundary

conditions we obtain kj =
2πnj

L
where j = x, y and nj ∈ Z. The number of

states in the annulus 2πkdk is 2 2πkdk

( 2π
L )

2 , so the density of states per unit area in

k space is ρ(k) = Ak
π

and the denisty of states as a function of the energy is
ρ(ϵ) = ρ(k)dk

dϵ
= Am∗

πℏ2 .
To calculate the partition function, we take the limit to the continuum and we

change to polar coordinates in the k space, so that we can write the sum as the
integral

Z(β) =
A

2π2

∫︂ +∞

0

dk 2πke−β ℏ2k2
2m∗ =

Am∗

πℏ2β
(B.1)

In the limit of low temperature, as already explained, we can derive Ω0 = −B(µ),
where

B(ϵ) =

∫︂ c+i∞

c−i∞

ds

2πi
esϵ
Z(s)

s2
=
Am∗

πℏ2

∫︂ c+i∞

c−i∞

ds

2πi

esϵ

s3

As done in the H ̸= 0 case, we can write the integral above I0 as a part of the
integral along the path in figure 7.2. Here there is only one third order pole s = 0
inside the path, so we can simply calculate its residue from the Laurent expansion
esϵ

s3
= 1

s3
+ ϵ

s2
+ ϵ2

2s
+O(1) which leads to I0 = ϵ2

2
and in the end we obtain

Ω0 = −Am
∗

2πℏ2
µ2 (B.2)

B.2 3D calculations
In this appendix we aim to calculate the grand partition function Ω0 of a 3D free
electron gas at T = 0 using Peierls’ method. So the single particle energy is ϵ = ℏ2k2

2m∗

39



APPENDIX B. THE FREE ELECTRON GAS 40

and the canonical partition function is Z(β) = gs
∑︁

kxkykz

e−βϵkxkykz , where gs = 2 is

the spin degeneracy of each electron.
The electrons are confined in L×L×L box, so imposing the period boundary

conditions we obtain kj =
2πnj

L
where j = x, y, z and nj ∈ Z. The number of states

in the spherical shell 4πk2dk is 24πk2dk

( 2π
L )

3 , so the density of states per unit volume

in k space is ρ(k) = V k2

π2 and the denisty of states as a function of the energy is
ρ(E) = ρ(k) dk

dE
=

√
2V (m∗)3/2

√
E

π2ℏ3 .
To calculate the partition function, we take the limit to the continuum and we

change to spherical coordinates in the k space, so that we can write the sum as the
integral

Z(β) =
V

π2

∫︂ +∞

0

dk k2e−β ℏ2k2
2m∗ = 2V

(︃
m∗

2πℏ2β

)︃ 3
2

(B.3)

In the limit of low temperature, as already explained, we can derive Ω0 = −B(µ)
where

B(ϵ) =

∫︂ c+i∞

c−i∞

ds

2πi
esϵ
Z(s)

s2
= 2V

(︃
m∗

2πℏ2

)︃ 3
2
∫︂ c+i∞

c−i∞

ds

2πi

esϵ

s7/2

As done in the H ̸= 0 case, we can write the integral above I0 as a part of the
integral along the path in figure 7.3. Here there are no poles inside the path so we
can simply calculate

I0 =

∫︂
σ

ds

2πi

esϵ

s7/2
=

ϵ5/2

Γ
(︁
7
2

)︁
In the end we obtain

Ω0 = −B(µ) = − 16

15
√
π
V

(︃
m∗

2πℏ2

)︃ 3
2

µ5/2 (B.4)
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