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Abstract

The advent of the 3+1 formalism of General Relativity in the 1920’s is a

milestone in the history of the theory. Indeed, this approach gave an impetus to
the inquiry of the initial value formulation of Einstein’s equations, which led in
1952 to the local uniqueness theorem by Y. Choquet-Bruhat. It is on this fertile
ground that in the late 1950’s R. Arnowitt, S. Deser and C. W. Misner (ADM)
proposed a novel Hamiltonian formulation of General Relativity. Their seminal
work is a forerunner of Wheeler’s geometrodynamics and has far-reaching con-
sequences in the quantization program of the theory. The 3+1 decomposition of
spacetime is achieved through a foliation by spacelike hypersurfaces, on which
the three-dimensional counterparts of the intrinsic curvature and stress-energy
tensors can be defined. Once the Einstein-Hilbert Lagrangian is recast into the
ADM Hamiltonian, the variational principle gives rise to a constrained set of
Hamilton’s equations. Furthermore, the fundamental Poisson brackets between
the canonical field variables can be computed.
In this thesis, after a preliminary presentation of the variational principle of Gen-
eral Relativity (chapter 1), we introduce the mathematical apparatus required
for the realization of the 3+1 decomposition (chapter 2). The pivotal role of
the extrinsic curvature tensor will be elucidated in two phases, starting from
the Gauss-Codazzi relations between four and three-dimensional intrinsic cur-
vature tensors, and eventually in the identification of corrective boundary terms
to the Einstein-Hilbert action. Chapter 3 is devoted to the three-dimensional
conversion of the spacetime metric g, by means of the lapse and shift functions,
which ultimately leads to the projections of the field equations. The crux of the
discussion lies in chapter 4, which thoroughly details the derivation of the ADM
Hamiltonian and the path to Hamilton’s equations. Accordingly, the Poisson
brackets between the conjugate variables are recovered, paving the way for a
brief examination of the Wheeler - DeWitt equation, a major step in the quest
for a quantum theory of gravity (chapter 5). Finally, we focus on the notions
of total energy and momentum of the system, which naturally stem from the
evaluation of the Hamiltonian at spatial infinity. In particular, we apply these
definitions to the case of a Schwarzschild spacetime, proving the reasonableness
of the result.



Chapter 1

Introduction

General Relativity has proved to be one of the most elegant and successful
physical theories since its first appearance in the paper The Field Equations
of Gravitation on November 25, 1907. Albert Einstein’s theory relies on the
Equivalence Principle, which states that gravity affects all bodies in the same
way, making it impossible to disentangle the effects of a gravitational field from
those of a uniform accelerating frame, and on the independence of physical laws
from the reference frame. These assumptions, combined with the hypothesis
that spacetime is a curved manifold structure described by a metric tensor g,
lead to ascribe the distribution of matter to the geometry of spacetime itself.
In particular, this relation is specified by the Einstein Field Equations:

1 81G
R, — igw,R +Agu = CTT/“’ (1.1)

where R,,,, is the Ricci Tensor, R is the scalar curvature, A is the cosmological
constant, G is the gravitational constant, c is the speed of light and 7}, is the
stress-energy tensor.

From now on we adopt the geometrized unit system, with G = ¢ = 1, and we
neglect the contribution of the cosmological constant, setting A = 0.

1.1 Einstein-Hilbert action

The Lagrangian formulation of a field theory allows to deduce the field equations
given a region V of the spacetime manifold and a scalar function L(1, 9,%),
called Lagrangian density, which depends on the field variables v and their first
derivatives d,%. Although the fields ¢ could be of any type, we will consider
only generic tensors of type (r, s) (omitting the indices for brevity). In analogy
with the Lagrangian formulation of Newtonian mechanics, the action functional
S[¢] is defined as the integral

st = [ 2.0,y % (12)

%
where g is the (negative) determinant of the metric g,, and /—g d*z is the
proper volume element. The field equations are then recovered by requiring

that S[¢] is stationary under an arbitrary variation 6t about the actual fields

4



1.1. EINSTEIN-HILBERT ACTION 5

1. If one is given a smooth one-parameter family of field configurations ), a
natural definition of variation comes from the derivative

_ dya
W= (1.3)

which we demand to vanish on the boundary 0V of our spacetime region
5]y = 0 (14)

We now assume that there exists a smooth tensor field x of type (s,r) (thus
dual to ) such that the action functional is

_ 4
S—/Vd T XY (1.5)

where the contraction between the indices of x ans v is implied. Taking the
derivative of S with respect to the parameter A leads to the relation

. ds

5S = =<2
S dA Ix=0

= / dz x 6e (1.6)
v

Therefore, the variation of & with respect to ¥ about vy is defined as the
functional derivative

0S
X= (L.7)
Y o
which must vanish identically by virtue of the stationarity of the action:
x=0 (1.8)

These relations ensure that 1)y is a solution of the field equations, enclosed in
the identity 1.8.

The variational approach to general relativity was first considered by Hilbert
and Einstein in 1915, who proposed the simple gravitational action:

_ b — 4
Sy = 16”/\/R«/79d x (1.9)

We will refer to Sy as the Hilbert term. This is indeed the simplest gravitational
action that can be conceived, since the only nontrivial scalar function that can
be constructed from the metric and its derivatives up to the second order is the
scalar curvature R. The choice

1
Ly =

= 5By (1.10)

not only proves to be particularly compelling, due to the complexity of other
possible alternatives, but also establishes a straightforward correspondence be-
tween weak field limit and Newtonian theory of gravitation. In addition to Sy,
we shall include the contributions from the matter fields, denoted by ¢, in the
term

Sar = /v Lar(6,000; )/ —gd'e (1.11)
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called the matter action. For simplicity, we assume that £j; depends only on
the metric coefficients g, together with the field ¢ and its first derivatives.
The total action functional is given by the sum of the Hilbert and matter terms

S=8y+Smu (1.12)

We are thus in the position to show that the Einstein field equations 1.1 stem
from the stationarity of & under arbitrary variations of g, .

1.2 Variation of the action

Firstly, let us consider the Hilbert term alone. It will prove more convenient to
use the variation of the inverse metric dg"” instead of dg,,. This does by no
means affect the results, since the two variations are related by

gaAgAB = 5aﬁ — 59/»“/ = —guagyﬁégo‘ﬁ (113)

We can perform the variation of Sg (following the definition 1.6) by focusing
on the integrand, namely the Hilbert Lagrangian density Lp, as the variation
can be brought under the integral sign:

(16m) 6Ly = 6 (9" Ruvv/—9)

dg
=———g"R,, + (0g"R,, +g"" R, )\/—g 1.14
2./—g H ( H H ) ( )

The variation of the metric determinant dg is given by Jacobi’s formula:

69 = 99" 09, = —99,,09"" (1.15)

By exploiting the second form of this identity and recalling that g < 0, we can
replace dg in 1.14:

1
(16m) 6Ly = [(R,w —3 g,wR) 0g"” + g" R | V=g (1.16)

It is now clear that the purely gravitational component of the field equations
is recovered if 0R,, vanishes. However, this assumption need not hold in the
general case, as the first derivatives of 6g"” enter the variation dR,,,, giving rise
to extra boundary terms. Indeed, if we resort to the Palatini identity (proved
in section 6.2.3 of the Appendix), we find that

§Ru, =V, (0T7,,) =V, (6T7,,) (1.17)

By introducing the contravariant vector V# = gt”6I'?,, — gf*oI'",, (whose
explicit expressions are discussed in Appendix, section 6.2.2) and using the
property V,g,, = 0 of Levi-Civita connections, the last term of equation 1.16
can be recast into a divergence:

V=99"6Ru, = =g g" [V,017,, —V,I",] (1.18)
=v—4g v/) [gltl/drﬁl“j - gpyérﬂuu] = 6/) (V -9 Vp)
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Once these results are replaced in the action integral 1.9 and the multiplicative
constant (16m) reintroduced, by means of Stokes’ theorem the variation 6Sy
splits into the volume and boundary parts

0S8y = 16% s (R,“, — ;gwR>\/jgég“” diz + 16% . Vido,d®r  (1.19)
where doy, is the oriented volume element of the hypersurface V. For the
moment, we ignore the second integral and proceed as if the surface terms
can be safely discarded. Nevertheless, after the introduction of a necessary
mathematical apparatus, in section 2.4 we will deal properly with this term.
We now consider the variation of the matter action 1.11 (whose dependence on
the matter fields ¢ and on g,, is utterly generic):

0Sn 2/ [(25"]\5 0g"" /=g + Lar o/ —g:l dz
v

iLy 1 i
= - V=g8g" 1.2
/V |:($g"“’ 2 LM g;ux:| g(sg d*x ( 0)

If we define the stress-energy tensor T}, by

0L
dghv

Ty = =2 + L g (1.21)

we see that the variation of the total action S becomes:

1 1 oL 1
§S = /V [W (RW — gWR) 4 =M §EM guy] V=g g dix
1

2 Y

1
— R — = R — 871 v/ — v g4 1.22
167 )\, { w Ty Juv 87 uu:| goghd ( )

Due to the arbitrariness of dg"”, the stationarity of S requires that the integrand
be identically zero, leading eventually to the Einstein field equations

1
RMI/ — 5 gMVR = 87TTHI/ (123)

which can be rewritten in an equivalent form using the Einstein tensor G,
corresponding to the left-hand side of 1.23:

G[LV = 87TT‘/LU (124)
The desired conservation of the stress-energy tensor T),,, expressed by the four-

nvs
divergence
vV, TF =0 (1.25)

is ensured by the Bianchi identities V,G*" = 0, which follow from the symme-
tries of the Riemann curvature tensor R,,,. This result can also be proved by
considering the invariance of the action under an infinitesimal transformation
of coordinates (see for instance Ref. [17], section 4.1.8).



Chapter 2

Mathematical prelude to
the ADM formalism

In this chapter we introduce some fundamental mathematical notions of differ-
ential geometry required for the development of the ADM formalism. From now
on we consider a spacetime (M, g), where M is a real smooth 4-dimensional
manifold and g a Lorentzian metric of signature (—, 4+, +,+) on M.

2.1 Hypersurfaces and embeddings

Definition 1. Given a three-dimensional manifold > € M and an embedding
(i-e. a homeomorphism) ® : ¥ — M, ¥ is said to be a hypersurface of M if it
is the image of ¥ through &:

% =9(%) (2.1)

This embedding defines in a natural way two mappings between tangent and
cotangent spaces, respectively called the push-forward and the pull-back.

Definition 2. Let f be a smooth real-valued function f: M — R and X €
T,(%) a tangent vector of ¥.. The push-forward of ® is a map between tangent

spaces @, : T),(X) — Tp(M) such that
X = X(fod) (2.2)

Let w € T;(M) a one-form on M. Then the pull-back is defined as the mapping

@ T (M) — T,(¥) given by
(P*w) (X) = w (P, X) (2.3)
The induced metric v on ¥ is obtained by pulling back the metric g of M:
v = d*g (2.4)

Let  : M — R be a regular scalar field on M. Since the embedding ® ensures
that its image X is not self-intersecting, each hypersurface ¥ can be locally
defined as a level surface £ = t (with ¢ constant) and thus labeled with X

%, = {p e M ‘f(p) - t} (2.5)

8
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If ¥ is endowed with a coordinate system (xz), i € {1,2,3}, then the mapping
® takes the explicit form:

(et 22 e — (Lt e, cM (2.6)

Let us consider the isomorphism ¢ : T,(X) — T',(X) which associates tangent
vectors of ¥ and . Choosing the coordinates of equation 2.6 allows to identify
the basis tangent vectors of the two spaces in a straightforward way. Besides,
the pull-back )" provides a simple relation between covariant tensors defined

on ¥ and on X. For instance, the (0,2) tensor Tj; € T, (X)? gets mapped to

€ TH(%)? (2.7)

pv
From now forth, unless otherwise stated, we will implicitly make use of the
embedding map ® and the isomorphism ) to identify tensors defined on X
(whose components are labeled with lowercase Greek indices, running from 0 to
4) and on ¥ (with lowercase Latin indices restricted to {1,2,3}).

In this context, the signature of the metric « falls into three categories and
provides a useful classification of the hypersurfaces 3.

Definition 3. A hypersurface X is said to be:

o spacelike if v is positive-definite (signature (+,+,+)), with timelike nor-
mal vector;

o timelike if 7 is Lorentzian (signature (—,+,4)), with spacelike normal
vector;

o null if v is degenerate (signature (0,+,+)).

If ¥ is a non-null hypersurface, the normal n is uniquely defined at every point
as the unit vector collinear to 0t, the metric dual of the gradient one-form dt.
In particular, we denote with ¢ the norm:

e =n,nt ==£1 (2.8)

If ¥ is a spacelike hypersurface, then n is a timelike unit vector, with ¢ = —1.
In the following chapters we will adopt the notation g** = ¢g"°, which means that
t is chosen as the time coordinate, corresponding to the index 0. Consequently,
if we write n,, as n, = Q9,t, where Q = Q(z®) takes care of the normalization,
the condition 2.8 fixes the absolute value of €2:

1
~1=nng" =0%" = Q=4+—r (2.9)

/=400
Henceforth we focus on spacelike hypersurfaces ¥ and its induced positive-
definite metric y. We shall set 2 < 0, which ensures that n* is a future-directed
timelike vector (namely, it points toward the direction of increasing ¢ ). Hence
we can express 1, and n* in the natural bases of T',(M) and T, (M) as

K} 0

ny,=— \/ﬁ (2.10)
Op

nht =9 (2.11)

Ve
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2.2 Extrinsic and intrinsic curvature

In our brief introduction to the Hilbert-Einstein variational principle we con-
sidered the Riemann tensor R”_ , and its contracted forms associated to the
Levi-Civita connection V on (M, g), which express the intrinsic curvature of
the spacetime. In a similar way, we can construct a unique Levi-Civita connec-
tion D on the manifold (X, 4) and its corresponding curvature tensors. In order
to distinguish between three-dimensional and four-dimensional tensors, we shall
adopt the following convention:

o the quantities marked with the superscript “4” relate to (M, g): the

spacetime Riemann tensor becomes 4R”U '

e conversely, the quantities marked with “3” or without any superscript refer
to the manifold (¥, v): for example, 3R, = R,

Besides the intrinsic curvature, when dealing with embedded manifolds one may
define an extrinsic curvature tensor, which measures the variation of the normal
n along a tangent vector. To this end, let us introduce the Weingarten map y
(or shape operator), which acts on tangent vectors of T',(X) (seen as a subspace

of Tp(M)):
x: Tp(X) — Tp(X)
v — Vyn (2.12)

X is truly an endomorphism of T',(X), since x(v) is orthogonal to n:
1
nu[x(v)]" =n,Vynt = §Vv(n;m“) =0 (2.13)

This implies that we can use the Latin indices 4, j instead of u, v to denote the
components of x:

k_wvnk—_ 19 g™ 1 apeo 2.14
Xi = in = - () \/_gOO + \/_gOO [ ( . )

Furthermore, the Weingarten map is self-adjoint with respect to the metric «, so
its eigenvalues k1, ko, k3 are real numbers. These are called principal curvatures
of the surface X, while the corresponding eigenvectors identify the principal
directions. The mean extrinsic curvature is then defined as the arithmetic mean
of the principal curvatures:

1
H = g(lil + Ko + Hg) (215)

Another consequence of the self-adjointness of x is the existence of a bilinear
form on T, (%), called second fundamental form, such that:

K:T,(%) x Tp(2) — R
(wo)  — —up ()" (2.16)
From the definition of x(v) we obtain an explicit expression of the components

of K:
1

_gOO

Kij = =V;n; ="T" n, = — 4o, (2.17)

¥
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The trace of K with respect to the metric v turns out to be a multiple of the
mean curvature (equation 2.15) and of the trace of the Weingarten map:

K — 7inij = _Try=-3H (2.18)

We now focus on the properties of K and on the relations between the connec-
tions V and D. To this end, we define the orthogonal projector on T',(X) as the
map
w: Tp(M) — T,(%)
v* = Y 4 (nyet)n® (2.19)
whose components can be explicitly written in terms of n* and in matrix form
using equations 2.10, 2.11:

TR T -
wt, =o0", +ntn, =

(2.20)

In fact, since 7#,n” = n” —n” = 0, it maps any vector in the direction of n*

to zero, while it acts as the identity on T',(X). The pull-back of the orthogonal
projector provides a natural extension of the covariant tensors defined on %
to the spacetime M. In particular, 7* yields the extended metric «,, when
applied to ~:

Y = Ty (2.21)
By definition, 7,4 is equivalent to v when its action is restricted to T, (X) and
vanishes if one of the arguments is normal to . This property can be translated
into the completeness relation:

Vv = Guv + Ny (2.22)

We shall apply the extension via 7* also to the second fundamental form K
defined before:
Ky=n"K (2.23)

This process will be carried out automatically (unless otherwise stated) for ev-
ery covariant tensor defined on ¥, whereas for contravariant tensors on X the
extension to M is trivial (since each (0,r) tangent tensor in T,(X)" is already
vanishing upon contraction with n,,). To lighten the notation, however, through-
out the subsequent discussion we will refrain from introducing new symbols and
implicitly refer to the corresponding extended quantities.

We now clarify the relation between the spacetime connection V and the three-
dimensional connection D. Given a tensor field T on ¥, its (extended) covariant
derivative DT satisfies the relation:

DT ==*(VT) (2.24)
in components:

DATHt, L, = almh et ...Wﬁsusvaa]marﬂji.ﬂs (2.25)

Qo Vi

This stems from the uniqueness of Levi-Civita connections, which can be proved
by direct computation. Note that in the right-hand side of 2.24 we implicitly
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considered the extension of T' to M. Applying equation 2.25 to a tangent vector
v € T,(X) leads to a useful specific case that involves the extrinsic curvature
tensor:

Dyv® = Vv + Kyufv'n®  Vue T,(X) (2.26)

We conclude this paragraph showing the relations between K, and the nor-
mal vector n*. Firstly, let us define the 4-acceleration of n* as the covariant
derivative along itself:

a’ = Vyunt (2.27)

From the constancy of the norm of n*, we deduce that a* is orthogonal to n#
and thus belongs to T',(X):

1
guar'n” =n,Vpnt = §Vn(nun“) =0 = dad'e Ty (2.28)

By virtue of these results we can now express the extended tensor K, in terms
of more elementary quantities. Given two vectors u/, v € T),(M), consider the
quantity

K utv” (2.29)

Since the employment of 7#, in definition 2.23 makes K, orthogonal to n*,
the only contribution to 2.29 comes from the spatial components of the vec-
tors. Therefore, thanks to our choice of coordinates, we can use K;; = —V;n;
(equation 2.17) simply by replacing the Latin indices with the Greek ones:
K ut'v” = =V n, 7" u®] [7‘(‘”6’05]

=—-V.n, [u“ + n“nau“] [v” + n”ngvﬁ}

= —u"v"V,n, —u'v'n,Van,

= —utv” [Vyn, + nya,) (2.30)

Hence we arrive at the following fundamental equations:

K,, = -V, n, —nua, (2.31)
K =g¢"Ky, =-V,n" (2.32)

The contribution of the acceleration vector a,, drops out in the contraction with
n, due to the orthogonality relation 2.28.
Before continuing with our discussion, we clarify a relation that has been ignored
until now. In particular, raising or lowering an index of the projector 7#, with
guv yields the metric v, and its inverse:

Tow = ™™y = gau(0¥, +nf1) = gaw +nany = 1 (2.33a)
it = gNak, = g™ (6%, + ntny) = g+ nPn? =4 (2.33b)

This is a direct consequence of the completeness relation 2.22 involving v, and
guv- Thus from now on we replace the notation 7#, with the equivalent v*,.

2.3 Gauss-Codazzi relations

This section is devoted to the development of the 3+1 dimensional splitting
involving the curvature tensors of ¥ and M. In particular, as we shall see,
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the three and four-dimensional Riemann tensors are related by the extrinsic
curvature tensor K,,,.
Let us consider the Ricci identity, which relates R’;,, to the commutator of
covariant derivatives:

R?, 07 = Dy, D,Jv* (2.34)
This equation holds for every v € Tp(M) as R, is a tangent vector of
Y. Each derivative D can be replaced by V using twice equation 2.24 and the
explicit expansion of the projector v*,. After some passages, we arrive at the
Gauss relation:

’ypa’yﬁa’yvu’yéu 4Ra,8’y(§ = Rpo/w + KP/LKUV - Kpl/KC/'lL (235)

By exploiting the idempotence of the projector fyo‘/\vAﬂ = 7%, the contraction
on p and p gives the contracted Gauss relation:
4Raﬂ 'yauvﬁl, + 4Ra/375 *ywnﬁy'yun‘; =R, +KK,, — H,\KAV (2.36)
Finally, contracting again with the metric v** yields a generalization of Gauss’
Theorema Egregium:
‘R+2'R,,n"n" = R+ K? - K,,, K" (2.37)

It is worth to observe that these three remarkable equations, apart from the
notational particularization, hold true for any kind of embedding (in any di-
mension). We can push further our analysis by considering their projections
on X and on n®: in particular, let us focus on the total projection of the four-
dimensional Ricci identity

[V, Von? = R?,, 0 (2:38)
Using the projector 4”5 once for every index and exploiting the expansion 2.31
of K, results in:

o

= ,YQP,YHB,YV’Y[V#, vl)]np
= =" V(K +nya”) = Vo (K,” + nya’)]
= —[DsK," = DyKp®] — [a" Kpy — a® Ky

4
’Yap’y#ﬁfyufy Rpo‘,ul/n

The symmetry of K,z allows to displace the last term in square brackets, giving
the Codazzi relation:

YN Ry = — (DK ® — D, K3°] (2.39)

opv

As usual, we can perform the contraction of the remaining free indices with the
aim to obtain new identities. In particular, applying this to « and 8 on the
left-hand side leads to

4 o 4 o
Y R m” = (08, 1)y TR n
= 'y”me,n” + 7”74Rpg,“,n”n"n“ (2.40)
The last term drops out due to the antisymmetry of 4Rpo;w with respect to the
first two indices. Since the contraction of the covariant derivatives is trivial, we

arrive at
Y\ 'R,,n” = DyK — D, K,* (2.41)

Unsurprisingly, this is called the contracted Codazzi relation.
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2.4 Corrections to the Hilbert term of the ac-
tion

Having introduced the extrinsic curvature tensor K,,,,, we are now in the position
to deal with the pending issue presented in section 1.2. Indeed, in order to
displace the boundary term arising in the computation of S (equations 1.16
and 1.19), we shall add a corrective term to the action which depends on the
trace of the extrinsic curvature. To simplify the notation, in this section we
omit the superscript “4” since we consider only four-dimensional quantities.

2.4.1 Boundary term S of the action

We recall that the variation of S performed in section 1.2 yields the boundary
term
Vo, = ]{ [g’“’&f‘al“, — go"’él"“w] dog, (2.42)
av v
which in general cannot be discarded due to the presence of nonvanishing partial
derivatives 0g,... We shall now give a precise characterization of the surface
element do,, in the case of a non-null hypersurface. To this end, let us introduce
the defining equation ®(z®) = const of the hypersurface 9V. To avoid confusion,
we denote with 7, the generic unit normal (not necessarily timelike) pointing in
the direction of increasing ®. This follows immediately if we fix r, =Q09,9,
where (2 is the positive normalization factor, as the contraction with 9, ® gives:
r“@@zir“r :l>0 (2.43)
. e M Q '
Finally, by demanding do, to be an invariant volume element of 9V, propor-
tional to r, and such that r*do, > 0, we arrive at

doy = ergy/|h| 3z (2.44)

where h;; is the induced metric on OV, h is its determinant and d3x here refers to
the coordinates of the hypersurface. In analogy with 7,,, the four-dimensional
extension h,, satisfies the completeness relation

Py = G — €Tury (2.45)

which can be easily proved by taking the contraction with normal and tangent
vectors of V. Substituting equation 2.44 in the integral 2.42 gives

/ g" SR/ —g Atz 27{ £V ora/|h| APz (2.46)
v v

In order to recast V' as a function of dg,,,» we must evaluate the variation of
the Christoffel symbols F)‘W. Since g, ]gy, = 0, we have

1
0T, = g0 0, = 3 9 (890 + 0Gov — 0G0 (2.47)

For simplicity, we focus momentarily on the argument of the surface integral
2.46, discarding the multiplicative term y/|h|. Replacing the variation 6T,
with equation 2.47 and gathering the common terms yield

oV, = sgaﬁg‘“’ (09810 — 09uv,8) Ta
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— e (W + er"1") (8980 — OGuu5)
= Erﬁhwj (5gﬁu,u - 69#1’75) (248)

In the last line we have exploited the antisymmetry of (6ggu,, — 0guv,5) With re-
spect to the indices /3, v, dropping out upon contraction with 727", In addition,
since the variation dg.s vanishes everywhere on the boundary, its derivative
along a tangent vector u” of @V must be zero. The arbitrariness of u” provides
the relation

woGuv,p = Uch"0guvp =0 = h7P0gu, =0 (2.49)
thereby allowing to discard one term of the last line of 2.48:
0V ey = —eh!6gup,ar® (2.50)

By virtue of these results, our surface integral becomes

/ g"ORN —g d*z = fj{ e r*8gum.aV/ |h|d3x (2.51)
v

oV

We are now in the position to recast this integral into a much more elegant
form. Indeed, from the variation of I'* , (equation 2.47) and the property 2.49,
the right-hand side turns into

7% eh*™ 189, o/ |h| Pz = 7]{ et r® (=26T ) V/ |h|
oV 152%
= 2% eh*ro 6T ,,\/|h| A (2.52)
oV

can be traced back to the variation of the covariant

7%

The product r, I,
derivative

v

Ta0l%,, = =0 (V,ury) (2.53)
If we recall equation 2.32, that gives the relation between K and the (spacetime)
covariant derivative of the unit vector r,,, we see that on 9V the following relation
holds:
h*ro o, = — (g" —ertr”) 6 (Vur)
=—0(Vurt)=40K (2.54)
Notice that we used property rV,r, = 0 to eliminate er#r”. Since dg,, =

dhy, = 0 on the boundary, the variation of /|h| vanishes, thus enabling us to
rewrite the integral 2.42 as

/ "R/ —g d'x = 257{ eK+/|h| 3z (2.55)
% 2%

By virtue of this result, we can add a new term to the action functional S,
called the boundary term Sp, such that the variation of S provides the correct
gravitational component of the Einstein field equations. Indeed, if we define
this contribution by the integral

1
Sy = —77{ KR dPe (2.56)
871' oY

the extra boundary term which tainted equation 1.19 cancels out with 2.55,
leading to the left-hand side of the field equations 1.23.
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2.4.2 Nondynamical term §; of the action

Although the gravitational part of the action S¢ = Sy + Sp is now fully con-
sistent with the Einstein field equations, the integral 2.56 might diverge for flat
(or asymptotically flat) spacetimes. In fact, by considering the vacuum solution
R, = 0 on a region of spacetime delimited by two hypersurfaces t =, t =t
(with t1,t2 constants) and by a three-cylinder with radius p, the action reduces
to the boundary term

1
Sy = —774 KT AP = plts — 1) (2.57)
87T oy

which diverges when p — co. For this reason we might introduce a nondynam-
ical term Sy, which does by no means affect the field equations, such that the
total action is bounded even for non-compact (asymptotically) flat manifolds.
One possible choice is given by

1
So=—— ¢ eKo/|h|d®z (2.58)
87 Jov

with Ky corresponding to the scalar extrinsic curvature of the embedding of
0V in flat spacetime. Accordingly, reintroducing the superscript “4”, the well-
defined gravitational action Sg becomes

Se¢ =8y +S8S5—5
1 1
Ry =gdtr - o 7( £ (K — Ko)/Jh] (2.59)
T Jov

= Tor ),



Chapter 3

341 decomposition of
spacetime

In this chapter we carry on the dimensional splitting of spacetime (M, g) into a
purely spatial part and time. We start by fixing the three-geometry of spacelike
hypersurfaces X, endowing each of them with a coordinate system and with the
induced metric v,,. However, this does not fully determine the four-geometry
of spacetime: one must in addition set the geometry between two neighbouring
hypersurfaces. To this end, we shall define four new functions, which supple-
ment the information required for a complete description of M. Once this has
been done, we will be able to rewrite the gravitational action 2.59 in terms of
the extrinsic curvature tensor and of three-dimensional quantities inherent to
the hypersurfaces.

The feasibility of this process restricts the analysis to a specific class of space-
times, called globally hyperbolic spacetimes.

Definition 4. A spacetime M is said to be globally hyperbolic if it admits
a spacelike hypersurface ¥ (called Cauchy surface) such that every timelike or
null curve without endpoints intersects ¥ once and only once.

Any globally hyperbolic spacetime admits a foliation by a family of spacelike
hypersurfaces {X; }1cr, which means that each X; is a level surface of a regular
scalar field £ on M. We thus focus on this class of spacetimes and proceed with
the introduction of the lapse and shift functions, following the notation adopted
by Arnowitt, Deser and Misner in their 1962 article (Ref. [4]).

3.1 The lapse function

In section 2.1 we considered the normal covariant vector collinear to the gradient
one-form dt. In particular, we defined the function 2 as the negative factor

which ensures that n, = Q (df)a is normalized. Let us introduce a closely
related positive quantity N and call it the lapse function:
1
N = =-0 (3.1)

\/W
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This name is justified by the physical significance that N acquires: indeed, it
determines the lapse of proper time between two neighbouring hypersurfaces
Y46t and Xy, To clarify this fact, let us define the normal evolution vector:

m* = Nn® (3.2)
We see that it satisfies the relation
(df)om®™ = —=N2g*P(dt )o(df ) g = —N?¢"° =1 (3.3)

where we have used equation 2.11. Next we consider p € ¥; and generate an in-
finitesimally close point ¢ € M, such that =% (¢) = 2% (p) +m® dt. Substituting
into the scalar field ¢ and expanding to first order we find that:

t(q) = t(p) + (df )am™ot =t + 6t (3.4)

Therefore we have proved that ¢ € ¥;ys¢, which means that the displacement
dx® = m*Jt connects ¥, to Xy45¢. Besides, if we consider an observer moving
with four-velocity n®, the elapsed proper time d7 measured between the events
p and q is given by

b = \/— (m@5t) gap (mPét) = Not (3.5)

This implies that the lapse function N associates an infinitesimal interval of
coordinate time t to the proper time measured by an observer whose world lines
are orthogonal to ;. In order to simplify the notation, henceforth we implicitly
identify £ with the coordinate t.

3.2 The shift functions

Let (2%) = (x!,22,23) be the coordinate system on each hypersurface of the
foliation {¥;}ser and let (¢,x!, 2%, 23) be the natural smooth extension to M.
The tangent vectors (0,,) = (0, 01, 02, 03) constitute the natural basis of T', (M),
while (dz*) denotes the corresponding dual basis of T',(M). In particular, 0,
is the tangent vector to the curve z* = const, whereas 9; € T)(X:). Albeit 0;
connects two neighbouring hypersurfaces similarly to m®, they in general differ,
as J; is not necessarily orthogonal to ¥;. In fact, asking the coordinate systems
(x%) to vary smoothly between neighbouring hypersurfaces does by no means
fix the direction of 9;. In order to fully determine the geometry of spacetime
we have to specify the displacement of 9; from m® in any point of M: let us
consider the vector difference

B = (0)" —m” (3.6)
B is tangent to X4, since the projection on n® is zero:
Naf% =na(0)* —negm®=ng+ N =0
In addition, applying the basis one-forms dz’ € T,(%) to B gives:
dz'(B) = B’ = 6"y — Nn' = N?¢" (3.7)
We thus define the three shift functions N? to be the spatial components of 3%:
Ni = gi = N2g (3.8)
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Once the lapse function and the shift functions are specified, together with the
three-dimensional metric 7,5, the spacetime geometry is completely determined.
Let us express g, in terms of 7;; and of these new functions N, N%. At present,
we have identified only few components of the metric and its inverse:

where A, B; and C are unknown. These entries can be determined by exploit-
ing the identity g,,9"" =9,":

1 .

gipgpo = ﬁ(_Bi + %‘jN]) =0 — B; = 'yika (3.10)
1 ) .

90p9" = 35 (-A+ 3k N'N) =1 = A=y NN'=N?  (3.11)

9ipg” = ﬁm(N’“NJ +CMYy =4 — CY =N _-N'N  (312)

Let us adopt the notation N; = ~;,N*. Replacing A, B;, C* in equation 3.9
leads to the result we sought:

1 NI
NN — N? \ N, - N2 el
Juv = : g = ; - (3.13)
N; ‘ Vij Nt iy NN
N2 e

It should be emphasized that g;; = 7;;, whereas in general g # ~v%. Indeed,
this is true only if N* = 0, which means that 9; and m® coincide (in this case,
the coordinates (z*) are said to be Gaussian normal coordinates).

The determinants g and y respectively of g,,, and ;; are related by the equation:

g=—-N>v — /=g=N,/v (3.14)

which gives the density \/—g of spacetime in terms of the density /v and the
lapse function. This follows from the definition of the inverse metric g"” by
means of the adjugate matrix:

o0 dety v 1

_detg_g__ﬁ

(3.15)

Ultimately, combining equations 2.10, 2.11 and 3.8 provides an explicit form of
n, and n# in terms of the functions N and N':

n, = (—N,0,0,0), (3.16)
1 Nz H

3.3 Final decomposition of the Riemann tensor

Let us return to the contracted Gauss relation (equation 2.36). We now aim

at replacing the Riemann tensor 4RPUW with the three-dimensional intrinsic
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and extrinsic curvature tensors and with the lapse and shift functions. To begin
with, we rewrite the acceleration covector a, in terms of the lapse function using
the definition of n,,:

ay =Vpn, =-—n’Vs(NV,t) = —n7(V,N)(V,ut) —n'NV,V .t

Since V is torsion free, the covariant derivatives commute if applied to a scalar
field, namely [V, V]t = 0. Thus:

1 o
a, = —n,n°VeN +n°NV, (n—)

N N
=n,n°VeIn N —n,n°V, InN +n7V ,n,
= (nny, +07,)Veln N =77 VoInN = D, In N (3.18)

Plugging a,, into equation 2.31 gives:
Vun, ==K, —n,D,InN (3.19)

In a similar way, the covariant derivative of m® can be easily computed:
Vum” =V, (Nn")=-NK,” —n,D"N +n"V,N (3.20)

Another mathematical tool we shall consider is the Lie derivative (whose charac-
terization is given in section 6.1.4 of the Appendix). Let us consider the tangent
tensors on X, namely the tensors invariant by projection:

T = Y0 g T (3.21)

The Lie derivative acts as an endomorphism of the space of tangent tensors on
3, as it can be proved that £,,,v*, = 0. In fact, combining this with the product
rule on 3.21 confirms our assertion:

(‘cmT)almarﬁlnﬂs — ,Yalu] . ',Yozrur,yulﬁl . ,_YVS/BS (EmT)M;...#rVIMVS (322)

The Lie derivative L, provides some useful and concise relations between the
tensorial quantities previously introduced. In particular, since V is torsion free,
we can apply the property 6.19 from the Appendix and replace the partial deriva-
tives with their covariant counterparts. This being said, thanks to equation 3.20
the Lie derivative of v, results in

LoV =M VoY + Yo Vim® + yua Vom® = —2NK,,, (3.23)

which means that the evolution of v,, along m® is related to the lapse function
and to K. Using m® = Nn® and the orthogonality ~,,n” = 0, equation 3.23
can be rewritten in a significant form:

1
K[Ll/ = *§£n7,uu (324)
Although this relation is sometimes used as a definition of the extrinsic curva-
ture, it should be noted that it is meaningful only if 3; belongs to a foliation,
as the derivative of 7,, along n® may not be defined. Let us now turn to the
evaluation of £,, K, using the covariant version of the expansion:

LK, =N (VpKag + Ko ,Vpn’ + K ,gVan?) (3.25)
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Since K, is a tangent tensor of X, we can resort to the property 3.22 and apply
the projector v*, without altering the result:

EmKHu - ’yaM’YﬂV ﬁmKaB
= N'Y(’M'Y'ByvnKa,B - 2NKMprV (326)

If we replace the Greek indices with Latin indices running from 1 to 3, equations
3.23 and 3.26 continue to hold, inasmuch as K, and v,, are three-dimensional
tangent tensors defined on 3:

Lmvij = —2NK;; (3.27)
LmKij = Nv"r'; Vo Ky — 2N K K, (3.28)

Exploiting the identity Em(vikvkj) = 0 and the product rule, we are able to
recover the Lie derivative of the inverse metric v/ and of the trace K, whose
significance will be apparent later in this section:

Ly = =" Loy = 2NKY (3.29)
LK = 2NK ;K9 4+~ Ly (Kij) = Ny VK (3.30)

Let us now project twice on ¥ and once along n* the four-dimensional Ricci
identity 2.38 applied to n*:

Yoy gn” (4R”0Wn") = Ypa¥"sn" [V, Vi Inf (3.31)

Expanding the commutator and using formula 3.19, after some laborious pas-
sages we manage to eliminate the derivatives V,n” in favour of the extrinsic
curvature and arrive at

n 4

1
FYP(X’Y B Rpo';u/ nUnV = (X/\KAB + ’Y#a'yuﬂvnpr + T

D,DsN  (3.32
N ] (3.32)

This relation will enable to replace the spacetime Riemann tensor *R? v With
three-dimensional quantities. In fact, if we compare it with the contracted Gauss

relation 2.36, namely

4
7% Rag + 1o R 4oy nn” = Ry + KKy — Kn K,

we notice the two common terms (up to a notational change) containing 4RPUW
and K K ’\5. Hence after the combination of these equations we are left with

the simpler expression
1
’VO‘M’YBV 4Ra5 =R, +KK,, — ’yau"yﬁuvnKaﬁ — ND#DVN (3.33)

Finally, let us perform the last contraction with v* and replace in the right-
hand side the Greek indices with Latin ones, exploiting the aforementioned
purely spatial character of K and ~:

.. 1 ..
YR, = R+ K? =49V, K;; — ~ 1/ DiD;N (3.34)

Equation 3.30 suggests that we should substitute vV, K;; with the Lie deriva-
tive of K. However, given scalar field f and a vector X, the relation Lx f = Vx f



3.4. PROJECTION OF THE EINSTEIN FIELD EQUATIONS 22

always holds, implying that in this particular case the contraction with v com-
mutes with V, even though V\~* # 0. Therefore we get

1 1 .
v4 %
YR, = R+ K% — —NVmK+ —ND D;N

1 .
=R+ K> V,K+ ~ D' DiN (3.35)
Recalling that v*¥ = g"” + n*n”, we now split the left-hand side into
1 .
‘R+*R,n'n" = R+ K* - V,K — ~D'D:iN (3.36)

Eventually, by virtue of Gauss’ Theorema Egregium (equation 2.37), the re-
placement of 4R,Wn“n" leads to the relation we sought:

- 2 .
‘R=R+K*+KVK;; —2V,K — ~D'DiN (3.37)

The 3+1 decomposition of the spacetime scalar curvature *R is thus complete.

3.4 Projection of the Einstein field equations

We end this chapter with the projection of Einstein’s field equations, resorting
to the relations between three and four-dimensional tensors hitherto considered.
Let us focus on the case A = 0:

1
4Ru,1/ - §g,u,1/4R = 87TTHV (338)

We can recast these equations in an equivalent form by displacing the scalar
curvature “R with the trace T of the stress-energy tensor. Indeed, contracting
3.38 with g" gives

1
g [4R,“, — 59 4R} = 87g"'T,, = ‘R=—8xT (3.39)

After the substitution, we arrive at
1
"Ry = 87| Ty - 5 9uT| (3.40)

It is worth to introduce some tensorial quantities describing the 3+1 splitting of
T, Since the normal vector n® is timelike, it may be identified with the four-
velocity of some observer, which moves perpendicularly to the hypersurfaces X;.
The energy density F measured by this observer is given by the formula:

E =T, n"n" (3.41)

This is analogous to the definition adopted in special relativity. In a similar
fashion, we introduce the momentum density as the one-form

Pa = — Tt~ (3.42)

The projector v, ensures that p, is tangent to the hypersurface ;. Lastly,
the total projection of 7},, onto X; produces the stress tensor Sug:

Sap = TuY""s = Tap + Enang + 0 (Tapnp + Tppna) (3.43)
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and the corresponding trace with respect to v,,:
S = Sapy*? = Sin" (3.44)

Combining equations 3.43 and 3.44, we can write T in terms of the trace S and
the energy E:
T=Tug" =T " —ntn")=5—-F (3.45)

These definitions describe all the quantities arising from the projections of the
stress-energy tensor. Since 7}, is a symmetric rank-2 tensor, we are now in the
position to analyze individually each of the three possible combinations.

3.4.1 Total projection onto Y,

Let us apply twice the projector v#, to 3.40. On the left-hand side we get the
projection of the Ricci tensor, which has already been computed in the previous
section (formula 3.33). However, we can reshape it into a slightly different form
with the introduction of the Lie derivative £, K, through equation 3.26:

1
V07" s B = Rap = 2Kax g + KKop — < [LmKap + Do DsN]

On the right-hand side, instead, we can replace 7),, and 1" with the stress tensor

Sy, its trace S and the energy density E thanks to 3.43 and 3.45:
1 1
877,75 [TW - 59WT} — &7 [saﬁ — 5%as(S — E)] (3.46)

Therefore the total projection onto X of the Einstein equations reads:
1
Rop — 2Kan K3 + KKap — ¥ [LimKap + DaDgN] (3.47)

= 87[Sus ~ 3708(S — B)

It is worth to note that all the tensors involved in this equation are tangent
to X, thus their components are completely described by the Latin indices ij.
Isolating the evolution of the extrinsic curvature £,, K;; leads to the equivalent
form:

LmKij=—D;D;N + N[R;; — 2K, K', + KK

3.4.2 Total projection along n*

Again, let us project the Einstein equations, this time twice along n*. This
means that we shall contract equation 3.38 with n#n”. Using the definition
3.41 of the energy E we find:

1
n*n"*R,, + 3 ‘R =8nE (3.49)

Comparing the left-hand side of this equation with the generalized Theorema
Egregium (formula 2.37) gives the relation:

R—- KK + K* = 167F (3.50)
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This is called the Hamiltonian constraint, as it will appear in the Hamiltonian
approach to general relativity, described in chapter 4.

3.4.3 Mixed projection onto ¥; and along n*

The last projection that can be performed is the mixed projection along n* and
onto ¥;. Since the metric g, vanishes upon contraction with n* and ", the
field equations reduce to

*R,,mP Y, = —8Tpa (3.51)

where p, is the momentum density previously defined. The left-hand side can
be transformed into three-dimensional covariant derivatives by means of the
contracted Codazzi relation 2.41:

DsK,” — D, K = 87p, (3.52)
or equivalently, by restricting the indices to the spatial components:
D,K,;” — D;K = 8mp; (3.53)

This is called the momentum constraint. In fact, its left-hand side will be rewrit-
ten in terms of the conjugate momenta arising in the Hamiltonian description
of general relativity.

3.5 Summary of the results

Having completed the projection of the field equations, it is worth to summarize
and analyze the results before proceeding with the introduction of the Hamil-
tonian formalism. In particular, we shall first recall the equation 3.27, which
relates the evolution of v,, and the extrinsic curvature K,,,:

Lom7i; = —2NK,; (3.54)

Let us split m into 0, — N*0;, and rewrite the Lie derivative as
Lom%ij = Ovij — [ DiN® + v DjN* + N¥Dyv;5] (3.55)
From now forth we denote the time derivatives with a dot (Newton notation),

so O¢vyij = 5. Since the metric v;; is covariantly constant with respect to the
connection D, the latter term vanishes and we get

Lmvij = Vij — DilNj — DjN; (3.56)

Combining this equation with 3.54 gives a useful result, which will be repeatedly
used in the next chapter:
1

Kij =
2N

{DiNj +D;N; — %} (3.57)
Then we have the projections of the field equations:
LmK;; = —DiD;N + N[Rij — 2Ky K. + KK + 4m(v,(S — B) — QSij)}
R—- K K" + K* = 167F
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D,;K; — D;K = 8mp;

These four relations constitute a set of 16 second-order nonlinear partial differ-
ential equations in the unknowns v;;, K;;, N and N (assuming that the matter
contribution from E, p; and S;; is given). However, since the number of inde-
pendent four-dimensional Einstein equations is 10, this must be true also for the
system shown above. The 341 formalism allowed to treat the field equations
as a Cauchy problem, leading to many significant results on the existence and
uniqueness (up to isometry) of local and global solutions which are a “develop-
ment” of the initial data set. In particular, once the four constraint equations
are specified on a spacelike hypersurface ¥, they prove to be both necessary
and sufficient conditions for the possibility to embed ¥ in a spacetime M which
satisfies Einstein equations. A thorough discussion of the subject can be found
in Ref. [8], [10] and [11] by Choquet-Bruhat and Geroch.



Chapter 4

ADM Hamiltonian
formulation of General
Relativity

In this chapter we discuss the Hamiltonian formulation of general relativity
proposed by Arnowitt, Deser and Misner which stems from the gravitational
action functional 2.59. The significance of the canonical formulation lies in two
primary hallmarks:

o time holds a privileged position among the coordinates (z*). In particular,
the original four-dimensional description is replaced by the evolution of
tensor fields on a spacelike three-dimensional hypersurface X;

o the time evolution of the system is defined by Hamilton’s equations, which
are first-order differential equations in the time derivatives.

The canonical form of general relativity also sheds light on the issues originated
from the redundancy of the variables g,,,. Indeed, although this ensures the gen-
eral covariance of the theory, it encumbers the identification of the minimal set
of data needed to provide a consistent initial value formulation. This reduction
to the independent dynamical modes of the gravitational field is highly desirable,
as it is a necessary prerequisite for the quantization program of general relativ-
ity. In fact, the correspondence between Poisson brackets of the Hamiltonian
theory and commutators in quantum mechanics can be considered only when
the unconstrained canonical variables are singled out from the corresponding
overall set.

In the following sections we present a detailed derivation of Hamilton’s equa-
tions and arrive at the fundamental Poisson brackets (section 4.5) between the
constrained variables. For a formal discussion on the isolation of the indepen-
dent variables of the system, the reader can refer to the 1962 article by ADM
(Ref. [4]).

26
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4.1 Einstein-Hilbert action in 3+1 formalism
Let us return to the Hilbert Lagrangian density £y = *R\/—g, temporarily
omitting the irrelevant multiplicative factor (167r)71. We shall replace the four-
dimensional quantities *R and /—¢ with their three-dimensional counterparts,
using respectively equations 3.37 and 3.14:

. 2 .
Ly = [R + K?+ KYEK;; — 2V, K — NDlDiN} N~ (4.1)

In chapter 1 we introduced the action functional Sg as the integral of Ly over a
region V of the spacetime manifold. The 341 dimensional decomposition allows
to carry on the integration on V by subdividing this region into a family of
hypersurfaces 3¢, labeled by the time t:

t2 g 2
Sy = / dt/ [R +K? + KYK;; — 2V K — NDlDiN} Ny/yd3z  (4.2)
t N

where t1 and to are generic lower and upper time limits. Before proceeding with
our analysis, we shall unveil the divergences hidden in the last two terms of Lg
by rewriting them in the following form:

VIYD'D;N = \/yD; (0'N) = 8; (\/7O'N) (4.3)
NAVLK = N\/An°V,K = 9, (VY NKn*) + /yNK? (4.4)

Substituting in the Lagrangian density Ly, the term K? changes sign and we
arrive at

Ly=(R-K>+K7Ky) N~
=2[0; (V7 O'N) + 8o (VY NEn®)] /7 (4.5)
It will prove more informative to recast temporarily the two divergences in
four-dimensional notation. To this end, we consider the generalized Theorema

Egregium 2.37
‘R=R+K?*- K, K" —2'R,,n"n"

and replace the last term with a commutator of spacetime connections, exploit-
ing the contracted Ricci identity:

‘R=R+ K? - K,,K" —2n"[V,, V,]n"

Now we use equations 2.31, 2.32 and the orthogonality relation 2.28 to rewrite
the commutator in the form

nH[Va, Vun® =nt (VoV, -V, Vy)n®
=V, (n*V, n* —nV,n*) — (Vont) V,n® + (Van®)?
=V, (n*V,n® —n*V,n") — K*K,, + K*
Substituting this result in the Lagrangian density £y and adopting the Latin
indices for the contraction K, K" = K;; K% give

Ly=(R-K*+ K ;K7)Nyy —2y/=gVa (n'V,n* —n*V,n") (4.6)
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Comparing the two expressions 4.5 and 4.6 shows that the “divergence-free”
components are the same, thereby implying that the latter terms must be equiv-
alent. In particular, the analysis of the four-dimensional divergence part will be
the subject of the following section.

4.1.1 Boundary terms in the 341 Lagrangian density

We shall now consider the contribution of Sy which must be added to Sp,
the boundary term of the gravitational action (equation 2.56). Using Stokes’
theorem and reintroducing the multiplicative constant (167r)71, we obtain

1
~ % /v V=9V "V, n* —n*V, n")d'z =

1 £ (n'V, n® —n*V,n") \/|h| rod®z
8w oy
where r,, denotes the unit normal to 0V and do, = 5ra\/m d3z is the oriented
volume element on QY. Further progress can be made if we assume that 9V is
the union of two spacelike hypersurfaces ¥;, and ¥, (with t5 > ¢1) connected
by a timelike hypersurface 7. Since on ¥, the unit normal corresponds to ng,
and € = non® = —1, the contribution of ¥;, to the surface integral is

1

1
—— £ (n'V, n® —nV, nt) /|h|rod*z = —/ Ky\/|h|d®z  (4.7)
8 ey 8w Sy

with h > 0 being the determinant of the induced metric on 9V and K = —V,n®.
Similarly, the contribution of ¥, is

1
8 2,

1
e (n*V, n® —n*V,nt) /|h|rod®z = —8—/ K+\/|h|d%z (4.8)
U Etl

where the minus sign accounts for the negative orientation of ¥;, with respect
to the future-directed normal, namely r, = —no. We see that 4.7 and 4.8
cancel out the corresponding integrals over ¥, and ¥, contained in Sg (equa-
tion 2.56). The contribution coming from 7, though, does not neutralize the

remaining term of Sp. In fact, it gives
1

— — [ e(n"V,n® —n*V,n") /|h|rod®z (4.9)
81 T

_ ! (nV n®) ro/|h| PPz = %/ ntn® (V,ra) v/ |h| Pz
T

_gT

In the second line we have used the orthogonality relation n®r, = 0, due to the
spacelike character of r,. Since € = 1 on 7, by merging the integral 4.9 with
the remaining term of Sp we arrive at

i/ ntn® (V#ra)\/|h|d3;v—i/ K+/|h|d3x
8 T 81 T

1
= — [ (n"n” +g") V|| Pz (4.10)
8 T
To simplify the last integral of 4.9 we can introduce a foliation of 7 by the
two-surfaces Sy, each corresponding to the boundary of ¥;:

St = 82,5
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By considering S; as a two-hypersurface embedded in the three-dimensional
space ¥, we can define the (extended) extrinsic curvature tensor of S; as

Kij = —Dﬂ“j + TiD,,-’I’j (411)

where 4, j refer to the coordinates of ¥; and r? is the normal to S;. This is
analogous to the defining relation of K, (equation 2.31) except for a sign, due
to e = 1. Contracting ;; with the induced metric A"/ gives the scalar curvature:

K= Hi]‘hij = —hijDi’I“j = —Diri (4.12)

In addition, we can form the four-dimensional tensor x,, by extending r;; as
we did with K,,. We therefore proceed using the relations presented in section
2.2 and substitute the connection D with V. In particular, applying equation
2.25 results in

k= —Dyrt = —g" (0%, + n“n,)(0%, + n’n,)Vars
= —Vor® —n®nPVarg = — (g‘”‘ﬁ + nanﬂ) Vars (4.13)
We see that the integral 4.10 contains precisely xk with the opposite sign. Also,

in analogy with the relation 3.14 between the determinants v and g, h can be
rewritten as the product of the lapse function N and the determinant o of the

induced metric on S;:
V|h| = Nyo (4.14)

By virtue of these results, we are now in the position to rewrite the total bound-
ary term of S as a surface integral on S;:

1 [t
Sp = ——/ dtjf kN+o A%z (4.15)
871' th St

The nondynamical term Sy can be equally rewritten in terms of kg, the extrinsic

curvature of S; embedded in flat space. Therefore, the gravitational action in

3+1 formalism becomes
1"

So=— [ dt
“ 7 16w J,,

/ (R— K*+ KYK;;) Ny &®z
pan
-2 ]{S (k — ko) N\/(Tde] (4.16)

4.2 The Hamiltonian formalism

Having set most of the mathematical background of the theory, the time is now
ripe to undertake the dissertation of the Hamiltonian formalism. In particular,
we shall focus on the vacuum case, thus ignoring the matter contribution Sy, and
considering the action S = Sg. In order to follow the ADM notation, from now
forth we shall suppress the immaterial multiplicative constant (1671')_1 contained
in the action 4.16.

The first fundamental observation is that S depends on +;;, 7i;, the lapse and
shift functions N, N* and their spatial derivatives. Since the time derivatives
of N, N do not appear in the action integral, the lapse and shift functions,
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despite being four configuration variables, do not belong to the set of dynamical
variables. Indeed, we will prove that N and N? act as four Lagrange multipliers,
each giving rise to a constraint equation. Let us denote with L the gravitational
Lagrangian:

L:/ (R—K2+Kinij)N\/7d3x—27{ (k — ko) N\od®xz  (4.17)
P St

The first integral is the volume part of L, which we label as Ly. The corre-
sponding Lagrangian density is:

Lo=(R—K*+ KYK;;) N\/y (4.18)
In Hamiltonian mechanics, each configuration variable ¢ is associated with a
canonically conjugate momentum p, given by the partial derivative of the La-
grangian with respect to ¢. Similarly, the canonical momentum density = is
defined as
L oc
= 5
The Hamiltonian density H is then recovered by performing the Legendre trans-
formation of £, with 7w as the dual variables:

M=) 74— L
q

™

(4.19)

Due to the aforementioned absence of N and N in 4.17 , the corresponding
momenta 7y and 7 vanish:
oL . oL
= — = O 7TN'£ = T =
ON ON?

TN (4.20)

Therefore, we are left with the six independent momenta 7/ conjugate to the
components of 7;;:

Vi

(4.21)

In order to find the explicit expression of 7%/, we first notice that the boundary
term of the Lagrangian 4.17 is independent of the time derivative 4;;. Thus we
only need to evaluate the following partial derivatives
oR 0 0K,s 1
i Yij 2N

5807, (4.22)

which follow from the absence of 4;; in the three-dimensional scalar curvature
R and from the explicit form of Kjj, given by equation 3.57. Combining these
results, we obtain:

ij T ork_s rs i 57 i 57
T = —%w oyt — o (67,67 K + 05,07 K)

= YL KY —2IK) = T (KA — KY) (4.23)

Notice that 7% is a contravariant tensor density of weight 1, inasmuch VY W
enters the expression with W = 1. The covariant version m;; is recovered by
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lowering the indices of 7%/ with the metric ;;. In the 1962 article by Arnowitt,
Deser and Misner (Ref. [4]), the momenta 7% are presented in another equiv-
alent form, which in our case stems from equation 2.17 and from the relation

V=9 = Ny7:

7 = /=g (10, = T g ) 7771 (4.24)
We may also dispense with K% and K by resorting to equation 3.57 and raising
the indices:

3

L% - % [Q’yijDka _ D’LN] _ DJN’L + (’Yik’}/jl B 'Yij’)/kl)")/kl} (425)

Conversely, since the Hamiltonian is a functional of the configuration variables
and their conjugate momenta, we shall rewrite the extrinsic curvature tensor
and ;5 as functions of ~;; and m;;. To this end, let us compute the trace of 7*/:

T = =27 K (4.26)

We then combine 4.23 and 4.26 to obtain the desired inversion:

. 1 - -
KV = —(qy" — 27 4.27
N ) (4.27)
m
K=—— 4.28
N (429

\/,-7

This allows to rewrite the volume part L of the Lagrangian density as a function
of the canonical variables:

N . 1
=N,/ g — g2 4.
Lo YR+ - (7r Tij 27r) (4.30)

We denote by Hp the Hamiltonian density corresponding to Ly, namely Ho =
74,5 — Lo. By means of equations 4.29 and 4.30 we can replace ¥;; and Lo,
thus arriving at

. N . 2
Ho =20 DiN; — NyTR+ = (m-jw” - 7;) (4.31)
ij ij N ij w?
:2D1 (7T Nj) 72NjDi’/T 7N\/’7R+7’y 7T1'j7T 77

where D;7% is the covariant derivative of a tensor density, whose definition is
given in Appendix (section 6.1.2). The total Hamiltonian H is recovered by
combining the integral of Hy over ¥; with the contribution of k — k¢ computed
in section 4.1.1:

H= | Hod®z + 27{ (k — ko) Nv/o d®x (4.32)
2y St

Let Hx, and Hg denote respectively the volume and boundary parts of H, such

that H = Hy, + Hg. Since the divergence 2D; (ﬂ'iij) contained in Hy gives

rise to a surface integral, it must be added to Hg, leaving only the true volume
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terms in Hyx:

. N I
H :/ [_QN,«DWJ — N/ YR+ — (mw — )] d3z 4.33
by 5, J v Na J D) ( )
7t
HS:27{ {N K — Ko +N¢T':| o d%x 4.34
. ( ) Y (4.34)

We shall rewrite Hy, following the ADM notation, with the aim to emphasize
the role of N and N*. If we define the quantities

0 1 7w’ ij
R = —2D;n% (4.36)

we immediately see that the volume term takes on the simple form:
Hy, = / {NRO + NiRl}d% (4.37)
PP

or equivalently

Hy = [ N,R‘d*z (4.38)
P
where we adopted the notation N = Ny. The peculiar expression of Hy; suggests
that the lapse and shift functions behave as Lagrangian multipliers. In the
following sections we will prove that this is the case, thus showing that Hy
vanishes identically. Indeed, demanding S to be stationary originates four
constraint equations, which force R® and R’ to be zero.

4.3 Parametric form of the canonical equations

In order to proceed with our analysis, we shall introduce the notion of para-
metric form of the canonical equations (following Ref. [15]). Let us consider for
simplicity the action of a system with a finite number M of degrees of freedom:

to t2 M
S= dtL(qvqa t) = / dt (Zpk(jk - H(p»q7t)> (439)
t 2 k=1

The time ¢t is singled out from the configuration variables of the system since it is
the only coordinate lacking the definition of a conjugate momentum. However,
this asymmetry can be circumvented by the introduction of a new arbitrary
parameter 7, which allows the promotion of ¢ to the set of dynamical variables
together with its conjugate momentum p;. Indeed, if we make the notational
change t = gar4+1 and let the configuration variables {qk}kM: *! become func-
tions of 7, by direct substitution into 4.39 we obtain the so called action in
parameterized form:

Sz/ A7 L (q1, -, qni415 41s - - - Qrrg1) (4.40)
T1
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where the derivative with respect to 7 is denoted by a prime. The modified
Lagrangian L is related to L through the equation

/ /
7 q q
L(qla"'vql\/f+1;QL"WQE\/I-‘,-I):L<Q1a"'aqM-‘r1; /1 PR /M )CIE\/[—&-I
Arr4+1 drr41

Consequently, the momentum p; = par41 associated to the time ¢t = qpr41 can
be defined with the standard procedure, and it turns out to be just negative the
Hamiltonian H:

= M
. 0L oL ¢
PM+1 = =L- (E ——r ) Ghr1

O s 2= D (dhr41)?

M
k=1

Therefore qpr1 and ppr41 belong to the new 2M + 2-dimensional phase space.
Let us now focus on a remarkable property of the Lagrangian L, namely that
of being a homogeneous function of the first order in the variables ¢1, ..., )/, ;-
If we compute the partial derivatives of L with respect to qj., namely

of _ oL oL _; . 0L
Oqy, — Odr O i

then we see that the following relation holds:

M+1

>

!
k=1 9y,

oL ¢, =1L (4.42)

This in turn allows to prove our claim by applying Euler’s theorem on homo-
geneous functions. Once the partial derivatives in equation 4.42 are replaced
with the M + 1 momenta pg, we are in the position to show that the action in
parameterized form becomes

T M+1
S= / dr (Z pkq§€> (4.43)
1 k=1

while the Hamiltonian H of the extended system vanishes identically:

M+1
H=Y prgi—L=0 (4.44)
k=1

This striking feature motivates our interlude on the parameterized form, since
the volume term Hy (equation 4.38) falls into this category. In particular, we
can recast the parameterized action 4.43 in an enlightening form by resorting
to the Lagrangian multiplier method. Since the equation py41 = —H (4.41)
acts as a constraint on pjps41, there must exist a relation between the M + 1
conjugate momenta which impairs the independence of the canonical variables.
This constraint can be explicitly stated in the action integral by means of an
auxiliary function

Clqu,- - qm415 P1s- - PM+1) = Pr+1 + H (4.45)
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and a Lagrangian multiplier A = A\(7), which remains unspecified due to the
arbitrariness of 7. Hence the parameterized action becomes

~ To M+1
S= / dr (Z Prdy — )\C’) (4.46)
1 k=1

Independent variations of A and ¢ give respectively the constraint equation
C = 0 (equivalent to the identity 4.41) and the M + 1 canonical equations of
motion, showing that the action 4.46 retains the full informative content of the
original system. Moreover, since L and C do not depend directly on 7, the
extended system is conservative, regardless of the nature of L.

The above process can be generalized to the case of a field theory with M
degrees of freedom by introducing four new external parameters 7% and just
as many configuration variables ¢™+1+# = z#(7%), together with their respec-
tive momenta par414,. The additional four constraint equations C* = 0 and
Lagrangian multipliers A*(7%) are required to relate pyry1,...,Ppap4a with the
Hamiltonian and momentum densities of the field. The relevance of the param-
eter formalism lies in the possibility to reverse this process via the “reduction”
of the parameterized action S to the canonical form. This consists in the specifi-
cation of coordinate conditions (which fix the arbitrary parameters 7+) followed
by the insertion of the constraint equations into S. The reduced action will
then reveal the intrinsic degrees of freedom of the system. Indeed, the volume
term Ly of the Lagrangian (which stems from the Hamiltonian Hy, equation
4.38) appears in the guise of a parameterized form Lagrangian, with N, and R
respectively in the role of Lagrange multipliers and constraints:

Ly = n%;; — Hy = 74;; — N, R* (4.47)

By implication, our aim is to prove that IV, truly behave as Lagrange multipliers
when the variation of the action is considered.

4.3.1 Variation of the lapse function

Let us return to the gravitational action 4.16 (ignoring the immaterial constant
factor (167) "), here reproduced for convenience:

St

to
S = / dt [/ (R— K*+ KYK;j) N\/y &’z — 2]4 (k — ko) Nﬁd%]
t1 3¢

Recalling the definitions given in section 1.1, we demand the variation § N to
vanish on the boundary. This implies that we can safely ignore the surface
integral over S, due to the absence of derivatives of N. By resorting to relation
3.57, the variation of the volume term is straightforward:

% =7 (R—K*+ KYK;;) + Ny (—;) (—K?+ K7 K;;)

=7 (R+ K? - KVK;;) (4.48)
The action is then extremized by setting equation 4.48 to zero. This gives the

Hamiltonian constraint 3.50 in the vacuum case, namely when F = 0. The
replacement of K;; with the conjugate momenta (using 4.26 and 4.27) leads to



4.3. PARAMETRIC FORM OF THE CANONICAL EQUATIONS 35

the relation
R’ =0 (4.49)

which shows that N is truly a Lagrangian multiplier, as R° is not affected by
the variation of N.

4.3.2 Variation of the shift functions

The subsequent variation with respect to the shift functions involves some sub-
tleties, due to the presence of the covariant derivatives D;N; in the extrinsic cur-
vature tensor. Therefore, we begin this proof by explicitly considering a smooth
one-parameter family (N;) of shift functions. By evaluating the derivative with
respect to A of the volume term of Sg we obtain:

ds

t2 ..
o /dt/ [R— K?+ KYK;;] N\/y d&*x
A=

d/\

A=0
g o dK

dt N KA L KW) —4
/ VT (K3 4 K9)

:—2/ dt/ 7 D; ( >d3x
P

In the passage from the second to the third line we recognized the expression
4.23 of the conjugate momenta 7%/ and substituted it with the identity 3.57,
exploiting the symmetry of K;;. Recalling the definition of covariant derivative
of a tensor density, we rewrite the integrand as

7 D; ( >Dz— (Hﬂ' —4 > D) =2
dx dX | ( ) \—o

Upon substitution in the integral (resorting to the definition of JN;), the diver-
gence can be reduced to a boundary term:

Bz
A=0

to
= 2/ dt (Diﬂ'ij) (5Nj d3m
POV

to ij
—2/ g =X
t s. VY

The surface integral vanishes as §IN; = 0 on the boundary. Hence we can
discard this term and demand S¢ to be stationary, using the notion of functional
derivative 1.7

0N/ d*x

5S y
— =D =

thereby leading to the three constraint equations:
R =0 (4.50)

These correspond to the momentum constraints 3.53 in the vacuum, with p; = 0.
Together with 4.49, they constitute the aforementioned four constraint equations
of the system. This result concludes the proof and implies that the volume term
Hy (4.38) vanishes identically when the constraints are imposed:

Hy, =0 (4.51)
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It is worth to emphasize that these conditions do by no means imply that Hg
must vanish. In fact, in section 5.1 we will discuss the relation between the
value of Hg in an asymptotically flat spacetime and a notion of energy of the
system, which is in general different from zero.

4.4 Hamilton’s equations

We are now in the position to determine the twelve Hamilton equations which
describe the time evolution of the canonical variables v;; and 7*/:

0H

Vi = 5 (4.52)

i 0H
7= — 4.53
0%ij ( )

To this end, we rewrite the total gravitational action Sg (equation 4.16) in
terms of the canonical variables, preserving only the term 7'/ +;;:

to -
Sa =/ dt/ (77%i; — H) d3x
t s,
t2 iy - N R 5
- dt/ [w”ryu £ ON, Dy + NyATR — —— <7T,,7rm _ )] B
fae [ [ 2D MR = (g -

— 2/;2(11& /(é [N (k — ko) + N; \7;; rj} Vo d?z (4.54)

We require that the variation of the configuration variables vanishes on the
boundary S; = 0%, namely:

ON|g, = ONilg, = 07ijlg, =0 (4.55)

However, we shall by no means impose restrictions on the conjugate momenta,
which are treated as independent variables. In agreement with this, the variation
of H with respect to N and N; is equivalent (up to an immaterial overall sign)
to the variation of the Lagrangian performed in sections 4.3.1 and 4.3.2, which
led to the four constraint equations 4.49 and 4.50. Instead, the variations of v;;
and 7% require a more laborious analysis, that we carry on separately in the
following paragraphs.

4.4.1 Variation of the conjugate momenta

We start from the second set of equations 4.53, which are recovered by setting
to zero the variation with respect to 7% of S¢. In particular, we first consider
the second term from the volume integral of 4.54:

t
p= a / (2N; D7) d*x
tl Zt

t
=2 / At / | Dy (Nj7) = 79 Dy | d* (4.56)
ty 2y
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We now transform the total covariant derivative in a divergence and then apply
Stokes’ theorem:

ta ij t2
™ g
73:2/ dt Ni—rv\/ad2z72/ dt/ T D;N; Az
th S, v ! t = !

The first integral of P cancels out the last part of the boundary term of Sg,
thereby leaving only a surface integral which is independent of 7%. Accordingly,
the variation of Sg reduces to:

t2 y N
6778(;:/ dt/ om* |:’7,—2D2N— 27Ti‘—7T’7i‘ :|d31'
6 s, J J \/,7( J J)

The stationarity of Sg and the arbitrariness of 7% force the argument of the
first integral to vanish. In order to perform the functional derivative and sup-
press 07"/, we shall replace 2D; N; with its symmetrization D; N; +D;N;. Hence
we obtain the relation

0S¢

. N
5o = Yis = DiNj = DjNi — —= (2mij — my35) = 0 (4.57)

NGl

or equivalently

oH

. N
’Yij = 5 = DZN] + D]NZ - — (271'1']' — 7'("}/7;]‘) (458)

val

By replacing 7% and its trace with the extrinsic curvature K;j, equation 4.58
becomes

i

We see that the variation of 7% produces the relation 3.57, which fixes the

time evolution of the three-dimensional metric by means of the lapse and shift
functions.

4.4.2 Variation of the metric

This variation is more involved than the previous one, thus we shall proceed
gradually. Firstly, we consider the variation of the volume term of the Hamil-
tonian density Hs:

y N TR
0, Hy =9 [—2N~Di7r” —N/YyR+ — <7ri~7r” — )] 4.59
hl Y J /y J 2 ( )
We recall that the variation of v follows from Jacobi’s formula

57 = 17" Yab (4.60)
while the computation of the last term in parentheses is straightforward:

2

0y (mjﬂij — 2> = (2n%7™ — 77) 6vap (4.61)

For the variation of N,/y R we need the relations presented in sections 6.2.2
and 6.2.3 of the Appendix, which we already encountered in chapter 1. If we
denote the three-dimensional contravariant Einstein tensor by G, we obtain

1
5[ - NyYR] = Ny <R‘“’ - 2%*’}%) Yab — N /7 DabV*



4.4. HAMILTON’S EQUATIONS 38

= N7 G5ap + /7 0V DyN — /7D, (NSV®)  (4.62)
In order to lighten the computations, we introduce the two quantities
6By = —26,D; (7" N;)
6By = —Dg (2m°° N Sy — N6y )
Thanks to this, we now express the variation of the first term of 4.59 as
8y (—2N;Dim) = 26, (7" D;N;) + 6By (4.63)

Using the relation 6.21 from the Appendix, we can rewrite 20, (wij DZ-N]») in
terms of dv;; and dBs:

. . . 1
5y (207 D;N;) = —2m NooT?,; = =27 N, (w"Diayjb - QWGI’Db(s%—J
=D, (27N — 7’ N®) 6vpc + 6B (4.64)

By virtue of the three constraints 4.50, namely D;7% = 0, the previous equation
turns into

6y (207 D;N;) = (27 DN — 7 DuN®) 5ype + 6B (4.65)
Combining equations 4.60 to 4.65, the variation ¢, Hx, becomes

51y = (20" DN — 7Dy N®) 6y + N/ G0ap

N 1 i_ T b b b
+ — | —= | meam®® — — | ¥ + 27 17 — | dYap
7l (%)

+ 6B1 + 6B + ﬁéVaDaN (4.66)

The variation of Hy is recovered by integrating é,Hs over the hypersurface
3. In particular, the three terms from the last line of equation 4.66 give rise
to a surface integral, which we denote by dB. However, since the integral of
dB1 + 0B, does not include any derivative of §v,, and 67, s, = 0, the only
non-vanishing boundary contribution is given by

6B = / (6B1 + 6By + /7 VD N)d®z = — ¢ N6Vr,/od?z  (4.67)
M St

By virtue of the argument used in section 2.4.1 and of the relation 6.25 applied to
the three-dimensional case, we can show succinctly that the contraction 6V %r,
in 4.67 reduces to

oVer, = —ch&ybcyar“ = —20"Dyr, = 2k (4.68)
where 0% = r%r® 4 4 is the induced metric on S; extended to ;. Comparing
the variation of Hg (equation 4.34) with 4.67, we see that 6 B 4 ¢, Hg vanishes:

6,Hs =2 ¢ Nék/o d*xz= —4B (4.69)
St

This implies that the variation of H comes down to the remaining terms of Hy,
and we can safely ignore Hg. We now recast the product 6V*D,N contained
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in the first line of equation 4.66 in a convenient form (using the relation 6.26
from the Appendix):

(SVGDQN = 'Yab'YCd (Daé’ybc - Dcé’yab) DdN
=D [(y**D°N =+**D*N) %] — (D*D°N =" DeD°N) 6ap

Another integration by parts allows to displace the divergence due to the re-
striction §7yap|g, = 0. Thus we get

§V*DeN = — (D*D°N — 4**D.D°N) 67 (4.70)

Finally, after the symmetrization of the indices @ and b in 27°*N¢, the combi-
nation of equations 4.66 to 4.70 lead to

0 1
5’;"{ _ Dc (ﬂ_ach +ﬂ_cha _ﬂ_ach) +Nﬁ (Rab _ 2’)/abR>
ab
—W(DanN—’yabD DCN)_ N 7Td7TCd_}7T2 ,yab
¢ 27 ¢ 2
2N 1
+ \7 <7rac7rbC — 27r7r“b) (4.71)
v

By definition, the equations of motion are recovered by demanding the action
to be stationary. Integrating by parts the product 7'/+;; with respect to the
time coordinate results in

ta
68 =0, [ dt / (775 — H) &
tq po

ta
= —/ dt U 5% (fr”’ + M) d%] =0 (4.72)
t1 P 6’71]

Thanks to the arbitrariness of §+;;, this variation provides the second set of
Hamilton equations:

y )
sl = _OH (4.73)
5’Yij
It is worth to summarize the main results of the previous chapters, namely the
four constraints 4.49, 4.50 and Hamilton’s equations 4.58 for ;;, together with
the explicit form of 4.73:

1 /72 y
0 _ = (i) =
R = —7R ﬂ( o 7TU> 0 (4.74)
R = 2Dz =0 (4.75)
N
’%‘j = DlNJ + DJN1 - — (27T2'j — 7T’Yij) (476)

vl
. 1. N 2 |
U — N ij A iF cd " ij
T VY (R 57 R) + o (wcdw 5 )7
2N 1 o .
- — (7rw7rc] — 7T7T”> + V7 (DZDJN — 'y”DCDCN)

el 2
+ D, (1Y N°) = n"*D.N? — n/°*D.N" (4.77)
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4.5 Poisson brackets

In classical Hamiltonian mechanics, given two differentiable functions f (g, p,t)
and ¢(qx,pk,t) of the canonical variables qx, pr, with k € {1,...,M}, the
Poisson bracket of f and g is defined as the function

M

_N~(9f 99 _9f g
{f,9} = kZ::l (aqk Bor ~ Bo 8%) (4.78)

Therefore the Poisson bracket can be considered as a bilinear, anticommutative
binary operation acting on the space of functions which depend on the phase
space and time. Also, for any three functions f, g, h of this kind, it satisfies the
equations

{fg.h}y = flg,h} +{f, h}g (4.79)
{£ g, n}} +Ag.{h, 3} +{hA{f,9}} =0 (4.80)

called respectively the Leibniz’s rule and the Jacobi identity. By virtue of this
definition, Hamilton’s equations of motion can be rewritten as

OH
OH
Pk o {pr, H} (4.82)

and, in general, the time evolution of any function f(gx,pk,t) is determined by

a7 _ of

= o (4.83)

{f.H}+
The Poisson bracket for a field theory can be defined by analogy with equation
4.83. In fact, by considering the total time derivative of a differentiable function
[ = f(vij, 7, t) we obtain

df _of . of . Of
AT L KT
5f 6H  §f oM Of
- Lo 9s 4.84
Syi; 670 6m 6y | Ot (4.84)

which can be recast in the familiar form 4.83 if we introduce the Poisson bracket

(f.q} = of dg df dg

571']' (57’(“ (S?Tij 5774

(4.85)

By virtue of this definition we can compute the fundamental Poisson brackets
among the canonical variables of the system:

{vij» vt = 0
{79 7%} = 0 (4.86)
{vis M} = 5ik5jl

These are closely related to the ones which arise in classical mechanics. How-
ever, since the canonical coordinates v;; and 7%/ are subject to the constraints
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RF = 0, the relations 4.86 do not represent a minimal set of Poisson brack-
ets between unconstrained variables. As we mentioned at the beginning of the
chapter, a full treatment of this issue is given in Ref. [4]. In section 4 of this
article, in fact, the generating functions arising from the parameterized-form
Lagrangian 4.47 and the linearized theory are considered. This analysis leads
to the choice of four coordinate conditions, which together with the four con-
straint equations allow to eliminate the extra variables of the system. It should
be emphasized that the canonical form is not unique, as in addition to the usual
canonical transformations there exists a general class of coordinate conditions
which produce different canonical variables. This arbitrariness can be exploited
to recast the dynamical equations in a suitable form, according to the particular
aspect of the theory to be investigated.

4.6 Reintroduction of the cosmological constant

In this section we consider the effects on the main results of our discussion
due to the reintroduction of the cosmological constant A. We recall that if we
restore momentarily the constants G, ¢, the Einstein field equations with A # 0

are given by
8nG

1
4Ruu - §guu4R + Ag/w = CTT;W

In order to account for the term Ag,, , we shall introduce a new contribution
Sa to the gravitational action, depending only on the metric density /—g:

Sp = / (—2A) /—gdiz (4.87)
%

It is a trivial task to show that the variation of 4.87 with respect to the inverse
metric g'” gives

S 1
(59“/’1’ = —2A (—2\/—g gW> =Agwv—yg (4.88)

Eventually, adding this term to the overall variation of S (equation 1.22) and
gathering /—g leads to the correct field equations. Therefore, the gravitational
part of the action in four-dimensional formalism takes the form

Sc=8Sg+S8Sr+S—-8

C4

— 4 — 4$_ B 3x .
_167TG|:/V(R 24) V=gd ngvf(K Ko)+/[h]d (4.89)

while the total action is recovered by adding S¢ to the matter term (equation
1.11), namely

S =8¢ —|—/ Ly v/—gdiz (4.90)
v

Hereafter we will discard the matter contribution and return to the units G =
c = 1, adopted throughout the preceding discussion. In addition, we drop the
multiplicative constant (167)~!, in agreement with the ADM notation. Since
the 3+1 decomposition of the spacetime manifold can be implemented in Sy via
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the straightforward substitution \/—g = N,/7 (equation 3.14), the gravitational
Lagrangian 4.17 becomes

L= / (R—2A— K*+ KYK;;) Ny d*z — 2% (k — ko) Nyv/od®x (4.91)
3¢ St

We now move on to the Hamiltonian formalism. The introduction of Sy leaves
the conjugate momenta unchanged, as it is independent of the time derivatives
¥i;. Hence the volume and boundary terms of the Hamiltonian can be computed
without effort, leading to

- N . 2
Hy = —2N.D;7" — N — 2N+ — (i — — 3r (4.92
5 /21{ Dy V7 (R )+\/’7(7TU7T 2>}dx (4.92)

Hg = 2]{& |:N(li — ko) + NV ] Vodiz (4.93)

7t
—
Vel
We notice that A always reveals itself as the “notational change” R — (R — 2A)
involving only the scalar curvature. Indeed, due to the simplicity of Sp, this
holds true also for the derivation of the constraint equations

0 1om®
RO = =7 (R=20) = — (5 —wim; ) =0 (4.94)

as well as for Hamilton’s equations, among which the first set (referring to 4;;)
is unaltered:

N
Yij = DiN; + DjN; — — (215 — 75 4.96
J J J ﬂ( J ]) ( )
. 1 N 2\ ..
P — N ij A4 —92A ; cd " 17
7 \/'T{R 57 (R )}+2 - (wdw 2>'y
ON (. . 1 .. o g
_ 2 (gien i~ Zanii ) 4+ 7 (DIDIN — ”D»DCN)
+ D, (77 N°) — n*D.N7 — n/*D.N* (4.97)

In conclusion, the reintroduction of A has no effect on the definition of 7% and
thus only slightly alters the main results of the Hamiltonian formulation. In
particular, since Sy does not give rise to divergences, the boundary terms of
both the Lagrangian and the Hamiltonian are unaffected by this change.
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Conclusion

The ADM Hamiltonian formalism here discussed provides an essential contribu-
tion to the path towards the quantization of general relativity. Indeed, when the
unconstrained canonical variables v;;, 7 of the system are identified, we can
promote them to the corresponding quantum operators 4,5, #%. Accordingly,
once the fundamental Poisson brackets are defined, the canonical commutation
relations are readily recovered:

{Vij, v} = 0 — [%j, ] = 0
{rd, 7k} = 0 — [#9,2M] = 0 (5.1)

ihé ksl

{vij, 1} = 5ik5jl — [’%‘jv ﬁ'kl]

Therefore, the Poisson bracket of any two functions A and B turns into the
commutator between A and B

1., 4
{A,B} — —[4B] (5.2)
The next step requires the introduction of a wave functional ¥[y,;] defined on

the space of field configurations ~,,. If we adopt the Dirac notation, we can
characterize the action of 4;; and 7%/ on the state |¥):

Fij [¥) = Yij [ Vab) (5.3)

7| = —ih U[vas) (5.4)

0755
Consequently, the constraints 4.94 and 4.95 (with A # 0) shall be rewritten as

a set of operator equations:

w1 = =[5 R-20)+ (5 -wm)| vhul =0 69
NAPIRER) |
R |W) = 2D W[yy] = 0 (5.6)

Using the representation 5.4 of the momentum operators #%, we arrive at

B /1 1) 1)
R—2A) — — | =YabVed — Vac e I/ =0 5.7
{\ﬁ( ) Nl (27 bYed — . %d) o 5%d] [Vt (5.7)

43
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2D, =" W[] = 0 (5.5)

073
The operator equation 5.7 is called the Wheeler-DeWitt equation (WDW). This
remarkable result was first obtained by Bruce DeWitt and John Wheeler in 1967
(Ref. [13]) shortly after Asher Peres published its Hamilton-Jacobi equation of
general relativity. Albeit being tainted by a not negligible issue of ill-definedness,
the WDW equation constitutes a major step in general relativity and provided
new blood in the quest for a theory of quantum gravity.

These results, however, do not exhaust the relevance of the 341 formalism. In-
deed, the ADM approach is just one among the many related 341 formulations
which initiated the field of numerical relativity, devoted to the search for ap-
proximate solutions to the Einstein equations. In particular, we mention the
BSSN scheme (or “conformal ADM?”), originated from the ADM one by the
addition of extra variables, whose main quality lies in an enhanced stability of
the simulations over time.

We conclude our discussion with a brief analysis of the notions of total energy
and momentum, restricted to a specific class of spacetimes. These naturally
stem from the evaluation of H at spatial infinity after an appropriate choice of
lapse and shift.

5.1 ADM mass and momentum

Let us return to the full Hamiltonian 4.32, with the multiplicative constant
(167)~! restored, given by:

S {2NjDi7rij - NJYR+ N <7r1-j7r”j - 772)} d3z
167 hOR ﬂ 2
+ S {N (k — ko) + N; s r]} Vo d?z (5.9)
81 St \/7

If we restrict our analysis to the fields «;; and Kj; satisfying the vacuum field
equations, the volume term Hy; (corresponding to the first line of 5.9) vanishes
and the only contribution to H is given by the boundary term:

1

h 8’/T Sy

[N (k — ko) + N; \7;; rj} Vo d?z (5.10)

We expect that with a suitable choice of N, N this equation shall provide a
definition of total energy. However, in order to ensure that the value of H is
finite, we must impose further restrictions on the nature of the spacetime under
analysis.

Definition 5. Let (M, g) be a globally hyperbolic spacetime admitting a foli-
ation by the family {3,;};cr of spacelike hypersurfaces. This spacetime is said
to be asymptotically flat if and only if there exists on each ¥; a background
metric f;; such that:

1. fi; is flat, i.e. the Riemann tensor Rijkl associated to f;; is identically
zero, except on a compact domain C C Xy;



5.1. ADM MASS AND MOMENTUM 45

2. given a coordinate system (y°) on X, f;; = diag(1,1,1) outside C and
r=+/(y1)? + (¥?) + (y®)? is unbounded;

3. as r — 00, the metric v;; and its spatial derivatives exhibit the following
asymptotic behaviour:

Yij = fij + O(Tﬁl) (511)
Dij _ -2
ay; =07 (5.12)

4. as 7 — 00, the extrinsic curvature K;; and its spatial derivatives satisfy:

Kij=0(r?) (5.13)
8Kz-j . _
By =0(r ) (5.14)

Let us consider a Lorentz reference frame (/) in the asymptotic region of ;. We
demand that this portion of ¥; is described by the condition £° = const. There-
fore, by denoting with (%) the coordinates on Y, we are able to introduce the
asymptotic relation y* = y*(£7) between spatial coordinates and x# = z#(£%).
An observer at rest in the Lorentz frame moves with four-velocity

ozH
ut = —— 5.15
= (5.15)
as £ corresponds to its proper time. Since uyut = —1 and u# is orthogonal to

the surfaces £° = const (or equivalently t = const), the following relation must
hold at spatial infinity:
nt = ut (5.16)

where n* is the normal to the hypersurface ;. Recalling the definition 3.6, we

can write: S
(9" = N + N'(8))" = Nu¥ + N'S (5.17)

y’L
We see that setting N = 1 and N* = 0 allows to identify the vector 0; tangent
to the curves y* = const with the four-velocity of the observer. This choice
provides a reasonable definition of energy of the system, called ADM mass,

given by the evaluation of the boundary term 5.10 at spatial infinity:

Mapy = lim i]{ (K — ko) Vo dz (5.18)
St

S¢—o0 8

Mapas is a conserved quantity, since it accounts for the total mass present on
Y, even in the case of radiating systems.
Similarly, the choice _
oy’
o&e
(with a fixed) produces a correspondence between 9; and the spatial translations
along the coordinate curve of £*. Consequently, using 5.19, the evaluation of
5.10 at spatial infinity provides the definition of ADM momentum:

N=0, N'= (5.19)

PAPM = iy
St—>00 87T St

Nrd (K — Kij) Vo dPx (5.20)
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It can be proved that the set P, = (Mapw, Pi, P2, P3), behaves as a four-
dimensional one-form under the general coordinate transformations z# = x*(a’®)
which preserve the asymptotic flatness conditions (equations 5.11 - 5.14). At
this point, it seems that a definition of angular momentum naturally arises by
choosing the shift functions N? so as to identify 0; with the spatial rotations.
However, it turns out that this procedure may impair the four-vector properties
of the ADM four-momentum 7,. This issue can be fixed by adding stronger
conditions on v;; and Kj;; to the asymptotic flatness conditions previously de-
fined (see Ref. [23] for a detailed analysis).

We shall say that although the definition of M 4pjs provides a reasonable notion
of energy, it is not unique: there exist other relevant definitions of energy which
in general disagree with 5.18. For instance, in place of a spacelike boundary Sy,
we might take the limit to a null infinity by demanding the following conditions
to hold:

u=t—r=const (5.21)
v=t+r — 00 (5.22)

This approach gives rise to the Bondi-Sachs mass Mpg, whose physical relevance
unveils in the analysis of radiating systems. Indeed, since the gravitational ra-
diation propagates along null geodesics, Mpg cannot account for the radiation
loss (as S; is now a null hypersurface, parallel to the direction of propagation)
and diminishes with increasing w, while M 4pj; remains constant. It has been
shown that the rate of change of Mpg with respect to the retarded time u cor-
responds to negative the outward flux of radiated energy.

An alternative definition of energy was given by Komar (1959) for stationary,
asymptotically flat spacetimes as the conserved quantity associated with time
translations. In addition, if the spacetime is axisymmetric, a similar procedure
provides a definition of angular momentum which is independent of the choice
of St.

We conclude this section by presenting an example of computation of ADM
mass, which endorses the reasonableness of this definition, followed by the eval-
uation of the ADM momentum.

5.1.1 Example: Schwarzschild spacetime with standard
coordinates

Let us consider a Schwarzschild spacetime described by the standard coordinates

(t,r,0,0):
y 2m 5 om\ 9 9
Gudatde” = — 1 — - dt*+(1-— i dr® +r=dQ (5.23)

where dQ = df?+sin?6 d¢? is the metric on the two-sphere. Using (7,0, ¢) as the
coordinates of each hypersurface ¥, the three-dimensional metric -;; becomes

—1
2
v = diag l(l - m) 22 singé’] (5.24)
r
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Consequently, the six non-vanishing Christoffel symbols I‘ijk related to v;; are

I = —omam) [y = — (r —2m)
[Ty =—(r—2m) sin? I ,=1 (5.25)
F¢r¢ - % F¢0¢ =cotf

The background metric, on the other hand, is given by the flat metric in standard
spherical coordinates (r, 8, ¢):

fi; = diag (1, r2, r? sin29) (5.26)

Let us evaluate the scalar extrinsic curvature x of Sy, embedded in the three-
dimensional hypersurface Y, using equation 4.12, namely x = —D;n’ (we write
n® instead of r* to avoid confusion). Since the components of the normal unit
vector n' pointing outside S; are

. [r —2 '
7%( Laoa O> - nl< 4 m707 0) (527)
r—2m i T

we obtain

k= —r (amj — Faijna)

_ T—Zma T n T m 2r—2m
o r " r—2m r—2m | r? 72

2 [r—2
— L r-em (5.28)
T T

The scalar curvature kg referred to the embedding in a flat spacetime can be
effortlessly recovered by virtue of the relation kg = &l,,_, (or equivalently by
using the Christoffel symbols associated to the background metric f;;). Hence
we have

2
= —— 2
Ko , (5 9)

Let us identify the boundary S; with a two-sphere of radius r. This implies that
the determinant o of the induced metric on S; is simply ¢ = 72sinf. We can
now evaluate M 4pps replacing these quantities in the integral 5.18 and taking
the limit:

1

Mapy = — lim (k — ko) Vo d’x
8T Si—oo s

t
1 T 27 1 —9
=—— lim d9/ d(b( ! m_1> 2 sin 6
4T r—oo Jg 0 T r

:—limr< T_Qm—1>:m (5.30)

T—00 T

This is the expected result for a spherically symmetric body of mass m.
Regarding the ADM momentum, the standard coordinates of the Schwarzschild
spacetime lead to the trivial result

PAPM — ¢ (5.31)
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In order to prove this, we resort to the relations 2.17 and 3.16:
Kij = =V;n; = "T" n, = —N T, (5.32)

This requires the computation of a subset of Christoffel symbols relative to the
four-dimensional metric g,,. In particular, the only non-zero term of the kind
art s

Qv

1 m
T, = 50, In|gu| = - (5.33)

(r —2m)

Since all the Christoffel symbols with lower spatial indices vanish, the extrinsic
curvature tensor is nothing but zero:

K;; =0 (5.34)
Consequently, replacing K;; in the integral 5.20 gives a null ADM momentum

and concludes the proof. The four-momentum of the Schwarzschild spacetime
in standard coordinates is thus represented by

P, = (m,0,0, 0)u (5.35)
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Appendix

6.1 Definitions

6.1.1 Covariant derivative or connection

Let M be a differentiable manifold. A covariant derivative (or connection) V
is a map from the tensor fields of rank (r,s) to the tensor fields (r, s + 1) such
that:

1. V is linear, namely V(T + S) = VT + VS with T, .S tensor fields of the
same rank.

2. V(fT)=df T+ fVT, where f is scalar field and df is the (0,1) tensor
with components d,, f.

3. given the bases {e, } and {6"} of the tangent and cotangent spaces T',(M),
T,(M), it satisfies
Ve, =T%,0° @ e, (6.1)

where T'* v are the connection coefficients.

In particular, V is said to be a metric connection if given a metric g, on M
the following relation holds:

Vgu =0 (6.2)
In this case, the connection coefficients F)‘W are called Christoffel symbols and

they are determined by the equation

1 (03
F)\My = 2 gA (gcw,u + Gpa,y — guu,a) (63)

6.1.2 Tensor density

The covariant derivative V introduced in the previous section is a map from
tensors of rank (r,s) to (r,s + 1) tensors. However, in order to simplify the
calculations, we can extend its applicability to the class of tensor densities,
which are defined by

w
Ty p = Vgl Ty (6.4)

49
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where T"‘""arﬁl_ﬂq is a tensor of type (r,s), g is the determinant of the metric
gy and W is a real number, called the weight of the tensor density. The
covariant derivative of To‘l"'arﬁlm 5. 1s then a straightforward generalization of
the ordinary derivation:

- T
100 Qg - B1---Bs
A aﬁl..ﬂs =Vlgl Vu l

= Vgl VT (6.5)
W H Ba--Bs
Vgl ]

6.1.3 Curvature tensors

The curvature of a manifold is completely determined by the Riemann curvature
tensor R’ We define it following the sign convention of MTW (Ref. [16]):

ouv*

RP —T°

ouv ov,pu

Fpo’,u,,t/ + FpHAF)\UV - FPVAFAGM (66)

The Ricci tensor is given by the contraction of the first and third indices in 6.6:
1
R = By = 05 V1T | =TT = 00, lgl - (67)

Finally, from the contraction of R,, with the inverse metric g*” we obtain the
scalar curvature:
R = g""R,, (6.8)

6.1.4 Lie derivative

Let M be a differentiable manifold. Given a regular vector field X = X*#0,, on
M and an open subset I C R, we define the integral curve of X by

ap: I — M (6.9)
s — ap(s) (6.10)
such that
ay(0) = p (6.11)
day, .
Vso € 1 = | = Gp(s0) = X (ap) (6.12)

S0

Let U C M be an open subset. Each integral curve is associated in a natural
way to the map

XU — M (6.13)
p— ap(s) (6.14)
called the flow along X, such that

Vso €1 % = iy (50) = Xag () (6.15)

S0

The flow ¢X has the following properties:
L gg(p)=ap(0)=p = o5 =1
2. ng‘SX O¢ix = §+t Vs, teR
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3. ¢ is a diffeomorphism and [¢pX]~! = ¢,
By means of this map, we can define the Lie derivative of a differentiable tensor
field T of rank (m,n) along X, evaluated at a point p, by
d
Ex@ly = | [(65). Toxp) 6.16)
s=0

which in components reads
[Lx (@)t L, = XA0NT e, (6.17)
_ TA.““””IJI.HUHG)‘XHI - - Tul---kulmyna)\Xum

+Tu1“.,um)\”_ynaI/1X)\+~-~+TM1.“MmU1”_)\aV”X)\

Vy.. V.

If the connection V is torsion-free, namely if the Christoffel symbols are sym-
metric in the last two indices

rm, = (6.18)

pv v

equation 6.17 can be rewritten by replacing the partial derivatives 0, with the
covariant counterparts V,:

[Lx (D))t = XAVt (6.19)
_ T/\“'Mmul...unvAXM T ...un,vAXH"'L

vy

+ THIN.M"L)\_“,/nVVlX)\ + + Tu’ln-/imu].“)\VVnXA

The main properties of the Lie derivative easily follow from the definition and
from the component relation 6.17:

1. the Lie derivative of a tensor field T of rank (m,n) is a tensor field of rank
(m,n).

2. Lx(T) is linear both in X and in 7.
3. the Lie derivative satisfies the Leibniz rule

Lx(T®S)=Lx(T)®S+T®&Lx(S)

4. If f is a scalar field, Lx(f) = X(f).

6.2 Variation with respect to the metric

6.2.1 Christoffel symbols

For the sake of brevity, we denote with 6, = dg,, the variation of the metric
guv in part of the intermediate passages:

1
6F}\MU = 5 (69/\V,u + 59}1)\,11 - 5guu7k)
1
= 5 (v,ue)\u + Vue,u,)\ - v)\e;u/)

1 o o o o o o
+ 5 r ukeau +T uye)\a +I W,,OGA +T y)\6/L(T =TI )\ueau -T )\ygua]
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= % (Vubgaw + Viudgur — Vadguw) + 17,090 (6.20)
It follows that
6T?,, = 69" T + 97T x
=—g"T7,, 005 + %gp* (Viubrw + Vilbr — Vabu) + 97T, 00
= %gp’\ (Vidgnw +Vidgun — Vadguw) (6.21)

We shall also consider the contracted version of 6.21:
5FM,U,V = (ggu/\]-—\)\,uu + gu)\ar)\,uu

1
= _gaugﬁ)\eaﬁr)\/u/ + gﬂ)\ 5 (V},Le)\l/ + vuep,)\ - V)\H;J,V) + Fauygo/\
e 1 «
= _Fﬁﬂug Heaﬁ + igANvVQAN + Fﬁ#ug Maaﬁ

1
= 5 9"V.igx, (6.22)

6.2.2 The vector 6V*

Let us consider the vector
VP =ghrore,, — g™ ort,, (6.23)
which appears in the variation of R. This is equivalent to

SVP = (g"6g" — g™ 59" ) T + (9" 9" — g ") 6T 0 (6.24)

We focus on the second product, which contains the variation dI'y,,, and we
adopt the notation 0,, x = dguwa:

(9" 9" — 9" g"") 6Txu = % [ (9" 9" = 97 9") (6gavp + 0Gurw — 0Guv )
= 9" 9" 6ru — 9" 9" 0G0
It follows that
§VP = (g"5g" — 9769 Tapw + 9" 9> (895w — 0w ) (6.25)

Using equations 6.21 and 6.22, we are able to rewrite V* by introducing the
covariant derivatives of dg,,,:

1 1
VP = 5 g#l/gﬂ)\ (Vuagku + vu(sgu)\ - v)\dg;w) - 5 gpyg)\uvuagku

= " 9" (V.095 — VAOGuw) (6.26)

6.2.3 Curvature

Let us consider the variation 5F>‘H of the Christoffel symbols induced by a

is the difference of two connections, it is

v

variation of the metric. Since M‘)\;w
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a tensor of rank (1,2). By choosing a local inertial frame, we can make the
Christoffel symbols to vanish:
M, =0 (6.27)

nv

The sign = emphasizes that the equality is valid in a Lorentz frame. By virtue
of equation 6.27 we can now express the variation of the Riemann curvature

tensor RF, , substituting the partial derivatives 0, with V:

SR?,,, =0T, —T°

oV, a,u,l/]

=V oI?,, — V0T, (6.28)

The left-hand side is a tensorial quantity, which implies that the equality must
be valid in any reference frame. Hence replacing = with = leads to the Palatini
identity:

OR?,,, =V, oI, —V, 0%, (6.29)

opY

and its contracted version, involving the Ricci curvature tensor:
SRy = VAT, — V0T, (6.30)

By virtue of the Palatini identity, we are able to perform a straightforward
computation of the variation J R:

SR = —R"8g,, + g" 6R,.,
= —R"8gu + g [VAT?,, = Vo2, |
— —RM6g,, + VA6V (6.31)

where §V* was defined in equation 6.23. Substituting the relation 6.26 we
obtain:

V)\(SV)\ = g’“’gp/\vp (V#(sgm - V)x(sg,uu)
— VHVV(SQ#U — V)‘VAéln |g‘ (632)
Therefore we have

SR = —R"§g,, + V'V 5g,, — V Vadln|g| (6.33)
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