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Abstract

The advent of the 3+1 formalism of General Relativity in the 1920’s is a
milestone in the history of the theory. Indeed, this approach gave an impetus to
the inquiry of the initial value formulation of Einstein’s equations, which led in
1952 to the local uniqueness theorem by Y. Choquet-Bruhat. It is on this fertile
ground that in the late 1950’s R. Arnowitt, S. Deser and C. W. Misner (ADM)
proposed a novel Hamiltonian formulation of General Relativity. Their seminal
work is a forerunner of Wheeler’s geometrodynamics and has far-reaching con-
sequences in the quantization program of the theory. The 3+1 decomposition of
spacetime is achieved through a foliation by spacelike hypersurfaces, on which
the three-dimensional counterparts of the intrinsic curvature and stress-energy
tensors can be defined. Once the Einstein-Hilbert Lagrangian is recast into the
ADM Hamiltonian, the variational principle gives rise to a constrained set of
Hamilton’s equations. Furthermore, the fundamental Poisson brackets between
the canonical field variables can be computed.
In this thesis, after a preliminary presentation of the variational principle of Gen-
eral Relativity (chapter 1), we introduce the mathematical apparatus required
for the realization of the 3+1 decomposition (chapter 2). The pivotal role of
the extrinsic curvature tensor will be elucidated in two phases, starting from
the Gauss-Codazzi relations between four and three-dimensional intrinsic cur-
vature tensors, and eventually in the identification of corrective boundary terms
to the Einstein-Hilbert action. Chapter 3 is devoted to the three-dimensional
conversion of the spacetime metric gµν by means of the lapse and shift functions,
which ultimately leads to the projections of the field equations. The crux of the
discussion lies in chapter 4, which thoroughly details the derivation of the ADM
Hamiltonian and the path to Hamilton’s equations. Accordingly, the Poisson
brackets between the conjugate variables are recovered, paving the way for a
brief examination of the Wheeler - DeWitt equation, a major step in the quest
for a quantum theory of gravity (chapter 5). Finally, we focus on the notions
of total energy and momentum of the system, which naturally stem from the
evaluation of the Hamiltonian at spatial infinity. In particular, we apply these
definitions to the case of a Schwarzschild spacetime, proving the reasonableness
of the result.



Chapter 1

Introduction

General Relativity has proved to be one of the most elegant and successful
physical theories since its first appearance in the paper The Field Equations
of Gravitation on November 25, 1907. Albert Einstein’s theory relies on the
Equivalence Principle, which states that gravity affects all bodies in the same
way, making it impossible to disentangle the effects of a gravitational field from
those of a uniform accelerating frame, and on the independence of physical laws
from the reference frame. These assumptions, combined with the hypothesis
that spacetime is a curved manifold structure described by a metric tensor gµν ,
lead to ascribe the distribution of matter to the geometry of spacetime itself.
In particular, this relation is specified by the Einstein Field Equations:

Rµν −
1
2gµνR+ Λgµν = 8πG

c4
Tµν (1.1)

where Rµν is the Ricci Tensor, R is the scalar curvature, Λ is the cosmological
constant, G is the gravitational constant, c is the speed of light and Tµν is the
stress-energy tensor.
From now on we adopt the geometrized unit system, with G = c = 1, and we
neglect the contribution of the cosmological constant, setting Λ = 0.

1.1 Einstein-Hilbert action
The Lagrangian formulation of a field theory allows to deduce the field equations
given a region V of the spacetime manifold and a scalar function L(ψ, ∂αψ),
called Lagrangian density, which depends on the field variables ψ and their first
derivatives ∂αψ. Although the fields ψ could be of any type, we will consider
only generic tensors of type (r, s) (omitting the indices for brevity). In analogy
with the Lagrangian formulation of Newtonian mechanics, the action functional
S[ψ] is defined as the integral

S[ψ] =
∫
V
L(ψ, ∂αψ)

√
−g d4x (1.2)

where g is the (negative) determinant of the metric gµν and √−g d4x is the
proper volume element. The field equations are then recovered by requiring
that S[ψ] is stationary under an arbitrary variation δψ about the actual fields
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1.1. EINSTEIN-HILBERT ACTION 5

ψ0. If one is given a smooth one-parameter family of field configurations ψλ, a
natural definition of variation comes from the derivative

δψ = dψλ
dλ

∣∣∣∣
λ=0

(1.3)

which we demand to vanish on the boundary ∂V of our spacetime region

δψ|∂V = 0 (1.4)

We now assume that there exists a smooth tensor field χ of type (s, r) (thus
dual to ψ) such that the action functional is

S =
∫
V

d4xχψ (1.5)

where the contraction between the indices of χ ans ψ is implied. Taking the
derivative of S with respect to the parameter λ leads to the relation

δS .= dS
dλ

∣∣∣
λ=0

=
∫
V

d4xχ δψ (1.6)

Therefore, the variation of S with respect to ψ about ψ0 is defined as the
functional derivative

χ = δS
δψ

∣∣∣∣
ψ0

(1.7)

which must vanish identically by virtue of the stationarity of the action:

χ = 0 (1.8)

These relations ensure that ψ0 is a solution of the field equations, enclosed in
the identity 1.8.
The variational approach to general relativity was first considered by Hilbert
and Einstein in 1915, who proposed the simple gravitational action:

SH = 1
16π

∫
V
R
√
−g d4x (1.9)

We will refer to SH as the Hilbert term. This is indeed the simplest gravitational
action that can be conceived, since the only nontrivial scalar function that can
be constructed from the metric and its derivatives up to the second order is the
scalar curvature R. The choice

LH
.= 1

16πR
√
−g (1.10)

not only proves to be particularly compelling, due to the complexity of other
possible alternatives, but also establishes a straightforward correspondence be-
tween weak field limit and Newtonian theory of gravitation. In addition to SH ,
we shall include the contributions from the matter fields, denoted by φ, in the
term

SM =
∫
V
LM (φ, ∂αφ; gµν)

√
−g d4x (1.11)
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called the matter action. For simplicity, we assume that LM depends only on
the metric coefficients gµν , together with the field φ and its first derivatives.
The total action functional is given by the sum of the Hilbert and matter terms

S = SH + SM (1.12)

We are thus in the position to show that the Einstein field equations 1.1 stem
from the stationarity of S under arbitrary variations of gµν .

1.2 Variation of the action
Firstly, let us consider the Hilbert term alone. It will prove more convenient to
use the variation of the inverse metric δgµν instead of δgµν . This does by no
means affect the results, since the two variations are related by

gαλgλβ = δαβ =⇒ δgµν = −gµαgνβδgαβ (1.13)

We can perform the variation of SH (following the definition 1.6) by focusing
on the integrand, namely the Hilbert Lagrangian density LH , as the variation
can be brought under the integral sign:

(16π) δLH = δ
(
gµνRµν

√
−g
)

= − δg

2√−g g
µνRµν +

(
δgµνRµν + gµνδRµν

)√
−g (1.14)

The variation of the metric determinant δg is given by Jacobi’s formula:

δg = ggµνδgµν = −ggµνδgµν (1.15)

By exploiting the second form of this identity and recalling that g < 0, we can
replace δg in 1.14:

(16π) δLH =
[(
Rµν −

1
2 gµνR

)
δgµν + gµνδRµν

]√
−g (1.16)

It is now clear that the purely gravitational component of the field equations
is recovered if δRµν vanishes. However, this assumption need not hold in the
general case, as the first derivatives of δgµν enter the variation δRµν , giving rise
to extra boundary terms. Indeed, if we resort to the Palatini identity (proved
in section 6.2.3 of the Appendix), we find that

δRµν = ∇ρ
(
δΓρµν

)
−∇µ

(
δΓρρν

)
(1.17)

By introducing the contravariant vector V ρ .= gµνδΓρµν − gρνδΓµµν (whose
explicit expressions are discussed in Appendix, section 6.2.2) and using the
property ∇ρgµν = 0 of Levi-Civita connections, the last term of equation 1.16
can be recast into a divergence:

√
−g gµνδRµν =

√
−g gµν

[
∇ρδΓρµν −∇µΓρρν

]
(1.18)

=
√
−g ∇ρ

[
gµνδΓρµν − gρνδΓµµν

] .= ∂ρ
(√
−g V ρ

)
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Once these results are replaced in the action integral 1.9 and the multiplicative
constant (16π) reintroduced, by means of Stokes’ theorem the variation δSH
splits into the volume and boundary parts

δSH = 1
16π

∫
V

(
Rµν −

1
2 gµνR

)√
−g δgµν d4x+ 1

16π

∮
∂V
V µdσµd3x (1.19)

where dσµ is the oriented volume element of the hypersurface ∂V. For the
moment, we ignore the second integral and proceed as if the surface terms
can be safely discarded. Nevertheless, after the introduction of a necessary
mathematical apparatus, in section 2.4 we will deal properly with this term.
We now consider the variation of the matter action 1.11 (whose dependence on
the matter fields φ and on gµν is utterly generic):

δSM =
∫
V

[
δLM
δgµν

δgµν
√
−g + LM δ

√
−g
]

d4x

=
∫
V

[
δLM
δgµν

− 1
2 LM gµν

]√
−g δgµν d4x (1.20)

If we define the stress-energy tensor Tµν by

Tµν
.= −2δLM

δgµν
+ LM gµν (1.21)

we see that the variation of the total action S becomes:

δS =
∫
V

[
1

16π

(
Rµν −

1
2 gµνR

)
+ δLM
δgµν

− 1
2 LM gµν

]√
−g δgµνd4x

= 1
16π

∫
V

[
Rµν −

1
2 gµνR− 8πTµν

]√
−g δgµνd4x (1.22)

Due to the arbitrariness of δgµν , the stationarity of S requires that the integrand
be identically zero, leading eventually to the Einstein field equations

Rµν −
1
2 gµνR = 8πTµν (1.23)

which can be rewritten in an equivalent form using the Einstein tensor Gµν ,
corresponding to the left-hand side of 1.23:

Gµν = 8πTµν (1.24)

The desired conservation of the stress-energy tensor Tµν , expressed by the four-
divergence

∇µTµν = 0 (1.25)

is ensured by the Bianchi identities ∇µGµν = 0, which follow from the symme-
tries of the Riemann curvature tensor Rρσµν . This result can also be proved by
considering the invariance of the action under an infinitesimal transformation
of coordinates (see for instance Ref. [17], section 4.1.8).



Chapter 2

Mathematical prelude to
the ADM formalism

In this chapter we introduce some fundamental mathematical notions of differ-
ential geometry required for the development of the ADM formalism. From now
on we consider a spacetime (M, g), where M is a real smooth 4-dimensional
manifold and g a Lorentzian metric of signature (−,+,+,+) on M.

2.1 Hypersurfaces and embeddings
Definition 1. Given a three-dimensional manifold Σ̃ ⊂ M and an embedding
(i.e. a homeomorphism) Φ : Σ̃ →M, Σ is said to be a hypersurface of M if it
is the image of Σ̃ through Φ:

Σ = Φ(Σ̃) (2.1)

This embedding defines in a natural way two mappings between tangent and
cotangent spaces, respectively called the push-forward and the pull-back.

Definition 2. Let f be a smooth real-valued function f : M → R and X ∈
T p(Σ̃) a tangent vector of Σ̃. The push-forward of Φ is a map between tangent
spaces Φ∗ : T p(Σ̃)→ T p(M) such that

Φ∗X = X(f ◦ Φ) (2.2)

Let ω ∈ T ∗p(M) a one-form onM. Then the pull-back is defined as the mapping
Φ∗ : T ∗p(M)→ T ∗p(Σ̃) given by

(Φ∗ω) (X) = ω (Φ∗X) (2.3)

The induced metric γ on Σ̃ is obtained by pulling back the metric g of M:

γ
.= Φ∗g (2.4)

Let t̂ :M→ R be a regular scalar field on M. Since the embedding Φ ensures
that its image Σ is not self-intersecting, each hypersurface Σ can be locally
defined as a level surface t̂ = t (with t constant) and thus labeled with Σt:

Σt =
{
p ∈M

∣∣∣t̂(p) = t
}

(2.5)

8



2.1. HYPERSURFACES AND EMBEDDINGS 9

If Σ̃ is endowed with a coordinate system
(
xi
)
, i ∈ {1, 2, 3}, then the mapping

Φ takes the explicit form:

Φ : (x1, x2, x3) ∈ Σ̃ −→ (t, x1, x2, x3) ∈ Σt ⊂M (2.6)

Let us consider the isomorphism ψ : T p(Σ) −→ T p(Σ̃) which associates tangent
vectors of Σ and Σ̃. Choosing the coordinates of equation 2.6 allows to identify
the basis tangent vectors of the two spaces in a straightforward way. Besides,
the pull-back ψ∗ provides a simple relation between covariant tensors defined
on Σ and on Σ̃. For instance, the (0, 2) tensor Tij ∈ T ∗p(Σ̃)2 gets mapped to

Tµν =
(
ψ∗T

)
µν

=

 0 0j
0i Tij


µν

∈ T ∗p(Σ)2 (2.7)

From now forth, unless otherwise stated, we will implicitly make use of the
embedding map Φ and the isomorphism ψ to identify tensors defined on Σ
(whose components are labeled with lowercase Greek indices, running from 0 to
4) and on Σ̃ (with lowercase Latin indices restricted to {1, 2, 3}).
In this context, the signature of the metric γ falls into three categories and
provides a useful classification of the hypersurfaces Σ.
Definition 3. A hypersurface Σ is said to be:

• spacelike if γ is positive-definite (signature (+,+,+)), with timelike nor-
mal vector;

• timelike if γ is Lorentzian (signature (−,+,+)), with spacelike normal
vector;

• null if γ is degenerate (signature (0,+,+)).
If Σ is a non-null hypersurface, the normal n is uniquely defined at every point
as the unit vector collinear to ∂t̂, the metric dual of the gradient one-form dt̂.
In particular, we denote with ε the norm:

ε
.= nµn

µ = ±1 (2.8)

If Σ is a spacelike hypersurface, then n is a timelike unit vector, with ε = −1.
In the following chapters we will adopt the notation gtt = g00, which means that
t̂ is chosen as the time coordinate, corresponding to the index 0. Consequently,
if we write nµ as nµ = Ω ∂µt̂, where Ω = Ω(xα) takes care of the normalization,
the condition 2.8 fixes the absolute value of Ω:

−1 = nµnνg
µν = Ω2gtt =⇒ Ω = ± 1√

−g00
(2.9)

Henceforth we focus on spacelike hypersurfaces Σ and its induced positive-
definite metric γ. We shall set Ω < 0, which ensures that nµ is a future-directed
timelike vector (namely, it points toward the direction of increasing t̂ ). Hence
we can express nµ and nµ in the natural bases of T p(M) and T ∗p(M) as

nµ = −
δ 0
µ√
−g00

(2.10)

nµ = − g0µ√
−g00

(2.11)
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2.2 Extrinsic and intrinsic curvature
In our brief introduction to the Hilbert-Einstein variational principle we con-
sidered the Riemann tensor Rρσµν and its contracted forms associated to the
Levi-Civita connection ∇ on (M, g), which express the intrinsic curvature of
the spacetime. In a similar way, we can construct a unique Levi-Civita connec-
tion D on the manifold (Σ, γ) and its corresponding curvature tensors. In order
to distinguish between three-dimensional and four-dimensional tensors, we shall
adopt the following convention:

• the quantities marked with the superscript “4” relate to (M, g): the
spacetime Riemann tensor becomes 4Rρσµν ;

• conversely, the quantities marked with “3” or without any superscript refer
to the manifold (Σ, γ): for example, 3Rµν = Rµν .

Besides the intrinsic curvature, when dealing with embedded manifolds one may
define an extrinsic curvature tensor, which measures the variation of the normal
n along a tangent vector. To this end, let us introduce the Weingarten map χ
(or shape operator), which acts on tangent vectors of T p(Σ) (seen as a subspace
of T p(M)):

χ : T p(Σ) −→ T p(Σ)
v 7−→ ∇vn (2.12)

χ is truly an endomorphism of T p(Σ), since χ(v) is orthogonal to n:

nµ[χ(v)]µ = nµ∇vn
µ = 1

2∇v(nµnµ) = 0 (2.13)

This implies that we can use the Latin indices i, j instead of µ, ν to denote the
components of χ:

χ k
i = ∇ink = −

[
∂i

(
g0k√
−g00

)
+ 1√

−g00
4Γk 0

i

]
(2.14)

Furthermore, the Weingarten map is self-adjoint with respect to the metric γ, so
its eigenvalues κ1, κ2, κ3 are real numbers. These are called principal curvatures
of the surface Σ, while the corresponding eigenvectors identify the principal
directions. The mean extrinsic curvature is then defined as the arithmetic mean
of the principal curvatures:

H = 1
3(κ1 + κ2 + κ3) (2.15)

Another consequence of the self-adjointness of χ is the existence of a bilinear
form on T p(Σ), called second fundamental form, such that:

K : T p(Σ) × T p(Σ) −→ R

(u,v) 7−→ −uk [χ(v)]k (2.16)

From the definition of χ(v) we obtain an explicit expression of the components
of K:

Kij = −∇jni = 4Γµijnµ = − 1√
−g00

4Γ0
ij (2.17)
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The trace of K with respect to the metric γ turns out to be a multiple of the
mean curvature (equation 2.15) and of the trace of the Weingarten map:

K = γijKij = −Trχ = −3H (2.18)

We now focus on the properties of K and on the relations between the connec-
tions ∇ and D. To this end, we define the orthogonal projector on T p(Σ) as the
map

π : T p(M) −→ T p(Σ)
vα 7−→ vα + (nµvµ)nα (2.19)

whose components can be explicitly written in terms of nµ and in matrix form
using equations 2.10, 2.11:

πµν = δµν + nµnν =

 0 −g0j/g00

0i δij

 (2.20)

In fact, since πµνnν = nν − nν = 0, it maps any vector in the direction of nµ
to zero, while it acts as the identity on T p(Σ). The pull-back of the orthogonal
projector provides a natural extension of the covariant tensors defined on Σ
to the spacetime M. In particular, π∗ yields the extended metric γM when
applied to γ:

γM
.= π∗γ (2.21)

By definition, γM is equivalent to γ when its action is restricted to T p(Σ) and
vanishes if one of the arguments is normal to Σ. This property can be translated
into the completeness relation:

γµν = gµν + nµnν (2.22)

We shall apply the extension via π∗ also to the second fundamental form K
defined before:

KM
.= π∗K (2.23)

This process will be carried out automatically (unless otherwise stated) for ev-
ery covariant tensor defined on Σ, whereas for contravariant tensors on Σ the
extension to M is trivial (since each (0, r) tangent tensor in T p(Σ)r is already
vanishing upon contraction with nµ). To lighten the notation, however, through-
out the subsequent discussion we will refrain from introducing new symbols and
implicitly refer to the corresponding extended quantities.
We now clarify the relation between the spacetime connection ∇ and the three-
dimensional connection D. Given a tensor field T on Σ, its (extended) covariant
derivative DT satisfies the relation:

DT = π∗(∇T ) (2.24)

in components:

DλT
µ1...µr

ν1...νs
= πρλπ

µ1
α1
...πµr

αr
πβ1

ν1
...πβs

νs
∇ρTα1...αr

β1...βs
(2.25)

This stems from the uniqueness of Levi-Civita connections, which can be proved
by direct computation. Note that in the right-hand side of 2.24 we implicitly
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considered the extension of T toM. Applying equation 2.25 to a tangent vector
v ∈ T p(Σ) leads to a useful specific case that involves the extrinsic curvature
tensor:

Duv
α = ∇uv

α +Kµνu
µvνnα ∀ u ∈ T p(Σ) (2.26)

We conclude this paragraph showing the relations between Kµν and the nor-
mal vector nµ. Firstly, let us define the 4-acceleration of nµ as the covariant
derivative along itself:

aµ
.= ∇nn

µ (2.27)

From the constancy of the norm of nµ, we deduce that aµ is orthogonal to nµ
and thus belongs to T p(Σ):

gµνa
µnν = nµ∇nn

µ = 1
2∇n(nµnµ) = 0 =⇒ aµ ∈ T p(Σ) (2.28)

By virtue of these results we can now express the extended tensor Kµν in terms
of more elementary quantities. Given two vectors uµ, vµ ∈ T p(M), consider the
quantity

Kµνu
µvν (2.29)

Since the employment of πµν in definition 2.23 makes Kµν orthogonal to nµ,
the only contribution to 2.29 comes from the spatial components of the vec-
tors. Therefore, thanks to our choice of coordinates, we can use Kij = −∇jni
(equation 2.17) simply by replacing the Latin indices with the Greek ones:

Kµνu
µvν = −∇µnν [πµαuα]

[
πνβv

β
]

= −∇µnν
[
uµ + nµnαu

α
][
vν + nνnβv

β
]

= −uµvν∇µnν − uµvνnµ∇nnν

= −uµvν [∇µnν + nµaν ] (2.30)

Hence we arrive at the following fundamental equations:

Kµν = −∇µnν − nµaν (2.31)
K = gµνKµν = −∇µnµ (2.32)

The contribution of the acceleration vector aµ drops out in the contraction with
nµ due to the orthogonality relation 2.28.
Before continuing with our discussion, we clarify a relation that has been ignored
until now. In particular, raising or lowering an index of the projector πµν with
gµν yields the metric γµν and its inverse:

πλν = gλµπ
µ
ν = gλµ(δµν + nµnν) = gλν + nλnν = γλν (2.33a)

πµλ = gλνπµν = gλν(δµν + nµnν) = gµλ + nλnν = γµλ (2.33b)

This is a direct consequence of the completeness relation 2.22 involving γµν and
gµν . Thus from now on we replace the notation πµν with the equivalent γµν .

2.3 Gauss-Codazzi relations
This section is devoted to the development of the 3+1 dimensional splitting
involving the curvature tensors of Σ and M. In particular, as we shall see,
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the three and four-dimensional Riemann tensors are related by the extrinsic
curvature tensor Kµν .
Let us consider the Ricci identity, which relates Rρσµν to the commutator of
covariant derivatives:

Rρσµνv
σ = [Dµ, Dν ]vρ (2.34)

This equation holds for every vµ ∈ T p(M) as Rρσµν is a tangent vector of
Σ. Each derivative D can be replaced by ∇ using twice equation 2.24 and the
explicit expansion of the projector γµν . After some passages, we arrive at the
Gauss relation:

γραγ
β
σγ

γ
µγ

δ
ν

4Rαβγδ = Rρσµν +Kρ
µKσν −Kρ

νKσµ (2.35)

By exploiting the idempotence of the projector γαλγλβ = γαβ , the contraction
on ρ and µ gives the contracted Gauss relation:

4Rαβ γ
α
µγ

β
ν + 4Rαβγδ γαµn

βγγνn
δ = Rµν +KKµν −KµλK

λ
ν (2.36)

Finally, contracting again with the metric γµν yields a generalization of Gauss’
Theorema Egregium:

4R+ 2 4Rµνn
µnν = R+K2 −KµνK

µν (2.37)

It is worth to observe that these three remarkable equations, apart from the
notational particularization, hold true for any kind of embedding (in any di-
mension). We can push further our analysis by considering their projections
on Σ and on nα: in particular, let us focus on the total projection of the four-
dimensional Ricci identity

[∇µ,∇ν ]nρ = 4Rρσµνn
σ (2.38)

Using the projector γαβ once for every index and exploiting the expansion 2.31
of Kµν results in:

γαργ
µ
βγ

ν
γ

4Rρσµνn
σ = γαργ

µ
βγ

ν
γ [∇µ,∇ν ]nρ

= −γαργ
µ
βγ

ν
γ [∇µ(K ρ

ν + nνa
ρ)−∇ν(K ρ

µ + nµa
ρ)]

= −[DβK
α

γ −DγK
α

β ]− [aαKβγ − aαKγβ ]

The symmetry of Kαβ allows to displace the last term in square brackets, giving
the Codazzi relation:

γαργ
µ
βγ

ν
γ

4Rρσµνn
σ = −[DβK

α
γ −DγK

α
β ] (2.39)

As usual, we can perform the contraction of the remaining free indices with the
aim to obtain new identities. In particular, applying this to α and β on the
left-hand side leads to

γµργ
ν
γ

4Rρσµνn
σ = (δµρ + nµnρ)γνγ

4Rρσµνn
σ

= γνγ
4Rσνn

σ + γνγ
4Rρσµνn

ρnσnµ (2.40)

The last term drops out due to the antisymmetry of 4Rρσµν with respect to the
first two indices. Since the contraction of the covariant derivatives is trivial, we
arrive at

γµλ
4Rµνn

ν = DλK −DµK
µ

λ (2.41)
Unsurprisingly, this is called the contracted Codazzi relation.
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2.4 Corrections to the Hilbert term of the ac-
tion

Having introduced the extrinsic curvature tensorKµν , we are now in the position
to deal with the pending issue presented in section 1.2. Indeed, in order to
displace the boundary term arising in the computation of δS (equations 1.16
and 1.19), we shall add a corrective term to the action which depends on the
trace of the extrinsic curvature. To simplify the notation, in this section we
omit the superscript “4” since we consider only four-dimensional quantities.

2.4.1 Boundary term SB of the action
We recall that the variation of SH performed in section 1.2 yields the boundary
term ∮

∂V
δV αdσα =

∮
∂V

[
gµνδΓαµν − gανδΓµµν

]
dσα (2.42)

which in general cannot be discarded due to the presence of nonvanishing partial
derivatives δgµν,α. We shall now give a precise characterization of the surface
element dσα in the case of a non-null hypersurface. To this end, let us introduce
the defining equation Φ(xα) = const of the hypersurface ∂V. To avoid confusion,
we denote with rµ the generic unit normal (not necessarily timelike) pointing in
the direction of increasing Φ. This follows immediately if we fix rµ

.= εΩ ∂µΦ,
where Ω is the positive normalization factor, as the contraction with ∂µΦ gives:

rµ∂µΦ = 1
εΩ rµrµ = 1

Ω > 0 (2.43)

Finally, by demanding dσα to be an invariant volume element of ∂V, propor-
tional to rα and such that rαdσα > 0, we arrive at

dσα = εrα
√
|h|d3x (2.44)

where hij is the induced metric on ∂V, h is its determinant and d3x here refers to
the coordinates of the hypersurface. In analogy with γµν , the four-dimensional
extension hµν satisfies the completeness relation

hµν = gµν − εrµrν (2.45)

which can be easily proved by taking the contraction with normal and tangent
vectors of ∂V. Substituting equation 2.44 in the integral 2.42 gives∫

V
gµνδRµν

√
−g d4x =

∮
∂V
ε δV αrα

√
|h|d3x (2.46)

In order to recast δV α as a function of δgµν,λ we must evaluate the variation of
the Christoffel symbols Γλµν . Since δgµν |∂V = 0, we have

δΓλµν = gλσδΓσµν = 1
2 g

λσ (δgσµ,ν + δgσν,µ − δgµν,σ) (2.47)

For simplicity, we focus momentarily on the argument of the surface integral
2.46, discarding the multiplicative term

√
|h|. Replacing the variation δΓλµν

with equation 2.47 and gathering the common terms yield

ε δV αrα = εgαβgµν (δgβµ,ν − δgµν,β) rα
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= ε (hµν + εrµrν) (δgβµ,ν − δgµν,β) rβ

= εrβhµν (δgβµ,ν − δgµν,β) (2.48)

In the last line we have exploited the antisymmetry of (δgβµ,ν − δgµν,β) with re-
spect to the indices β, ν, dropping out upon contraction with rβrν . In addition,
since the variation δgαβ vanishes everywhere on the boundary, its derivative
along a tangent vector uρ of ∂V must be zero. The arbitrariness of uρ provides
the relation

uρδgµν,ρ = uσh
σρδgµν,ρ = 0 =⇒ hσρδgµν,ρ = 0 (2.49)

thereby allowing to discard one term of the last line of 2.48:

ε δV αrα = −εhµνδgµν,αrα (2.50)

By virtue of these results, our surface integral becomes∫
V
gµνδRµν

√
−g d4x = −

∮
∂V
εhµνrαδgµν,α

√
|h|d3x (2.51)

We are now in the position to recast this integral into a much more elegant
form. Indeed, from the variation of Γλµν (equation 2.47) and the property 2.49,
the right-hand side turns into

−
∮
∂V
εhµνrαδgµν,α

√
|h|d3x = −

∮
∂V
εhµνrα (−2δΓαµν)

√
|h|d3x

= 2
∮
∂V
εhµνrαδΓαµν

√
|h|d3x (2.52)

The product rα δΓαµν can be traced back to the variation of the covariant
derivative

rαδΓαµν = −δ (∇µrν) (2.53)
If we recall equation 2.32, that gives the relation between K and the (spacetime)
covariant derivative of the unit vector rµ, we see that on ∂V the following relation
holds:

hµνrαδΓαµν = − (gµν − εrµrν) δ (∇µrν)
= −δ (∇µrµ) = δK (2.54)

Notice that we used property rν∇µrν = 0 to eliminate εrµrν . Since δgµν =
δhµν = 0 on the boundary, the variation of

√
|h| vanishes, thus enabling us to

rewrite the integral 2.42 as∫
V
gµνδRµν

√
−g d4x = 2δ

∮
∂V
εK
√
|h|d3x (2.55)

By virtue of this result, we can add a new term to the action functional S,
called the boundary term SB , such that the variation of S provides the correct
gravitational component of the Einstein field equations. Indeed, if we define
this contribution by the integral

SB = − 1
8π

∮
∂V
εK
√
|h|d3x (2.56)

the extra boundary term which tainted equation 1.19 cancels out with 2.55,
leading to the left-hand side of the field equations 1.23.
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2.4.2 Nondynamical term S0 of the action
Although the gravitational part of the action SG = SH + SB is now fully con-
sistent with the Einstein field equations, the integral 2.56 might diverge for flat
(or asymptotically flat) spacetimes. In fact, by considering the vacuum solution
Rµν = 0 on a region of spacetime delimited by two hypersurfaces t = t1, t = t2
(with t1, t2 constants) and by a three-cylinder with radius ρ, the action reduces
to the boundary term

SB = − 1
8π

∮
∂V
εK
√
|h|d3x = ρ(t2 − t1) (2.57)

which diverges when ρ→∞. For this reason we might introduce a nondynam-
ical term S0, which does by no means affect the field equations, such that the
total action is bounded even for non-compact (asymptotically) flat manifolds.
One possible choice is given by

S0 = − 1
8π

∮
∂V
εK0

√
|h|d3x (2.58)

with K0 corresponding to the scalar extrinsic curvature of the embedding of
∂V in flat spacetime. Accordingly, reintroducing the superscript “4”, the well-
defined gravitational action SG becomes

SG = SH + SB − S0

= 1
16π

∫
V

4R
√
−g d4x− 1

8π

∮
∂V
ε (K −K0)

√
|h|d3x (2.59)



Chapter 3

3+1 decomposition of
spacetime

In this chapter we carry on the dimensional splitting of spacetime (M, g) into a
purely spatial part and time. We start by fixing the three-geometry of spacelike
hypersurfaces Σ, endowing each of them with a coordinate system and with the
induced metric γµν . However, this does not fully determine the four-geometry
of spacetime: one must in addition set the geometry between two neighbouring
hypersurfaces. To this end, we shall define four new functions, which supple-
ment the information required for a complete description of M. Once this has
been done, we will be able to rewrite the gravitational action 2.59 in terms of
the extrinsic curvature tensor and of three-dimensional quantities inherent to
the hypersurfaces.
The feasibility of this process restricts the analysis to a specific class of space-
times, called globally hyperbolic spacetimes.

Definition 4. A spacetime M is said to be globally hyperbolic if it admits
a spacelike hypersurface Σ (called Cauchy surface) such that every timelike or
null curve without endpoints intersects Σ once and only once.

Any globally hyperbolic spacetime admits a foliation by a family of spacelike
hypersurfaces {Σt}t∈R, which means that each Σt is a level surface of a regular
scalar field t̂ onM. We thus focus on this class of spacetimes and proceed with
the introduction of the lapse and shift functions, following the notation adopted
by Arnowitt, Deser and Misner in their 1962 article (Ref. [4]).

3.1 The lapse function
In section 2.1 we considered the normal covariant vector collinear to the gradient
one-form dt̂. In particular, we defined the function Ω as the negative factor
which ensures that nα = Ω

(
dt̂
)
α

is normalized. Let us introduce a closely
related positive quantity N and call it the lapse function:

N
.= 1√
−g00

= −Ω (3.1)

17
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This name is justified by the physical significance that N acquires: indeed, it
determines the lapse of proper time between two neighbouring hypersurfaces
Σt+δt and Σt. To clarify this fact, let us define the normal evolution vector:

mα .= Nnα (3.2)

We see that it satisfies the relation

(dt̂ )αmα = −N2gαβ(dt̂ )α(dt̂ )β = −N2g00 = 1 (3.3)

where we have used equation 2.11. Next we consider p ∈ Σt and generate an in-
finitesimally close point q ∈M, such that xα (q) = xα (p) +mα δt. Substituting
into the scalar field t̂ and expanding to first order we find that:

t̂(q) = t̂(p) + (dt̂ )αmαδt = t+ δt (3.4)

Therefore we have proved that q ∈ Σt+δt, which means that the displacement
δxα = mαδt connects Σt to Σt+δt. Besides, if we consider an observer moving
with four-velocity nα, the elapsed proper time δτ measured between the events
p and q is given by

δτ
.=
√
− (mαδt) gαβ (mβδt) = Nδt (3.5)

This implies that the lapse function N associates an infinitesimal interval of
coordinate time t to the proper time measured by an observer whose world lines
are orthogonal to Σt. In order to simplify the notation, henceforth we implicitly
identify t̂ with the coordinate t.

3.2 The shift functions
Let (xi) = (x1, x2, x3) be the coordinate system on each hypersurface of the
foliation {Σt}t∈R and let (t, x1, x2, x3) be the natural smooth extension to M.
The tangent vectors (∂µ) = (∂t, ∂1, ∂2, ∂3) constitute the natural basis of T p(M),
while (dxµ) denotes the corresponding dual basis of T ∗p(M). In particular, ∂t
is the tangent vector to the curve xi = const, whereas ∂i ∈ T p(Σt). Albeit ∂t
connects two neighbouring hypersurfaces similarly to mα, they in general differ,
as ∂t is not necessarily orthogonal to Σt. In fact, asking the coordinate systems
(xi) to vary smoothly between neighbouring hypersurfaces does by no means
fix the direction of ∂t. In order to fully determine the geometry of spacetime
we have to specify the displacement of ∂t from mα in any point of M: let us
consider the vector difference

βα
.= (∂t)α −mα (3.6)

βα is tangent to Σt, since the projection on nα is zero:

nαβ
α = nα(∂t)α − nαmα = n0 +N = 0

In addition, applying the basis one-forms dxi ∈ T ∗p(Σ) to βα gives:

dxi(β) = βi = δi0 −Nni = N2gi0 (3.7)

We thus define the three shift functions N i to be the spatial components of βα:

N i .= βi = N2g0i (3.8)
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Once the lapse function and the shift functions are specified, together with the
three-dimensional metric γij , the spacetime geometry is completely determined.
Let us express gµν in terms of γij and of these new functions N,N i. At present,
we have identified only few components of the metric and its inverse:

gµν =

 A Bj

Bi γij

 gµν = 1
N2

 −1 N j

N i Cij

 (3.9)

where A,Bi and Cij are unknown. These entries can be determined by exploit-
ing the identity gµρgρν = δ ν

µ :

giρg
ρ0 = 1

N2 (−Bi + γijN
j) = 0 =⇒ Bi = γikN

k (3.10)

g0ρg
ρ0 = 1

N2 (−A+ γikN
kN i) = 1 =⇒ A = γikN

kN i −N2 (3.11)

giρg
ρj = 1

N2 γik(NkN j + Ckj) = δ ji =⇒ Cij = N2γij −N iN j (3.12)

Let us adopt the notation Ni
.= γikN

k. Replacing A,Bi, C
ij in equation 3.9

leads to the result we sought:

gµν =

 NiN
i −N2 Nj

Ni γij

 gµν =


− 1
N2

N j

N2

N i

N2 γij − N iN j

N2

 (3.13)

It should be emphasized that gij = γij , whereas in general gij 6= γij . Indeed,
this is true only if N i ≡ 0, which means that ∂t and mα coincide (in this case,
the coordinates (xµ) are said to be Gaussian normal coordinates).
The determinants g and γ respectively of gµν and γij are related by the equation:

g = −N2γ −→
√
−g = N

√
γ (3.14)

which gives the density √−g of spacetime in terms of the density √γ and the
lapse function. This follows from the definition of the inverse metric gµν by
means of the adjugate matrix:

g00 = detγ
det g = γ

g
= − 1

N2 (3.15)

Ultimately, combining equations 2.10, 2.11 and 3.8 provides an explicit form of
nµ and nµ in terms of the functions N and N i:

nµ = (−N, 0, 0, 0)µ (3.16)

nµ =
(

1
N
,−N

i

N

)µ
(3.17)

3.3 Final decomposition of the Riemann tensor
Let us return to the contracted Gauss relation (equation 2.36). We now aim
at replacing the Riemann tensor 4Rρσµν with the three-dimensional intrinsic
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and extrinsic curvature tensors and with the lapse and shift functions. To begin
with, we rewrite the acceleration covector aµ in terms of the lapse function using
the definition of nµ:

aµ = ∇nnµ = −nσ∇σ(N∇µt) = −nσ(∇σN)(∇µt)− nσN∇σ∇µt

Since ∇ is torsion free, the covariant derivatives commute if applied to a scalar
field, namely [∇α,∇β ]t = 0. Thus:

aµ = 1
N
nµn

σ∇σN + nσN∇µ
(nσ
N

)
= nµn

σ∇σ lnN − nσnσ∇µ lnN + nσ∇µnσ
= (nσnµ + δσµ)∇σ lnN = γσµ∇σ lnN = Dµ lnN (3.18)

Plugging aµ into equation 2.31 gives:

∇µnν = −Kµν − nµDν lnN (3.19)

In a similar way, the covariant derivative of mα can be easily computed:

∇µmν = ∇µ(Nnν) = −NK ν
µ − nµDνN + nν∇µN (3.20)

Another mathematical tool we shall consider is the Lie derivative (whose charac-
terization is given in section 6.1.4 of the Appendix). Let us consider the tangent
tensors on Σ, namely the tensors invariant by projection:

Tα1...αr

β1...βs
= γα1

µ1
. . . γαr

µr
γν1

β1
. . . γνs

βs
Tµ1...µr

ν1...νs
(3.21)

The Lie derivative acts as an endomorphism of the space of tangent tensors on
Σ, as it can be proved that Lmγµν = 0. In fact, combining this with the product
rule on 3.21 confirms our assertion:

(LmT )α1...αr

β1...βs
= γα1

µ1
. . . γαr

µr
γν1

β1
. . . γνs

βs
(LmT )µ1...µr

ν1...νs
(3.22)

The Lie derivative Lm provides some useful and concise relations between the
tensorial quantities previously introduced. In particular, since ∇ is torsion free,
we can apply the property 6.19 from the Appendix and replace the partial deriva-
tives with their covariant counterparts. This being said, thanks to equation 3.20
the Lie derivative of γµν results in

Lmγµν = mα∇αγµν + γαν∇µmα + γµα∇νmα = −2NKµν (3.23)

which means that the evolution of γµν along mα is related to the lapse function
and to Kµν . Using mα = Nnα and the orthogonality γµνnν = 0, equation 3.23
can be rewritten in a significant form:

Kµν = −1
2Lnγµν (3.24)

Although this relation is sometimes used as a definition of the extrinsic curva-
ture, it should be noted that it is meaningful only if Σt belongs to a foliation,
as the derivative of γµν along nα may not be defined. Let us now turn to the
evaluation of LmKµν using the covariant version of the expansion:

LmKµν = N (∇nKαβ +Kαρ∇βnρ +Kρβ∇αnρ) (3.25)



3.3. FINAL DECOMPOSITION OF THE RIEMANN TENSOR 21

Since Kµν is a tangent tensor of Σ, we can resort to the property 3.22 and apply
the projector γµν without altering the result:

LmKµν = γαµγ
β
ν LmKαβ

= Nγαµγ
β
ν∇nKαβ − 2NKµρK

ρ
ν (3.26)

If we replace the Greek indices with Latin indices running from 1 to 3, equations
3.23 and 3.26 continue to hold, inasmuch as Kµν and γµν are three-dimensional
tangent tensors defined on Σ:

Lmγij = −2NKij (3.27)
LmKij = Nγkiγ

l
j∇nKkl − 2NKikK

k
j (3.28)

Exploiting the identity Lm(γikγkj) = 0 and the product rule, we are able to
recover the Lie derivative of the inverse metric γij and of the trace K, whose
significance will be apparent later in this section:

Lmγij = −γikγjlLmγkl = 2NKij (3.29)
LmK = 2NKijK

ij + γijLm(Kij) = Nγij ∇nKij (3.30)

Let us now project twice on Σ and once along nµ the four-dimensional Ricci
identity 2.38 applied to nµ:

γραγ
µ
βn

ν
(

4Rρσµνn
σ
)

= γραγ
µ
βn

ν [∇µ,∇ν ]nρ (3.31)

Expanding the commutator and using formula 3.19, after some laborious pas-
sages we manage to eliminate the derivatives ∇µnρ in favour of the extrinsic
curvature and arrive at

γραγ
µ
β

4Rρσµν n
σnν = −KαλK

λ
β + γµαγ

ν
β∇nKµν + 1

N
DαDβN (3.32)

This relation will enable to replace the spacetime Riemann tensor 4Rρσµν with
three-dimensional quantities. In fact, if we compare it with the contracted Gauss
relation 2.36, namely

γαµγ
β
ν

4Rαβ + γµργ
α
ν

4
Rρσαβ n

σnβ = Rµν +KKµν −KµλK
λ
ν

we notice the two common terms (up to a notational change) containing 4Rρσµν
and KαλK

λ
β . Hence after the combination of these equations we are left with

the simpler expression

γαµγ
β
ν

4Rαβ = Rµν +KKµν − γαµγβν∇nKαβ −
1
N
DµDνN (3.33)

Finally, let us perform the last contraction with γµν and replace in the right-
hand side the Greek indices with Latin ones, exploiting the aforementioned
purely spatial character of K and γ:

γµν 4Rµν = R+K2 − γij∇nKij −
1
N
γijDiDjN (3.34)

Equation 3.30 suggests that we should substitute γij∇nKij with the Lie deriva-
tive ofK. However, given scalar field f and a vectorX, the relation LXf = ∇Xf
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always holds, implying that in this particular case the contraction with γij com-
mutes with ∇, even though ∇λγij 6= 0. Therefore we get

γµν 4Rµν = R+K2 − 1
N
∇mK + 1

N
DiDiN

= R+K2 −∇nK + 1
N
DiDiN (3.35)

Recalling that γµν = gµν + nµnν , we now split the left-hand side into

4R+ 4Rµνn
µnν = R+K2 −∇nK −

1
N
DiDiN (3.36)

Eventually, by virtue of Gauss’ Theorema Egregium (equation 2.37), the re-
placement of 4Rµνn

µnν leads to the relation we sought:

4R = R+K2 +KijKij − 2∇nK −
2
N
DiDiN (3.37)

The 3+1 decomposition of the spacetime scalar curvature 4R is thus complete.

3.4 Projection of the Einstein field equations
We end this chapter with the projection of Einstein’s field equations, resorting
to the relations between three and four-dimensional tensors hitherto considered.
Let us focus on the case Λ = 0:

4Rµν −
1
2gµν

4R = 8πTµν (3.38)

We can recast these equations in an equivalent form by displacing the scalar
curvature 4R with the trace T of the stress-energy tensor. Indeed, contracting
3.38 with gµν gives

gµν
[

4Rµν −
1
2gµν

4R
]

= 8πgµνTµν =⇒ 4R = −8πT (3.39)

After the substitution, we arrive at

4Rµν = 8π
[
Tµν −

1
2gµνT

]
(3.40)

It is worth to introduce some tensorial quantities describing the 3+1 splitting of
Tµν . Since the normal vector nα is timelike, it may be identified with the four-
velocity of some observer, which moves perpendicularly to the hypersurfaces Σt.
The energy density E measured by this observer is given by the formula:

E
.= Tµνn

µnν (3.41)

This is analogous to the definition adopted in special relativity. In a similar
fashion, we introduce the momentum density as the one-form

pα
.= −Tµνnµγνα (3.42)

The projector γνα ensures that pα is tangent to the hypersurface Σt. Lastly,
the total projection of Tµν onto Σt produces the stress tensor Sαβ :

Sαβ
.= Tµνγ

µ
αγ

ν
β = Tαβ + Enαnβ + nρ(Tαρnβ + Tρβnα) (3.43)
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and the corresponding trace with respect to γµν :

S = Sαβγ
αβ = Sijγ

ij (3.44)

Combining equations 3.43 and 3.44, we can write T in terms of the trace S and
the energy E:

T = Tµνg
µν = Tµν(γµν − nµnν) = S − E (3.45)

These definitions describe all the quantities arising from the projections of the
stress-energy tensor. Since Tµν is a symmetric rank-2 tensor, we are now in the
position to analyze individually each of the three possible combinations.

3.4.1 Total projection onto Σt

Let us apply twice the projector γµν to 3.40. On the left-hand side we get the
projection of the Ricci tensor, which has already been computed in the previous
section (formula 3.33). However, we can reshape it into a slightly different form
with the introduction of the Lie derivative LmKµν through equation 3.26:

γµαγ
ν
β

4Rµν = Rαβ − 2KαλK
λ
β +KKαβ −

1
N

[
LmKαβ +DαDβN

]
On the right-hand side, instead, we can replace Tµν and T with the stress tensor
Sµν , its trace S and the energy density E thanks to 3.43 and 3.45:

8πγµαγνβ
[
Tµν −

1
2gµνT

]
= 8π

[
Sαβ −

1
2γαβ(S − E)

]
(3.46)

Therefore the total projection onto Σt of the Einstein equations reads:

Rαβ − 2KαλK
λ
β +KKαβ −

1
N

[
LmKαβ +DαDβN

]
(3.47)

= 8π
[
Sαβ −

1
2γαβ(S − E)

]
It is worth to note that all the tensors involved in this equation are tangent
to Σt, thus their components are completely described by the Latin indices ij.
Isolating the evolution of the extrinsic curvature LmKij leads to the equivalent
form:

LmKij = −DiDjN +N
[
Rij − 2KilK

l
j +KKij

]
+ 4πN

[
γij(S − E)− 2Sij

]
(3.48)

3.4.2 Total projection along nµ

Again, let us project the Einstein equations, this time twice along nµ. This
means that we shall contract equation 3.38 with nµnν . Using the definition
3.41 of the energy E we find:

nµnν4Rµν + 1
2

4R = 8πE (3.49)

Comparing the left-hand side of this equation with the generalized Theorema
Egregium (formula 2.37) gives the relation:

R−KijK
ij +K2 = 16πE (3.50)
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This is called the Hamiltonian constraint, as it will appear in the Hamiltonian
approach to general relativity, described in chapter 4.

3.4.3 Mixed projection onto Σt and along nµ

The last projection that can be performed is the mixed projection along nµ and
onto Σt. Since the metric gµν vanishes upon contraction with nµ and γνα, the
field equations reduce to

4Rµνn
µγνα = −8πpα (3.51)

where pα is the momentum density previously defined. The left-hand side can
be transformed into three-dimensional covariant derivatives by means of the
contracted Codazzi relation 2.41:

DβK
β

α −DαK = 8πpα (3.52)

or equivalently, by restricting the indices to the spatial components:

DjK
j
i −DiK = 8πpi (3.53)

This is called the momentum constraint. In fact, its left-hand side will be rewrit-
ten in terms of the conjugate momenta arising in the Hamiltonian description
of general relativity.

3.5 Summary of the results
Having completed the projection of the field equations, it is worth to summarize
and analyze the results before proceeding with the introduction of the Hamil-
tonian formalism. In particular, we shall first recall the equation 3.27, which
relates the evolution of γµν and the extrinsic curvature Kµν :

Lmγij = −2NKij (3.54)

Let us split m into ∂t −Nk∂k and rewrite the Lie derivative as

Lmγij = ∂tγij −
[
γkjDiN

k + γikDjN
k +NkDkγij

]
(3.55)

From now forth we denote the time derivatives with a dot (Newton notation),
so ∂tγij = γ̇ij . Since the metric γij is covariantly constant with respect to the
connection D, the latter term vanishes and we get

Lmγij = γ̇ij −DiNj −DjNi (3.56)

Combining this equation with 3.54 gives a useful result, which will be repeatedly
used in the next chapter:

Kij = 1
2N

[
DiNj +DjNi − γ̇ij

]
(3.57)

Then we have the projections of the field equations:

LmKij = −DiDjN +N
[
Rij − 2KilK

l
j +KKij + 4π

(
γij(S − E)− 2Sij

)]
R−KijK

ij +K2 = 16πE
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DjK
j
i −DiK = 8πpi

These four relations constitute a set of 16 second-order nonlinear partial differ-
ential equations in the unknowns γij , Kij , N and N i (assuming that the matter
contribution from E, pi and Sij is given). However, since the number of inde-
pendent four-dimensional Einstein equations is 10, this must be true also for the
system shown above. The 3+1 formalism allowed to treat the field equations
as a Cauchy problem, leading to many significant results on the existence and
uniqueness (up to isometry) of local and global solutions which are a “develop-
ment” of the initial data set. In particular, once the four constraint equations
are specified on a spacelike hypersurface Σ, they prove to be both necessary
and sufficient conditions for the possibility to embed Σ in a spacetimeM which
satisfies Einstein equations. A thorough discussion of the subject can be found
in Ref. [8], [10] and [11] by Choquet-Bruhat and Geroch.



Chapter 4

ADM Hamiltonian
formulation of General
Relativity

In this chapter we discuss the Hamiltonian formulation of general relativity
proposed by Arnowitt, Deser and Misner which stems from the gravitational
action functional 2.59. The significance of the canonical formulation lies in two
primary hallmarks:

• time holds a privileged position among the coordinates (xµ). In particular,
the original four-dimensional description is replaced by the evolution of
tensor fields on a spacelike three-dimensional hypersurface Σ;

• the time evolution of the system is defined by Hamilton’s equations, which
are first-order differential equations in the time derivatives.

The canonical form of general relativity also sheds light on the issues originated
from the redundancy of the variables gµν . Indeed, although this ensures the gen-
eral covariance of the theory, it encumbers the identification of the minimal set
of data needed to provide a consistent initial value formulation. This reduction
to the independent dynamical modes of the gravitational field is highly desirable,
as it is a necessary prerequisite for the quantization program of general relativ-
ity. In fact, the correspondence between Poisson brackets of the Hamiltonian
theory and commutators in quantum mechanics can be considered only when
the unconstrained canonical variables are singled out from the corresponding
overall set.
In the following sections we present a detailed derivation of Hamilton’s equa-
tions and arrive at the fundamental Poisson brackets (section 4.5) between the
constrained variables. For a formal discussion on the isolation of the indepen-
dent variables of the system, the reader can refer to the 1962 article by ADM
(Ref. [4]).

26
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4.1 Einstein-Hilbert action in 3+1 formalism
Let us return to the Hilbert Lagrangian density LH = 4R

√
−g, temporarily

omitting the irrelevant multiplicative factor (16π)−1. We shall replace the four-
dimensional quantities 4R and √−g with their three-dimensional counterparts,
using respectively equations 3.37 and 3.14:

LH =
[
R+K2 +KijKij − 2∇nK −

2
N
DiDiN

]
N
√
γ (4.1)

In chapter 1 we introduced the action functional SH as the integral of LH over a
region V of the spacetime manifold. The 3+1 dimensional decomposition allows
to carry on the integration on V by subdividing this region into a family of
hypersurfaces Σt, labeled by the time t:

SH =
∫ t2

t1

dt
∫

Σt

[
R+K2 +KijKij − 2∇nK −

2
N
DiDiN

]
N
√
γ d3x (4.2)

where t1 and t2 are generic lower and upper time limits. Before proceeding with
our analysis, we shall unveil the divergences hidden in the last two terms of LH
by rewriting them in the following form:

√
γ DiDiN = √γ Di

(
∂iN

)
= ∂i

(√
γ ∂iN

)
(4.3)

N
√
γ∇nK = N

√
γ nα∇αK = ∂α (√γ NKnα) +√γ NK2 (4.4)

Substituting in the Lagrangian density LH , the term K2 changes sign and we
arrive at

LH =
(
R−K2 +KijKij

)
N
√
γ

− 2
[
∂i
(√
γ ∂iN

)
+ ∂α (√γ NKnα)

]√
γ (4.5)

It will prove more informative to recast temporarily the two divergences in
four-dimensional notation. To this end, we consider the generalized Theorema
Egregium 2.37

4R = R+K2 −KµνK
µν − 2 4Rµνn

µnν

and replace the last term with a commutator of spacetime connections, exploit-
ing the contracted Ricci identity:

4R = R+K2 −KµνK
µν − 2nµ[∇α,∇µ]nα

Now we use equations 2.31, 2.32 and the orthogonality relation 2.28 to rewrite
the commutator in the form

nµ[∇α,∇µ]nα = nµ (∇α∇µ −∇µ∇α)nα

= ∇α (nµ∇µnα − nα∇µnµ)− (∇αnµ)∇µnα + (∇αnα)2

= ∇α (nµ∇µnα − nα∇µnµ)−KαµKαµ +K2

Substituting this result in the Lagrangian density LH and adopting the Latin
indices for the contraction KµνK

µν = KijK
ij give

LH =
(
R−K2 +KijK

ij
)
N
√
γ − 2

√
−g∇α (nµ∇µnα − nα∇µnµ) (4.6)
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Comparing the two expressions 4.5 and 4.6 shows that the “divergence-free”
components are the same, thereby implying that the latter terms must be equiv-
alent. In particular, the analysis of the four-dimensional divergence part will be
the subject of the following section.

4.1.1 Boundary terms in the 3+1 Lagrangian density
We shall now consider the contribution of SH which must be added to SB ,
the boundary term of the gravitational action (equation 2.56). Using Stokes’
theorem and reintroducing the multiplicative constant (16π)−1, we obtain

− 1
8π

∫
V

√
−g∇α (nµ∇µnα − nα∇µnµ) d4x =

= − 1
8π

∮
∂V
ε (nµ∇µnα − nα∇µnµ)

√
|h| rαd3x

where rα denotes the unit normal to ∂V and dσα = εrα
√
|h|d3x is the oriented

volume element on ∂V. Further progress can be made if we assume that ∂V is
the union of two spacelike hypersurfaces Σt1 and Σt2 (with t2 > t1) connected
by a timelike hypersurface T . Since on Σt2 the unit normal corresponds to nα
and ε = nαn

α = −1, the contribution of Σt2 to the surface integral is

− 1
8π

∫
Σt2

ε (nµ∇µnα − nα∇µnµ)
√
|h| rαd3x = 1

8π

∫
Σt2

K
√
|h|d3x (4.7)

with h > 0 being the determinant of the induced metric on ∂V and K = −∇αnα.
Similarly, the contribution of Σt1 is

− 1
8π

∫
Σt1

ε (nµ∇µnα − nα∇µnµ)
√
|h| rαd3x = − 1

8π

∫
Σt1

K
√
|h|d3x (4.8)

where the minus sign accounts for the negative orientation of Σt1 with respect
to the future-directed normal, namely rα = −nα. We see that 4.7 and 4.8
cancel out the corresponding integrals over Σt1 and Σt2 contained in SB (equa-
tion 2.56). The contribution coming from T , though, does not neutralize the
remaining term of SB . In fact, it gives

− 1
8π

∫
T
ε (nµ∇µnα − nα∇µnµ)

√
|h| rαd3x (4.9)

= − 1
8π

∫
T

(nµ∇µnα) rα
√
|h|d3x = 1

8π

∫
T
nµnα (∇µrα)

√
|h|d3x

In the second line we have used the orthogonality relation nαrα = 0, due to the
spacelike character of rα. Since ε = 1 on T , by merging the integral 4.9 with
the remaining term of SB we arrive at

1
8π

∫
T
nµnα (∇µrα)

√
|h|d3x− 1

8π

∫
T
K
√
|h|d3x

= 1
8π

∫
T

(nµnν + gµν)∇µrν
√
|h|d3x (4.10)

To simplify the last integral of 4.9 we can introduce a foliation of T by the
two-surfaces St, each corresponding to the boundary of Σt:

St = ∂Σt
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By considering St as a two-hypersurface embedded in the three-dimensional
space Σt, we can define the (extended) extrinsic curvature tensor of St as

κij
.= −Dirj + riDrrj (4.11)

where i, j refer to the coordinates of Σt and ri is the normal to St. This is
analogous to the defining relation of Kµν (equation 2.31) except for a sign, due
to ε = 1. Contracting κij with the induced metric hij gives the scalar curvature:

κ
.= κijh

ij = −hijDirj = −Dir
i (4.12)

In addition, we can form the four-dimensional tensor κµν by extending κij as
we did with Kµν . We therefore proceed using the relations presented in section
2.2 and substitute the connection D with ∇. In particular, applying equation
2.25 results in

κ = −Dµr
µ = −gµν(δαµ + nαnµ)(δβν + nβnν)∇αrβ

= −∇αrα − nαnβ∇αrβ = −
(
gαβ + nαnβ

)
∇αrβ (4.13)

We see that the integral 4.10 contains precisely κ with the opposite sign. Also,
in analogy with the relation 3.14 between the determinants γ and g, h can be
rewritten as the product of the lapse function N and the determinant σ of the
induced metric on St: √

|h| = N
√
σ (4.14)

By virtue of these results, we are now in the position to rewrite the total bound-
ary term of S as a surface integral on St:

SB = − 1
8π

∫ t2

t1

dt
∮
St

κN
√
σ d2x (4.15)

The nondynamical term S0 can be equally rewritten in terms of κ0, the extrinsic
curvature of St embedded in flat space. Therefore, the gravitational action in
3+1 formalism becomes

SG = 1
16π

∫ t2

t1

dt
[∫

Σt

(
R−K2 +KijKij

)
N
√
γ d3x

− 2
∮
St

(κ− κ0)N
√
σ d2x

]
(4.16)

4.2 The Hamiltonian formalism
Having set most of the mathematical background of the theory, the time is now
ripe to undertake the dissertation of the Hamiltonian formalism. In particular,
we shall focus on the vacuum case, thus ignoring the matter contribution SM and
considering the action S = SG. In order to follow the ADM notation, from now
forth we shall suppress the immaterial multiplicative constant (16π)−1 contained
in the action 4.16.
The first fundamental observation is that S depends on γij , γ̇ij , the lapse and
shift functions N,N i and their spatial derivatives. Since the time derivatives
of N,N i do not appear in the action integral, the lapse and shift functions,
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despite being four configuration variables, do not belong to the set of dynamical
variables. Indeed, we will prove that N and N i act as four Lagrange multipliers,
each giving rise to a constraint equation. Let us denote with L the gravitational
Lagrangian:

L =
∫

Σt

(
R−K2 +KijKij

)
N
√
γ d3x− 2

∮
St

(κ− κ0)N
√
σ d2x (4.17)

The first integral is the volume part of L, which we label as L0. The corre-
sponding Lagrangian density is:

L0 =
(
R−K2 +KijKij

)
N
√
γ (4.18)

In Hamiltonian mechanics, each configuration variable q is associated with a
canonically conjugate momentum p, given by the partial derivative of the La-
grangian with respect to q̇. Similarly, the canonical momentum density π is
defined as

π
.= ∂L
∂q̇

(4.19)

The Hamiltonian density H is then recovered by performing the Legendre trans-
formation of L, with π as the dual variables:

H .=
∑
q

πq̇ − L

Due to the aforementioned absence of Ṅ and Ṅ i in 4.17, the corresponding
momenta πN and πNi vanish:

πN
.= ∂L
∂Ṅ

= 0 πNi
.= ∂L
∂Ṅ i

= 0 (4.20)

Therefore, we are left with the six independent momenta πij conjugate to the
components of γij :

πij
.= ∂L
∂γ̇ij

(4.21)

In order to find the explicit expression of πij , we first notice that the boundary
term of the Lagrangian 4.17 is independent of the time derivative γ̇ij . Thus we
only need to evaluate the following partial derivatives

∂R

∂γ̇ij
= 0 ∂Krs

∂γ̇ij
= − 1

2N δirδ
j
s (4.22)

which follow from the absence of γ̇ij in the three-dimensional scalar curvature
R and from the explicit form of Kij , given by equation 3.57. Combining these
results, we obtain:

πij = −
√
γ

2 (γrkγsl − γrsγkl)(δirδjsKkl + δikδ
j
lKrs)

= −
√
γ

2 (2Kij − 2γijK) = √γ (Kγij −Kij) (4.23)

Notice that πij is a contravariant tensor density of weight 1, inasmuch √γ W
enters the expression with W = 1. The covariant version πij is recovered by
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lowering the indices of πij with the metric γij . In the 1962 article by Arnowitt,
Deser and Misner (Ref. [4]), the momenta πij are presented in another equiv-
alent form, which in our case stems from equation 2.17 and from the relation√
−g = N

√
γ :

πij =
√
−g
(

4Γ0
pq − 4Γ0

klγ
klγpq

)
γipγjq (4.24)

We may also dispense with Kij and K by resorting to equation 3.57 and raising
the indices:

πij =
√
γ

2N
[
2γijDkN

k −DiN j −DjN i + (γikγjl − γijγkl)γ̇kl
]

(4.25)

Conversely, since the Hamiltonian is a functional of the configuration variables
and their conjugate momenta, we shall rewrite the extrinsic curvature tensor
and γ̇ij as functions of γij and πij . To this end, let us compute the trace of πij :

π
.= γijπ

ij = 2√γ K (4.26)

We then combine 4.23 and 4.26 to obtain the desired inversion:

Kij = 1
2√γ (πγij − 2πij) (4.27)

K = π

2√γ (4.28)

γ̇ij = DiNj +DjNi −
N
√
γ

(πγij − 2πij) (4.29)

This allows to rewrite the volume part L0 of the Lagrangian density as a function
of the canonical variables:

L0 = N
√
γ R+ N

√
γ

(
πijπij −

1
2π

2
)

(4.30)

We denote by H0 the Hamiltonian density corresponding to L0, namely H0
.=

πij γ̇ij − L0. By means of equations 4.29 and 4.30 we can replace γ̇ij and L0,
thus arriving at

H0 = 2πijDiNj −N
√
γ R+ N

√
γ

(
πijπ

ij − π2

2

)
(4.31)

= 2Di

(
πijNj

)
− 2NjDiπ

ij −N√γ R+ N
√
γ

(
πijπ

ij − π2

2

)
where Diπ

ij is the covariant derivative of a tensor density, whose definition is
given in Appendix (section 6.1.2). The total Hamiltonian H is recovered by
combining the integral of H0 over Σt with the contribution of κ− κ0 computed
in section 4.1.1:

H =
∫

Σt

H0 d3x + 2
∮
St

(κ− κ0)N
√
σ d2x (4.32)

Let HΣ and HS denote respectively the volume and boundary parts of H, such
that H .= HΣ + HS . Since the divergence 2Di

(
πijNj

)
contained in H0 gives

rise to a surface integral, it must be added to HS , leaving only the true volume
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terms in HΣ:

HΣ =
∫

Σt

[
−2NjDiπ

ij −N√γ R+ N
√
γ

(
πijπ

ij − π2

2

)]
d3x (4.33)

HS = 2
∮
St

[
N (κ− κ0) +Ni

πij
√
γ
rj

]√
σ d2x (4.34)

We shall rewrite HΣ following the ADM notation, with the aim to emphasize
the role of N and N i. If we define the quantities

R0 = −√γ R− 1
√
γ

(
π2

2 − π
ijπij

)
(4.35)

Ri = −2Djπ
ij (4.36)

we immediately see that the volume term takes on the simple form:

HΣ =
∫

Σt

[
NR0 +NiR

i
]
d3x (4.37)

or equivalently
HΣ =

∫
Σt

NµR
µd3x (4.38)

where we adopted the notation N = N0. The peculiar expression of HΣ suggests
that the lapse and shift functions behave as Lagrangian multipliers. In the
following sections we will prove that this is the case, thus showing that HΣ
vanishes identically. Indeed, demanding SG to be stationary originates four
constraint equations, which force R0 and Ri to be zero.

4.3 Parametric form of the canonical equations
In order to proceed with our analysis, we shall introduce the notion of para-
metric form of the canonical equations (following Ref. [15]). Let us consider for
simplicity the action of a system with a finite number M of degrees of freedom:

S =
∫ t2

t1

dt L(q, q̇, t) =
∫ t2

t1

dt
(

M∑
k=1

pkq̇k −H(p, q, t)
)

(4.39)

The time t is singled out from the configuration variables of the system since it is
the only coordinate lacking the definition of a conjugate momentum. However,
this asymmetry can be circumvented by the introduction of a new arbitrary
parameter τ , which allows the promotion of t to the set of dynamical variables
together with its conjugate momentum pt. Indeed, if we make the notational
change t = qM+1 and let the configuration variables {qk}M+1

k=1 become func-
tions of τ , by direct substitution into 4.39 we obtain the so called action in
parameterized form:

S̃ =
∫ τ2

τ1

dτ L̃
(
q1, . . . , qM+1; q′1, . . . , q′M+1

)
(4.40)
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where the derivative with respect to τ is denoted by a prime. The modified
Lagrangian L̃ is related to L through the equation

L̃
(
q1, . . . , qM+1; q′1, . . . , q′M+1

)
= L

(
q1, . . . , qM+1; q′1

q′M+1
, . . . ,

q′M
q′M+1

)
q′M+1

Consequently, the momentum pt = pM+1 associated to the time t = qM+1 can
be defined with the standard procedure, and it turns out to be just negative the
Hamiltonian H:

pM+1
.= ∂L̃

∂q′M+1
= L−

(
M∑
k=1

∂L

∂q̇k

q′k
(q′M+1)2

)
q′M+1

= L−
M∑
k=1

pkq̇k = −H (4.41)

Therefore qM+1 and pM+1 belong to the new 2M + 2-dimensional phase space.
Let us now focus on a remarkable property of the Lagrangian L̃, namely that
of being a homogeneous function of the first order in the variables q′1, . . . , q′M+1.
If we compute the partial derivatives of L̃ with respect to q′k, namely

∂L̃

∂q′k
= ∂L

∂q̇k

∂L̃

∂q′M+1
= L̃− q̇k

∂L

∂q̇k

then we see that the following relation holds:
M+1∑
k=1

∂L̃

∂q′k
q′k = L̃ (4.42)

This in turn allows to prove our claim by applying Euler’s theorem on homo-
geneous functions. Once the partial derivatives in equation 4.42 are replaced
with the M + 1 momenta pk, we are in the position to show that the action in
parameterized form becomes

S̃ =
∫ τ2

τ1

dτ
(
M+1∑
k=1

pkq
′
k

)
(4.43)

while the Hamiltonian H̃ of the extended system vanishes identically:

H̃
.=
M+1∑
k=1

pkq
′
k − L̃ = 0 (4.44)

This striking feature motivates our interlude on the parameterized form, since
the volume term HΣ (equation 4.38) falls into this category. In particular, we
can recast the parameterized action 4.43 in an enlightening form by resorting
to the Lagrangian multiplier method. Since the equation pM+1 = −H (4.41)
acts as a constraint on pM+1, there must exist a relation between the M + 1
conjugate momenta which impairs the independence of the canonical variables.
This constraint can be explicitly stated in the action integral by means of an
auxiliary function

C(q1, . . . , qM+1; p1, . . . , pM+1) = pM+1 +H (4.45)
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and a Lagrangian multiplier λ = λ(τ), which remains unspecified due to the
arbitrariness of τ . Hence the parameterized action becomes

S̃ =
∫ τ2

τ1

dτ
(
M+1∑
k=1

pkq
′
k − λC

)
(4.46)

Independent variations of λ and qk give respectively the constraint equation
C = 0 (equivalent to the identity 4.41) and the M + 1 canonical equations of
motion, showing that the action 4.46 retains the full informative content of the
original system. Moreover, since L̃ and C do not depend directly on τ , the
extended system is conservative, regardless of the nature of L.
The above process can be generalized to the case of a field theory with M
degrees of freedom by introducing four new external parameters τµ and just
as many configuration variables qM+1+µ = xµ(τα), together with their respec-
tive momenta pM+1+µ. The additional four constraint equations Cµ = 0 and
Lagrangian multipliers λµ(τα) are required to relate pM+1, . . . , pM+4 with the
Hamiltonian and momentum densities of the field. The relevance of the param-
eter formalism lies in the possibility to reverse this process via the “reduction”
of the parameterized action S̃ to the canonical form. This consists in the specifi-
cation of coordinate conditions (which fix the arbitrary parameters τµ) followed
by the insertion of the constraint equations into S̃. The reduced action will
then reveal the intrinsic degrees of freedom of the system. Indeed, the volume
term LΣ of the Lagrangian (which stems from the Hamiltonian HΣ, equation
4.38) appears in the guise of a parameterized form Lagrangian, with Nµ and Rµ
respectively in the role of Lagrange multipliers and constraints:

LΣ
.= πij γ̇ij −HΣ = πij γ̇ij −NµRµ (4.47)

By implication, our aim is to prove that Nµ truly behave as Lagrange multipliers
when the variation of the action is considered.

4.3.1 Variation of the lapse function
Let us return to the gravitational action 4.16 (ignoring the immaterial constant
factor (16π)−1), here reproduced for convenience:

SG =
∫ t2

t1

dt
[∫

Σt

(
R−K2 +KijKij

)
N
√
γ d3x− 2

∮
St

(κ− κ0)N
√
σ d2x

]

Recalling the definitions given in section 1.1, we demand the variation δN to
vanish on the boundary. This implies that we can safely ignore the surface
integral over St, due to the absence of derivatives of N . By resorting to relation
3.57, the variation of the volume term is straightforward:

δS
δN

= √γ
(
R−K2 +KijKij

)
+N
√
γ

(
− 2
N

)(
−K2 +KijKij

)
= √γ

(
R+K2 −KijKij

)
(4.48)

The action is then extremized by setting equation 4.48 to zero. This gives the
Hamiltonian constraint 3.50 in the vacuum case, namely when E = 0. The
replacement of Kij with the conjugate momenta (using 4.26 and 4.27) leads to
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the relation
R0 = 0 (4.49)

which shows that N is truly a Lagrangian multiplier, as R0 is not affected by
the variation of N .

4.3.2 Variation of the shift functions
The subsequent variation with respect to the shift functions involves some sub-
tleties, due to the presence of the covariant derivatives DiNj in the extrinsic cur-
vature tensor. Therefore, we begin this proof by explicitly considering a smooth
one-parameter family (Ni)λ of shift functions. By evaluating the derivative with
respect to λ of the volume term of SG we obtain:

dS
dλ

∣∣∣∣
λ=0

= d
dλ

∣∣∣∣
λ=0

∫ t2

t1

dt
∫

Σt

[
R−K2 +KijKij

]
N
√
γ d3x

= 2
∫ t2

t1

dt
∫

Σt

N
√
γ
(
−Kγij +Kij

) dKij

dλ

∣∣∣∣
λ=0

d3x

= −2
∫ t2

t1

dt
∫

Σt

πijDi

(
dNj
dλ

∣∣∣∣
λ=0

)
d3x

In the passage from the second to the third line we recognized the expression
4.23 of the conjugate momenta πij and substituted it with the identity 3.57,
exploiting the symmetry of Kij . Recalling the definition of covariant derivative
of a tensor density, we rewrite the integrand as

πijDi

(
dNj
dλ

∣∣∣∣
λ=0

)
= Di

(
πij

dNj
dλ

∣∣∣∣
λ=0

)
−
(
Diπ

ij
) dNj

dλ

∣∣∣∣
λ=0

Upon substitution in the integral (resorting to the definition of δNi), the diver-
gence can be reduced to a boundary term:

dS
dλ

∣∣∣∣
λ=0

= 2
∫ t2

t1

dt
∫

Σt

(
Diπ

ij
)
δNj d3x

− 2
∫ t2

t1

dt
∮
St

πij
√
γ
ri δNj

√
σ d2x

The surface integral vanishes as δNi = 0 on the boundary. Hence we can
discard this term and demand SG to be stationary, using the notion of functional
derivative 1.7

δS
δNj

= 2Diπ
ij = 0

thereby leading to the three constraint equations:

Ri = 0 (4.50)

These correspond to the momentum constraints 3.53 in the vacuum, with pi = 0.
Together with 4.49, they constitute the aforementioned four constraint equations
of the system. This result concludes the proof and implies that the volume term
HΣ (4.38) vanishes identically when the constraints are imposed:

HΣ = 0 (4.51)
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It is worth to emphasize that these conditions do by no means imply that HS

must vanish. In fact, in section 5.1 we will discuss the relation between the
value of HS in an asymptotically flat spacetime and a notion of energy of the
system, which is in general different from zero.

4.4 Hamilton’s equations
We are now in the position to determine the twelve Hamilton equations which
describe the time evolution of the canonical variables γij and πij :

γ̇ij = δH

δπij
(4.52)

π̇ij = − δH
δγij

(4.53)

To this end, we rewrite the total gravitational action SG (equation 4.16) in
terms of the canonical variables, preserving only the term πij γ̇ij :

SG =
∫ t2

t1

dt
∫

Σt

(
πij γ̇ij −H

)
d3x

=
∫ t2

t1

dt
∫

Σt

[
πij γ̇ij + 2NjDiπ

ij +N
√
γ R− N

√
γ

(
πijπ

ij − π2

2

)]
d3x

− 2
∫ t2

t1

dt
∮
St

[
N (κ− κ0) +Ni

πij
√
γ
rj

]√
σ d2x (4.54)

We require that the variation of the configuration variables vanishes on the
boundary St = ∂Σt, namely:

δN |St
= δNi|St

= δγij |St
= 0 (4.55)

However, we shall by no means impose restrictions on the conjugate momenta,
which are treated as independent variables. In agreement with this, the variation
of H with respect to N and Ni is equivalent (up to an immaterial overall sign)
to the variation of the Lagrangian performed in sections 4.3.1 and 4.3.2, which
led to the four constraint equations 4.49 and 4.50. Instead, the variations of γij
and πij require a more laborious analysis, that we carry on separately in the
following paragraphs.

4.4.1 Variation of the conjugate momenta
We start from the second set of equations 4.53, which are recovered by setting
to zero the variation with respect to πij of SG. In particular, we first consider
the second term from the volume integral of 4.54:

P .=
∫ t2

t1

dt
∫

Σt

(
2NjDiπ

ij
)

d3x

= 2
∫ t2

t1

dt
∫

Σt

[
Di

(
Njπ

ij
)
− πijDiNj

]
d3x (4.56)



4.4. HAMILTON’S EQUATIONS 37

We now transform the total covariant derivative in a divergence and then apply
Stokes’ theorem:

P = 2
∫ t2

t1

dt
∮
St

Ni
πij
√
γ
rj
√
σ d2x− 2

∫ t2

t1

dt
∫

Σt

πijDiNj d3x

The first integral of P cancels out the last part of the boundary term of SG,
thereby leaving only a surface integral which is independent of πij . Accordingly,
the variation of SG reduces to:

δπSG =
∫ t2

t1

dt
∫

Σt

δπij
[
γ̇ij − 2DiNj −

N
√
γ

(2πij − πγij)
]

d3x

The stationarity of SG and the arbitrariness of δπij force the argument of the
first integral to vanish. In order to perform the functional derivative and sup-
press δπij , we shall replace 2DiNj with its symmetrization DiNj+DjNi. Hence
we obtain the relation

δSG
δπij

= γ̇ij −DiNj −DjNi −
N
√
γ

(2πij − πγij) = 0 (4.57)

or equivalently

γ̇ij = δH

δπij
= DiNj +DjNi −

N
√
γ

(2πij − πγij) (4.58)

By replacing πij and its trace with the extrinsic curvature Kij , equation 4.58
becomes

γ̇ij = DiNj +DjNi − 2NKij

We see that the variation of πij produces the relation 3.57, which fixes the
time evolution of the three-dimensional metric by means of the lapse and shift
functions.

4.4.2 Variation of the metric
This variation is more involved than the previous one, thus we shall proceed
gradually. Firstly, we consider the variation of the volume term of the Hamil-
tonian density HΣ:

δγHΣ = δγ

[
−2NjDiπ

ij −N√γ R+ N
√
γ

(
πijπ

ij − π2

2

)]
(4.59)

We recall that the variation of γ follows from Jacobi’s formula

δγ = γγabδγab (4.60)

while the computation of the last term in parentheses is straightforward:

δγ

(
πijπ

ij − π2

2

)
=
(
2πaiπib − ππab

)
δγab (4.61)

For the variation of N√γ R we need the relations presented in sections 6.2.2
and 6.2.3 of the Appendix, which we already encountered in chapter 1. If we
denote the three-dimensional contravariant Einstein tensor by Gab, we obtain

δ
[
−N√γ R

]
= N
√
γ

(
Rab − 1

2γ
abR

)
δγab −N

√
γ DaδV

a
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= N
√
γ Gabδγab +√γ δV aDaN −

√
γ Da (NδV a) (4.62)

In order to lighten the computations, we introduce the two quantities

δB1
.= −2δγDi

(
πijNj

)
δB2

.= −Da

(
2πabN cδγbc − πbcNaδγbc

)
Thanks to this, we now express the variation of the first term of 4.59 as

δγ
(
−2NjDiπ

ij
)

= 2δγ
(
πijDiNj

)
+ δB1 (4.63)

Using the relation 6.21 from the Appendix, we can rewrite 2δγ
(
πijDiNj

)
in

terms of δγij and δB2:

δγ
(
2πijDiNj

)
= −2πijNaδΓaij = −2πijNa

(
γabDiδγjb −

1
2γ

abDbδγij

)
= Da

(
2πabN c − πbcNa

)
δγbc + δB2 (4.64)

By virtue of the three constraints 4.50, namely Diπ
ij = 0, the previous equation

turns into

δγ
(
2πijDiNj

)
=
(
2πabDaN

c − πbcDaN
a
)
δγbc + δB2 (4.65)

Combining equations 4.60 to 4.65, the variation δγ HΣ becomes

δγHΣ =
(
2πabDaN

c − πbcDaN
a
)
δγbc +N

√
γ Gabδγab

+ N
√
γ

[
−1

2

(
πcdπ

cd − π2

2

)
γab + 2πacπbc − ππab

]
δγab

+ δB1 + δB2 +√γ δV aDaN (4.66)

The variation of HΣ is recovered by integrating δγHΣ over the hypersurface
Σt. In particular, the three terms from the last line of equation 4.66 give rise
to a surface integral, which we denote by δB. However, since the integral of
δB1 + δB2 does not include any derivative of δγab and δγab|St

= 0, the only
non-vanishing boundary contribution is given by

δB
.=
∫

Σt

(
δB1 + δB2 +√γ δV aDaN

)
d3x = −

∮
St

NδV ara
√
σ d2x (4.67)

By virtue of the argument used in section 2.4.1 and of the relation 6.25 applied to
the three-dimensional case, we can show succinctly that the contraction δV ara
in 4.67 reduces to

δV ara = −σbcδγbc,ara = −2σbcDbrc = 2κ (4.68)

where σab = rarb + γab is the induced metric on St extended to Σt. Comparing
the variation of HS (equation 4.34) with 4.67, we see that δB + δγHS vanishes:

δγHS = 2
∮
St

Nδκ
√
σ d2x = − δB (4.69)

This implies that the variation of H comes down to the remaining terms of HΣ
and we can safely ignore HS . We now recast the product δV aDaN contained
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in the first line of equation 4.66 in a convenient form (using the relation 6.26
from the Appendix):

δV aDaN = γabγcd (Daδγbc −Dcδγab)DdN

= Da

[(
γabDcN − γbcDaN

)
δγbc

]
−
(
DaDbN − γabDcD

cN
)
δγab

Another integration by parts allows to displace the divergence due to the re-
striction δγab|St

= 0. Thus we get

δV aDaN = −
(
DaDbN − γabDcD

cN
)
δγab (4.70)

Finally, after the symmetrization of the indices a and b in 2πbcNa, the combi-
nation of equations 4.66 to 4.70 lead to

δH
δγab

= Dc

(
πacN b + πbcNa − πabN c

)
+N
√
γ

(
Rab − 1

2γ
abR

)
−√γ

(
DaDbN − γabDcD

cN
)
− N

2√γ

(
πcdπ

cd − 1
2π

2
)
γab

+ 2N
√
γ

(
πacπ

bc − 1
2ππ

ab

)
(4.71)

By definition, the equations of motion are recovered by demanding the action
to be stationary. Integrating by parts the product πij γ̇ij with respect to the
time coordinate results in

δSG = δγ

∫ t2

t1

dt
∫

Σt

(
πij γ̇ij −H

)
d3x

= −
∫ t2

t1

dt
[∫

Σt

δγij

(
π̇ij + δH

δγij

)
d3x

]
= 0 (4.72)

Thanks to the arbitrariness of δγij , this variation provides the second set of
Hamilton equations:

π̇ij = − δH
δγij

(4.73)

It is worth to summarize the main results of the previous chapters, namely the
four constraints 4.49, 4.50 and Hamilton’s equations 4.58 for γ̇ij , together with
the explicit form of 4.73:

R0 = −√γ R− 1
√
γ

(π2

2 − π
ijπij

)
= 0 (4.74)

Ri = −2Djπ
ij = 0 (4.75)

γ̇ij = DiNj +DjNi −
N
√
γ

(2πij − πγij) (4.76)

π̇ij = −N√γ
(
Rij − 1

2γ
ijR

)
+ N

2√γ

(
πcdπ

cd − π2

2

)
γij

− 2N
√
γ

(
πicπ j

c −
1
2ππ

ij

)
+√γ

(
DiDjN − γijDcD

cN
)

+Dc

(
πijN c

)
− πicDcN

j − πjcDcN
i (4.77)
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4.5 Poisson brackets
In classical Hamiltonian mechanics, given two differentiable functions f(qk, pk, t)
and g(qk, pk, t) of the canonical variables qk, pk, with k ∈ {1, . . . ,M}, the
Poisson bracket of f and g is defined as the function

{f, g} =
M∑
k=1

(
∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

)
(4.78)

Therefore the Poisson bracket can be considered as a bilinear, anticommutative
binary operation acting on the space of functions which depend on the phase
space and time. Also, for any three functions f, g, h of this kind, it satisfies the
equations

{fg, h} = f{g, h}+ {f, h}g (4.79)
{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (4.80)

called respectively the Leibniz’s rule and the Jacobi identity. By virtue of this
definition, Hamilton’s equations of motion can be rewritten as

q̇k = ∂H

∂pk
= {qk, H} (4.81)

ṗk = −∂H
∂qk

= {pk, H} (4.82)

and, in general, the time evolution of any function f(qk, pk, t) is determined by
df
dt = {f,H}+ ∂f

∂t
(4.83)

The Poisson bracket for a field theory can be defined by analogy with equation
4.83. In fact, by considering the total time derivative of a differentiable function
f = f(γij , πij , t) we obtain

df
dt = δf

δγij
γ̇ij + δf

δπij
π̇ij + ∂f

∂t

= δf

δγij

δH
δπij

− δf

δπij
δH
δγij

+ ∂f

∂t
(4.84)

which can be recast in the familiar form 4.83 if we introduce the Poisson bracket

{f, g} .= δf

δγij

δg

δπij
− δf

δπij
δg

δγij
(4.85)

By virtue of this definition we can compute the fundamental Poisson brackets
among the canonical variables of the system:

{γij , γkl} = 0
{πij , πkl} = 0
{γij , πkl} = δ ki δ

l
j

(4.86)

These are closely related to the ones which arise in classical mechanics. How-
ever, since the canonical coordinates γij and πij are subject to the constraints
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Rµ = 0, the relations 4.86 do not represent a minimal set of Poisson brack-
ets between unconstrained variables. As we mentioned at the beginning of the
chapter, a full treatment of this issue is given in Ref. [4]. In section 4 of this
article, in fact, the generating functions arising from the parameterized-form
Lagrangian 4.47 and the linearized theory are considered. This analysis leads
to the choice of four coordinate conditions, which together with the four con-
straint equations allow to eliminate the extra variables of the system. It should
be emphasized that the canonical form is not unique, as in addition to the usual
canonical transformations there exists a general class of coordinate conditions
which produce different canonical variables. This arbitrariness can be exploited
to recast the dynamical equations in a suitable form, according to the particular
aspect of the theory to be investigated.

4.6 Reintroduction of the cosmological constant
In this section we consider the effects on the main results of our discussion
due to the reintroduction of the cosmological constant Λ. We recall that if we
restore momentarily the constants G, c, the Einstein field equations with Λ 6= 0
are given by

4Rµν −
1
2gµν

4R+ Λgµν = 8πG
c4

Tµν

In order to account for the term Λgµν , we shall introduce a new contribution
SΛ to the gravitational action, depending only on the metric density √−g:

SΛ
.=
∫
V

(−2Λ)
√
−g d4x (4.87)

It is a trivial task to show that the variation of 4.87 with respect to the inverse
metric gµν gives

δSΛ
δgµν

= −2Λ
(
−1

2
√
−g gµν

)
= Λgµν

√
−g (4.88)

Eventually, adding this term to the overall variation of S (equation 1.22) and
gathering √−g leads to the correct field equations. Therefore, the gravitational
part of the action in four-dimensional formalism takes the form

SG = SH + SΛ + SB − S0

= c4

16πG

[∫
V

(4R− 2Λ
)√
−g d4x− 2

∮
∂V
ε (K −K0)

√
|h|d3x

]
(4.89)

while the total action is recovered by adding SG to the matter term (equation
1.11), namely

S = SG +
∫
V
LM
√
−g d4x (4.90)

Hereafter we will discard the matter contribution and return to the units G =
c = 1, adopted throughout the preceding discussion. In addition, we drop the
multiplicative constant (16π)−1, in agreement with the ADM notation. Since
the 3+1 decomposition of the spacetime manifold can be implemented in SΛ via
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the straightforward substitution√−g = N
√
γ (equation 3.14), the gravitational

Lagrangian 4.17 becomes

L =
∫

Σt

(
R− 2Λ−K2 +KijKij

)
N
√
γ d3x− 2

∮
St

(κ− κ0)N
√
σ d2x (4.91)

We now move on to the Hamiltonian formalism. The introduction of SΛ leaves
the conjugate momenta unchanged, as it is independent of the time derivatives
γ̇ij . Hence the volume and boundary terms of the Hamiltonian can be computed
without effort, leading to

HΣ =
∫

Σt

[
−2NjDiπ

ij −N√γ (R− 2Λ) + N
√
γ

(
πijπ

ij − π2

2

)]
d3x (4.92)

HS = 2
∮
St

[
N (κ− κ0) +Ni

πij
√
γ
rj

]√
σ d2x (4.93)

We notice that Λ always reveals itself as the “notational change” R −→ (R− 2Λ)
involving only the scalar curvature. Indeed, due to the simplicity of SΛ, this
holds true also for the derivation of the constraint equations

R0 = −√γ (R− 2Λ)− 1
√
γ

(π2

2 − π
ijπij

)
= 0 (4.94)

Ri = −2Djπ
ij = 0 (4.95)

as well as for Hamilton’s equations, among which the first set (referring to γ̇ij)
is unaltered:

γ̇ij = DiNj +DjNi −
N
√
γ

(2πij − πγij) (4.96)

π̇ij = −N√γ
[
Rij − 1

2γ
ij (R− 2Λ)

]
+ N

2√γ

(
πcdπ

cd − π2

2

)
γij

− 2N
√
γ

(
πicπ j

c −
1
2ππ

ij

)
+√γ

(
DiDjN − γijDcD

cN
)

+Dc

(
πijN c

)
− πicDcN

j − πjcDcN
i (4.97)

In conclusion, the reintroduction of Λ has no effect on the definition of πij and
thus only slightly alters the main results of the Hamiltonian formulation. In
particular, since SΛ does not give rise to divergences, the boundary terms of
both the Lagrangian and the Hamiltonian are unaffected by this change.



Chapter 5

Conclusion

The ADM Hamiltonian formalism here discussed provides an essential contribu-
tion to the path towards the quantization of general relativity. Indeed, when the
unconstrained canonical variables γij , πij of the system are identified, we can
promote them to the corresponding quantum operators γ̂ij , π̂ij . Accordingly,
once the fundamental Poisson brackets are defined, the canonical commutation
relations are readily recovered:

{γij , γkl} = 0 −→
[
γ̂ij , γ̂kl

]
= 0

{πij , πkl} = 0 −→
[
π̂ij , π̂kl

]
= 0

{γij , πkl} = δ ki δ
l
j −→

[
γ̂ij , π̂

kl
]

= i~ δ ki δ l
j

(5.1)

Therefore, the Poisson bracket of any two functions A and B turns into the
commutator between Â and B̂

{A,B} −→ 1
i~

[Â, B̂] (5.2)

The next step requires the introduction of a wave functional Ψ[γab] defined on
the space of field configurations γab. If we adopt the Dirac notation, we can
characterize the action of γ̂ij and π̂ ij on the state |Ψ〉:

γ̂ij |Ψ〉
.= γijΨ[γab] (5.3)

π̂ ij |Ψ〉 .= −i~ δ

δγij
Ψ[γab] (5.4)

Consequently, the constraints 4.94 and 4.95 (with Λ 6= 0) shall be rewritten as
a set of operator equations:

R̂0 |Ψ〉 .= −
[
√
γ (R− 2Λ) + 1

√
γ

(π2

2 − π
ijπij

)]
Ψ[γkl] = 0 (5.5)

R̂i |Ψ〉 .= −2Djπ
ij Ψ[γkl] = 0 (5.6)

Using the representation 5.4 of the momentum operators π̂ ij , we arrive at[
√
γ (R− 2Λ)− ~2

√
γ

(
1
2γabγcd − γacγbd

)
δ

δγab

δ

δγcd

]
Ψ[γkl] = 0 (5.7)
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2Dj
δ

δγij
Ψ[γkl] = 0 (5.8)

The operator equation 5.7 is called the Wheeler-DeWitt equation (WDW). This
remarkable result was first obtained by Bruce DeWitt and John Wheeler in 1967
(Ref. [13]) shortly after Asher Peres published its Hamilton-Jacobi equation of
general relativity. Albeit being tainted by a not negligible issue of ill-definedness,
the WDW equation constitutes a major step in general relativity and provided
new blood in the quest for a theory of quantum gravity.
These results, however, do not exhaust the relevance of the 3+1 formalism. In-
deed, the ADM approach is just one among the many related 3+1 formulations
which initiated the field of numerical relativity, devoted to the search for ap-
proximate solutions to the Einstein equations. In particular, we mention the
BSSN scheme (or “conformal ADM”), originated from the ADM one by the
addition of extra variables, whose main quality lies in an enhanced stability of
the simulations over time.
We conclude our discussion with a brief analysis of the notions of total energy
and momentum, restricted to a specific class of spacetimes. These naturally
stem from the evaluation of H at spatial infinity after an appropriate choice of
lapse and shift.

5.1 ADM mass and momentum
Let us return to the full Hamiltonian 4.32, with the multiplicative constant
(16π)−1 restored, given by:

H = 1
16π

∫
Σt

[
−2NjDiπ

ij −N√γ R+ N
√
γ

(
πijπ

ij − π2

2

)]
d3x

+ 1
8π

∮
St

[
N (κ− κ0) +Ni

πij
√
γ
rj

]√
σ d2x (5.9)

If we restrict our analysis to the fields γij and Kij satisfying the vacuum field
equations, the volume term HΣ (corresponding to the first line of 5.9) vanishes
and the only contribution to H is given by the boundary term:

H = 1
8π

∮
St

[
N (κ− κ0) +Ni

πij
√
γ
rj

]√
σ d2x (5.10)

We expect that with a suitable choice of N,N i this equation shall provide a
definition of total energy. However, in order to ensure that the value of H is
finite, we must impose further restrictions on the nature of the spacetime under
analysis.

Definition 5. Let (M, g) be a globally hyperbolic spacetime admitting a foli-
ation by the family {Σt}t∈R of spacelike hypersurfaces. This spacetime is said
to be asymptotically flat if and only if there exists on each Σt a background
metric fij such that:

1. fij is flat, i.e. the Riemann tensor Rijkl associated to fij is identically
zero, except on a compact domain C ⊂ Σt;
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2. given a coordinate system (yi) on Σt, fij = diag(1, 1, 1) outside C and
r
.=
√

(y1)2 + (y2)2 + (y3)2 is unbounded;

3. as r −→∞, the metric γij and its spatial derivatives exhibit the following
asymptotic behaviour:

γij = fij +O(r−1) (5.11)
∂γij
∂ya

= O(r−2) (5.12)

4. as r −→∞, the extrinsic curvature Kij and its spatial derivatives satisfy:

Kij = O(r−2) (5.13)
∂Kij

∂ya
= O(r−3) (5.14)

Let us consider a Lorentz reference frame (ξµ) in the asymptotic region of Σt. We
demand that this portion of Σt is described by the condition ξ0 = const. There-
fore, by denoting with (yi) the coordinates on Σt, we are able to introduce the
asymptotic relation yi = yi(ξj) between spatial coordinates and xµ = xµ(ξα).
An observer at rest in the Lorentz frame moves with four-velocity

uµ = ∂xµ

∂ξ0 (5.15)

as ξ0 corresponds to its proper time. Since uµuµ = −1 and uµ is orthogonal to
the surfaces ξ0 = const (or equivalently t = const), the following relation must
hold at spatial infinity:

nµ = uµ (5.16)
where nµ is the normal to the hypersurface Σt. Recalling the definition 3.6, we
can write:

(∂t)µ = Nnµ +N i (∂i)µ = Nuµ +N i ∂x
µ

∂yi
(5.17)

We see that setting N = 1 and N i = 0 allows to identify the vector ∂t tangent
to the curves yi = const with the four-velocity of the observer. This choice
provides a reasonable definition of energy of the system, called ADM mass,
given by the evaluation of the boundary term 5.10 at spatial infinity:

MADM
.= lim
St→∞

1
8π

∮
St

(κ− κ0)
√
σ d2x (5.18)

MADM is a conserved quantity, since it accounts for the total mass present on
Σt, even in the case of radiating systems.
Similarly, the choice

N = 0, N i = ∂yi

∂ξa
(5.19)

(with a fixed) produces a correspondence between ∂t and the spatial translations
along the coordinate curve of ξa. Consequently, using 5.19, the evaluation of
5.10 at spatial infinity provides the definition of ADM momentum:

PADMa
.= lim
St→∞

1
8π

∮
St

N irj (Kγij −Kij)
√
σ d2x (5.20)
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It can be proved that the set Pµ = (MADM , P1, P2, P3)µ behaves as a four-
dimensional one-form under the general coordinate transformations xµ = xµ(x′α)
which preserve the asymptotic flatness conditions (equations 5.11 - 5.14). At
this point, it seems that a definition of angular momentum naturally arises by
choosing the shift functions N i so as to identify ∂t with the spatial rotations.
However, it turns out that this procedure may impair the four-vector properties
of the ADM four-momentum Pµ. This issue can be fixed by adding stronger
conditions on γij and Kij to the asymptotic flatness conditions previously de-
fined (see Ref. [23] for a detailed analysis).
We shall say that although the definition of MADM provides a reasonable notion
of energy, it is not unique: there exist other relevant definitions of energy which
in general disagree with 5.18. For instance, in place of a spacelike boundary St,
we might take the limit to a null infinity by demanding the following conditions
to hold:

u
.= t− r = const (5.21)

v
.= t+ r −→∞ (5.22)

This approach gives rise to the Bondi-Sachs mass MBS , whose physical relevance
unveils in the analysis of radiating systems. Indeed, since the gravitational ra-
diation propagates along null geodesics, MBS cannot account for the radiation
loss (as St is now a null hypersurface, parallel to the direction of propagation)
and diminishes with increasing u, while MADM remains constant. It has been
shown that the rate of change of MBS with respect to the retarded time u cor-
responds to negative the outward flux of radiated energy.
An alternative definition of energy was given by Komar (1959) for stationary,
asymptotically flat spacetimes as the conserved quantity associated with time
translations. In addition, if the spacetime is axisymmetric, a similar procedure
provides a definition of angular momentum which is independent of the choice
of St.
We conclude this section by presenting an example of computation of ADM
mass, which endorses the reasonableness of this definition, followed by the eval-
uation of the ADM momentum.

5.1.1 Example: Schwarzschild spacetime with standard
coordinates

Let us consider a Schwarzschild spacetime described by the standard coordinates
(t, r, θ, φ):

gµνdx
µdxν = −

(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2dΩ (5.23)

where dΩ = dθ2+sin2θ dφ2 is the metric on the two-sphere. Using (r, θ, φ) as the
coordinates of each hypersurface Σt, the three-dimensional metric γij becomes

γij = diag
[(

1− 2m
r

)−1
, r2, r2 sin2θ

]
(5.24)
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Consequently, the six non-vanishing Christoffel symbols Γijk related to γij are

Γrrr = − m
r(r−2m) Γrθθ = − (r − 2m)

Γrφφ = − (r − 2m) sin2θ Γθrθ = 1
r

Γφrφ = 1
r Γφθφ = cot θ

(5.25)

The background metric, on the other hand, is given by the flat metric in standard
spherical coordinates (r, θ, φ):

fij = diag
(
1, r2, r2 sin2θ

)
(5.26)

Let us evaluate the scalar extrinsic curvature κ of St, embedded in the three-
dimensional hypersurface Σt, using equation 4.12, namely κ = −Din

i (we write
ni instead of ri to avoid confusion). Since the components of the normal unit
vector ni pointing outside St are

ni =
(√

r

r − 2m, 0, 0
)
i

=⇒ ni =
(√

r − 2m
r

, 0, 0
)i

(5.27)

we obtain

κ = −γij
(
∂inj − Γaijna

)
= −r − 2m

r
∂r

(√
r

r − 2m

)
+
√

r

r − 2m

[
−m
r2 − 2 r − 2m

r2

]
= −2

r

√
r − 2m
r

(5.28)

The scalar curvature κ0 referred to the embedding in a flat spacetime can be
effortlessly recovered by virtue of the relation κ0 = κ|m=0 (or equivalently by
using the Christoffel symbols associated to the background metric fij). Hence
we have

κ0 = −2
r

(5.29)

Let us identify the boundary St with a two-sphere of radius r. This implies that
the determinant σ of the induced metric on St is simply σ = r2 sin θ. We can
now evaluate MADM replacing these quantities in the integral 5.18 and taking
the limit:

MADM = 1
8π lim

St→∞

∮
St

(κ− κ0)
√
σ d2x

= − 1
4π lim

r→∞

∫ π

0
dθ

∫ 2π

0
dφ

1
r

(√
r − 2m
r

− 1
)
r2 sin θ

= − lim
r→∞

r

(√
r − 2m
r

− 1
)

= m (5.30)

This is the expected result for a spherically symmetric body of mass m.
Regarding the ADM momentum, the standard coordinates of the Schwarzschild
spacetime lead to the trivial result

PADMi = 0 (5.31)
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In order to prove this, we resort to the relations 2.17 and 3.16:

Kij = −∇jni = 4Γµijnµ = −N 4Γ0
ij (5.32)

This requires the computation of a subset of Christoffel symbols relative to the
four-dimensional metric gµν . In particular, the only non-zero term of the kind
4Γtµν is

4Γttr = 1
2∂r ln |gtt| =

m

r (r − 2m) (5.33)

Since all the Christoffel symbols with lower spatial indices vanish, the extrinsic
curvature tensor is nothing but zero:

Kij = 0 (5.34)

Consequently, replacing Kij in the integral 5.20 gives a null ADM momentum
and concludes the proof. The four-momentum of the Schwarzschild spacetime
in standard coordinates is thus represented by

Pµ = (m, 0, 0, 0)µ (5.35)



Chapter 6

Appendix

6.1 Definitions
6.1.1 Covariant derivative or connection
Let M be a differentiable manifold. A covariant derivative (or connection) ∇
is a map from the tensor fields of rank (r, s) to the tensor fields (r, s + 1) such
that:

1. ∇ is linear, namely ∇(T + S) = ∇T +∇S with T, S tensor fields of the
same rank.

2. ∇ (fT ) = df ⊗T +f∇T , where f is scalar field and df is the (0, 1) tensor
with components ∂µf .

3. given the bases {eµ} and {θµ} of the tangent and cotangent spaces T p(M),
T ∗p(M), it satisfies

∇eµ = Γαβµ θβ ⊗ eα (6.1)

where Γλµν are the connection coefficients.

In particular, ∇ is said to be a metric connection if given a metric gµν on M
the following relation holds:

∇gµν = 0 (6.2)

In this case, the connection coefficients Γλµν are called Christoffel symbols and
they are determined by the equation

Γλµν = 1
2 g

λα (gαν,µ + gµα,ν − gµν,α) (6.3)

6.1.2 Tensor density
The covariant derivative ∇ introduced in the previous section is a map from
tensors of rank (r, s) to (r, s + 1) tensors. However, in order to simplify the
calculations, we can extend its applicability to the class of tensor densities,
which are defined by

T α1...αr

β1...βs
=
√
|g|

W
Tα1...αr

β1...βs
(6.4)

49
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where Tα1...αr

β1...βs
is a tensor of type (r, s), g is the determinant of the metric

gµν and W is a real number, called the weight of the tensor density. The
covariant derivative of T α1...αr

β1...βs
is then a straightforward generalization of

the ordinary derivation:

∇µT α1...αr

β1...βs

.=
√
|g|

W
∇µ

[
T α1...αr

β1...βs√
|g|

W

]
=
√
|g|

W
∇µTα1...αr

β1...βs
(6.5)

6.1.3 Curvature tensors
The curvature of a manifold is completely determined by the Riemann curvature
tensor Rρσµν . We define it following the sign convention of MTW (Ref. [16]):

Rρσµν = Γρσν,µ − Γρσµ,ν + ΓρµλΓλσν − ΓρνλΓλσµ (6.6)

The Ricci tensor is given by the contraction of the first and third indices in 6.6:

Rµν = Rλµλν = 1√
|g|

∂λ

[√
|g|Γλµν

]
− ΓρµλΓλρν − ∂µ∂ν ln

√
|g| (6.7)

Finally, from the contraction of Rµν with the inverse metric gµν we obtain the
scalar curvature:

R = gµνRµν (6.8)

6.1.4 Lie derivative
Let M be a differentiable manifold. Given a regular vector field X = Xµ∂µ on
M and an open subset I ⊂ R, we define the integral curve of X by

αp : I −→ M (6.9)
s 7−→ αp(s) (6.10)

such that

αp(0) = p (6.11)

∀s0 ∈ I
dαp
ds

∣∣∣∣
s0

= α̇p(s0) = Xs0(αp) (6.12)

Let U ⊂ M be an open subset. Each integral curve is associated in a natural
way to the map

φXs : U −→ M (6.13)
p 7−→ αp(s) (6.14)

called the flow along X, such that

∀s0 ∈ I
dαp
ds

∣∣∣∣
s0

= α̇p(s0) = Xs0(αp) (6.15)

The flow φXs has the following properties:

1. φX0 (p) = αp(0) = p =⇒ φX0 = I

2. φXs ◦ φXt = φXs+t ∀ s, t ∈ R
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3. φXs is a diffeomorphism and [φXs ]−1 = φX−s

By means of this map, we can define the Lie derivative of a differentiable tensor
field T of rank (m,n) along X, evaluated at a point p, by

[LX(T )]p = d
ds

∣∣∣∣
s=0

[(
φX−s

)
∗ TφX

s (p)
]

(6.16)

which in components reads

[LX(T )]µ1...µm

ν1...νn
= Xλ∂λT

µ1...µm
ν1...νn

(6.17)
− Tλ...µm

ν1...νn
∂λX

µ1 − ...− Tµ1...λ
ν1...νn

∂λX
µm

+ Tµ1...µm

λ...νn
∂ν1X

λ + ...+ Tµ1...µm

ν1...λ
∂νnX

λ

If the connection ∇ is torsion-free, namely if the Christoffel symbols are sym-
metric in the last two indices

Γλµν = Γλνµ (6.18)

equation 6.17 can be rewritten by replacing the partial derivatives ∂µ with the
covariant counterparts ∇µ:

[LX(T )]µ1...µm

ν1...νn
= Xλ∇λTµ1...µm

ν1...νn
(6.19)

− Tλ...µm
ν1...νn

∇λXµ1 − ...− Tµ1...λ
ν1...νn

∇λXµm

+ Tµ1...µm

λ...νn
∇ν1X

λ + ...+ Tµ1...µm

ν1...λ
∇νnX

λ

The main properties of the Lie derivative easily follow from the definition and
from the component relation 6.17:

1. the Lie derivative of a tensor field T of rank (m,n) is a tensor field of rank
(m,n).

2. LX(T ) is linear both in X and in T .

3. the Lie derivative satisfies the Leibniz rule

LX(T ⊗ S) = LX(T )⊗ S + T ⊗ LX(S)

4. If f is a scalar field, LX(f) = X(f).

6.2 Variation with respect to the metric
6.2.1 Christoffel symbols
For the sake of brevity, we denote with θµν = δgµν the variation of the metric
gµν in part of the intermediate passages:

δΓλµν = 1
2 (δgλν,µ + δgµλ,ν − δgµν,λ)

= 1
2 (∇µθλν +∇νθµλ −∇λθµν)

+ 1
2

[
Γσµλθσν + Γσµνθλσ + Γσνµθσλ + Γσνλθµσ − Γσλµθσν − Γσλνθµσ

]
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= 1
2 (∇µδgλν +∇νδgµλ −∇λδgµν) + Γσµνδgσλ (6.20)

It follows that

δΓρµν = δgρλΓλµν + gρλδΓλµν

= −gρλΓσµνθσλ + 1
2 g

ρλ (∇µθλν +∇νθµλ −∇λθµν) + gρλΓσµνθσλ

= 1
2 g

ρλ (∇µδgλν +∇νδgµλ −∇λδgµν) (6.21)

We shall also consider the contracted version of 6.21:

δΓµµν = δgµλΓλµν + gµλδΓλµν

= −gαµgβλθαβΓλµν + gµλ
[

1
2 (∇µθλν +∇νθµλ −∇λθµν) + Γσµνθσλ

]
= −Γβµνgαµθαβ + 1

2g
λµ∇νθλµ + Γβµνgαµθαβ

= 1
2 g

λµ∇νδgλµ (6.22)

6.2.2 The vector δV ρ

Let us consider the vector

δV ρ
.= gµνδΓρµν − gρνδΓµµν (6.23)

which appears in the variation of R. This is equivalent to

δV ρ =
(
gµνδgρλ − gρνδgµλ

)
Γλµν +

(
gµνgρλ − gρνgµλ

)
δΓλµν (6.24)

We focus on the second product, which contains the variation δΓλµν , and we
adopt the notation θµν,λ = δgµν,λ:(
gµνgρλ − gρνgµλ

)
δΓλµν = 1

2

[ (
gµνgρλ − gρνgµλ

)
(δgλν,µ + δgµλ,ν − δgµν,λ)

]
= gµνgρλδgλµ,ν − gµνgρλδgµν,λ

It follows that

δV ρ =
(
gµνδgρλ − gρνδgµλ

)
Γλµν + gµνgρλ (δgλµ,ν − δgµν,λ) (6.25)

Using equations 6.21 and 6.22, we are able to rewrite δV ρ by introducing the
covariant derivatives of δgµν :

δV ρ = 1
2 g

µνgρλ
(
∇µδgλν +∇νδgµλ −∇λδgµν

)
− 1

2 g
ρνgλµ∇νδgλµ

= gµνgρλ
(
∇µδgλν −∇λδgµν

)
(6.26)

6.2.3 Curvature
Let us consider the variation δΓλµν of the Christoffel symbols induced by a
variation of the metric. Since δΓλµν is the difference of two connections, it is
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a tensor of rank (1, 2). By choosing a local inertial frame, we can make the
Christoffel symbols to vanish:

Γλµν
∗= 0 (6.27)

The sign ∗= emphasizes that the equality is valid in a Lorentz frame. By virtue
of equation 6.27 we can now express the variation of the Riemann curvature
tensor Rρσµν substituting the partial derivatives ∂µ with ∇µ:

δRρσµν
∗= δ
[
Γρσν,µ − Γρσµ,ν

] ∗= ∇µδΓρσν −∇νδΓρσµ (6.28)

The left-hand side is a tensorial quantity, which implies that the equality must
be valid in any reference frame. Hence replacing ∗= with = leads to the Palatini
identity:

δRρσµν = ∇µδΓρσν −∇νδΓρσµ (6.29)

and its contracted version, involving the Ricci curvature tensor:

δRµν = ∇λδΓλµν −∇µδΓλλν (6.30)

By virtue of the Palatini identity, we are able to perform a straightforward
computation of the variation δR:

δR = −Rµνδgµν + gµνδRµν

= −Rµνδgµν + gµν
[
∇λδΓλµν −∇µδΓλλν

]
= −Rµνδgµν +∇λδV λ (6.31)

where δV λ was defined in equation 6.23. Substituting the relation 6.26 we
obtain:

∇λδV λ = gµνgρλ∇ρ
(
∇µδgλν −∇λδgµν

)
= ∇µ∇νδgµν −∇λ∇λδ ln |g| (6.32)

Therefore we have

δR = −Rµνδgµν +∇µ∇νδgµν −∇λ∇λδ ln |g| (6.33)
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