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Introduction

The coexistence of General Relativity and Quantum Mechanics is one of the
biggest open problems in modern Physics. Both of them give high precision
prediction at different scales, but when one tries to quantize GR, the re-
sulting theory is not renormalizable and not well defined. There have been
many attempts to overcome these difficulties, such as String theory, the still
unknown M-theory, Loop Quantum Gravity, non-commutative general rela-
tivity and many others. However some of these approaches, at the moment,
have difficulties in predicting observable phenomena that could be used to
validate or falsify them.
In this context, it could be useful to study the semiclassical limit of Quan-
tum Gravity, in order to obtain at least some qualitative expectation about
the main features of the effective field theory that one could find from the
low energy limit of a more complete approach to the quantization of gravity.
While it has been proven that the flat Minkowski spacetime is an abso-
lute minimum of the classical gravitational action in asymptotically flat
spacetimes[1], it is not sure if it could be also a good ground state for the
quantum theory. John Wheeler in 1957[2] observed that, at Planck scale, the
spacetime manifold could be affected by geometrical and topological fluctu-
ations. Such a spacetime, continuously changing its metric and topology, is
known as ”spacetime foam” and is expected to be a better ground state for
quantum gravity.
At quantum level, it has been shown that the flat spacetime is unstable at
first loop approximation respect to black holes nucleation when a nonzero
temperature is introduced in the euclidean pure gravity path integral[3]. If
T ̸= 0, the euclidean Schwarzschild solution is an extremal point of the
action end brings an imaginary part to the free energy of the functional
integral. Moreover, if gravity is coupled with N conformally invariant scalar
fields, the statement that the ground state of the theory is obtained in cor-
respondence with the flat spacetime is false at leading order in 1/N [4].
It could be interesting to see whether something similar happens also in the
Hamiltonian approach to semiclassical Quantum Gravity, where no temper-
ature is defined.
The main problem in this treatment is that general relativity is a covariant
theory, that means it is invariant under spatial and temporal reparametriza-

3



tions by construction. Thus, the Hamiltonian, which generates time trans-
lations, is identically null for each possible spacetime, except for eventual
boundary contributions. The constraint that imposes a null Hamiltonian
density is known as Wheeler-DeWitt equation and it is the most important
relation in the study of General Relativity as an Hamiltonian field theory.
It is possible to treat this problem introducing a vacuum energy density
as a quantum correction of the cosmological constant and study the WdW
equation as a Sturm-Liouville eigenvalue problem[5].
While considering spacetimes with spatial topology different from R3, R.
Garattini studied the case of a Schwarzschild wormhole between two differ-
ent asymptotically flat spacetimes[6]. If the two sides of the wormhole are
symmetric, the black hole in the universe where the asymptotic observer
who executes the measurements lives, will have a positive mass M , while
the other one will have mass −M , forming a sort of black hole anti-black
hole dipole. The result is a manifold with zero boundary energy like a cou-
ple of Minkowski spacetimes. That means the semiclassical computation of
the spacetime energy has a crucial role in determining whether a flat metric
could decay in a Schwarzschild wormhole, or in a foam composed by a large
number of wormholes homogeneously distributed in spacetime.

Conventions:
in this thesis we use the signature (-,+,+,+) for the Lorentzian metric and
we take the constants ℏ and c equal to one.
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Chapter 1

Field theory formulation and
quantization of gravity

1.1 The Lagrangian formulation of gravity

In this section we are going to show that the pure-gravitational Hilbert-
Einstein action for the field gµν gives exactly the Einstein vacuum equation,
following the method used in [7].
We will begin considering the problem without boundary contributions. The
Einstein-Hilbert action is

S =
1

16πG

∫
M
d4x

√
−g(R− 2Λ) (1.1.1)

where R is the curvature scalar and Λ the cosmological constant. An im-
portant aspect of variational calculus respect to the metric gµν is that one
have to pay great attention when uses the metric itself to rise and lower the
indices of perturbations. In fact, the relation (g+δg)µρ(g+δg)ρν = δµν must
be respected, then we have to distinguish the variation of the inverse metric
δgµν from the perturbation of gµν , that we will call δgµν . The requirement
of a Kronecker delta implies the transformation δgµν = −gρµgσνδgρσ.
We immediately have

δS =
1

16πG

∫
M
d4x

[
δ(
√
−g)(R− 2Λ) +

√
−gδRµνgµν +

√
−gRµνδgµν

]
(1.1.2)

Let’s consider a generic real symmetric matrixM , it can be put in a diagonal
form and written asM = em wherem is a complex matrix. naturally we also
have the inverse relation m = lnM and it is true the relation detM = eTrm.
If we need the variation of the determinant of M , we can write it as

δ detM = eTr{m}Tr{δm} = detM Tr
(
M−1δM

)
(1.1.3)
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Taking M = gµν and M−1 = gµν , we find

δ
√
−g = −1

2

√
−ggµνδgµν (1.1.4)

On the other side it is possible to compute the variation of the Ricci tensor.
The Riemann tensor can be written as

Rρµλν = 2∂[λΓ
ρ
ν]µ + 2Γρσ[λΓ

σ
ν]µ (1.1.5)

Obviously a variation of the Riemann tensor, and consequently of the Ricci
tensor Rµν = Rρµρν , is strongly connected with the variation of the Christof-
fel symbols. Indeed it is true

δRρµλν = 2∇[λδΓ
ρ
ν]µ (1.1.6)

The Christoffel symbols do not transform as tensors, since a change of coor-
dinates in the manifold modifies the partial derivatives and we want ∇µ to
be covariant. Anyway, if we consider the difference of two Christoffel sym-
bols, the effects of the change of coordinates over partial derivatives should
be nullified in the subtraction. So we expect δΓρµν to be a tensor and taking
its covariant derivative as in (1.1.6) makes sense.
It can be shown that, for each metric, there is a unique torsionless con-
nection that gives null covariant derivatives of the metric itself. A set of
connection symbols Cρµν(g) can be seen as the corrections needed in order
to transform a particular set of derivatives ∇µ in the covariant derivatives
naturally associated to gµν through the procedure∇µv

ρ → ∇µv
ρ+Cρµν(g)vν .

The Christoffel symbols are those obtained when ∇µ = ∂µ and are given by

Γρµν(gµν) =
1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) (1.1.7)

Anyway this expression is valid also respect any other set of derivatives
different from the usual partial derivatives ∂µ. Now we can observe that
δΓρµν = Γρµν(g + δg) − Γρµν(g) is exactly the connection symbol Cρµν(g + δg)
needed by the covariant derivative associated to gµν to become the one that
is null when applied to gµν + δgµν . That means, at first order in δgµν ,

Cρµν(g + δg) =
1

2
gρσ[∇µ(gνσ + δgνσ) +∇ν(gµσ + δgµσ)−∇σ(gµν + δgµν)]

=
1

2
gρσ[∇µδgνσ +∇νδgµσ −∇σδgµν ] = δΓρµν

(1.1.8)

where ∇µ represents the covariant derivative associated to the unperturbed
metric gµν . Thus,we have an expression for the variation of the Christoffel
symbols.
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A substitution of the last equation in the variation of the Riemann tensor
(1.1) gives

gµνδR
µν = ∇ρ(∇σδg

ρσ − gσα∇ρδgσα) (1.1.9)

that is a total derivative and so gives only boundary contributions. Hence,
the result of the functional derivative of the action respect to the field gµν
is

δS

δgµν
=

1

16πG

√
−g[Rµν − 1

2
(R− 2Λ)gµν ] (1.1.10)

When we set this expression to zero in order to find the solution of motion,
we obtain exactly the Einstein equation.
At this point we still have to treat the boundary contributions. If we con-
sider also perturbations of the metric which are null on the boundary of
the manifold, but don’t have null derivatives, we can write, using Stokes
theorem,∫

M
∇ρ(∇σδg

ρσ − gσα∇ρδgσα) =

∫
∂M

nρ(∇σδg
ρσ − gσα∇ρδgσα) (1.1.11)

where nρ is the unitary vector field normal to the boundary ∂M .
The last integrand is equivalent to

nρσµβ(∇βδgρµ −∇ρδgµβ) = −nρσµβ∇ρδgµβ (1.1.12)

with σµν = gµν ± nµnν representing the induced metric of the submanifold
∂M . This happens because δgµν is null in the integration region, and con-
sequently σµβ∇βδgρµ = 0. The sign in the definition of σµν depends on the
boundary being a timelike or spacelike manifold.
This last expression is really strongly related to the variation of the trace of
the extrinsic curvature K = Kµ

µ = σµν∇µn
νof the boundary manifold:

δK = σµν δ(Γ
ν
µρ)n

ρ =
1

2
nρhµν∇ρδg

µν (1.1.13)

then, if we want to maintain the Einstein equation as equation of the motion,
we just have to add a contribution

1

8πG

∫
∂M

Kd3x
√
σ (1.1.14)

where σ is the determinant of the metric of the boundary submanifold.

1.2 Dynamics of generally covariant systems

Before jumping in the Hamiltonian formulation of general relativity, it is
important to understand which are the main features of generally covariant
theories like GR [8].
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One can transform any non covariant system in a covariant one simply intro-
ducing an arbitrary parametrization. Let’s consider the motion of a point
particle with position q and classical time t. What we are interested in is
the trajectory q(t), but, if we want to consider in the same way both time
and space, we can introduce a parameter τ and express the information con-
tained in q(t) via the couple of functions q(τ) and t(τ).
It is always possible to construct two functions q(τ) and t(τ) which define

implicitly the relation between physical quantities q(t), but it’s not always
true the opposite statement. That means the covariant formalism can rep-
resent a wider set of relations between t and q respect to the canonical q(t)
representation.
Obviously the total amount of information is the same, but now we are con-
sidering two functions in spite of one. This means the arbitrariness of the
parametrization τ introduces a gauge degree of freedom in the theory. But
how do the action and the Hamiltonian change in this process?
The action becomes a functional of two functions q and t thanks to a change
of variable

S[q] =

∫ tf

ti

dtL(q(t), q̇(t)) → S[q, t] =

∫ τf

τi

dτ
dt(τ)

dτ
L

(
q(τ),

dq(τ)

dτ

(
dt

dτ

)−1
)

(1.2.1)
In the case of the point particle the typical action

L(q(t), q̇(t)) =
1

2
mq̇2(t)− V (q) (1.2.2)

becomes

L(q(τ), t(τ), q̇(τ), ṫ(τ)) =
1

2
m
q̇2

ṫ
− ṫV (q) (1.2.3)
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where now the dot stands for τ derivative. The resulting Euler-Lagrange
equations are

q :
d

dτ
m
q̇

ṫ
+ ṫ∇qV (q) = 0 (1.2.4)

t :
d

dτ

(
−1

2
m

(
q̇

ṫ

)2

− V (q)

)
= 0 (1.2.5)

The first expression is exactly the Newton law, while the second one is
equivalent to the conservation of energy and then it is a consequence of the
former equation. As expected, the relevant information is held by (1.2.4),
as happens in the non-parameterised version, and the equation of motion
respect to the new variable t(τ) has just a trivial contribution.
If we want to study the Hamiltonian of the parameterised system, we need
to define the conjugate momenta pq and pt.

pt =
∂L

∂ṫ
= −1

2
m

(
q̇

ṫ

)2

− V (q) (1.2.6)

pq =
∂L

∂q̇
= m

q̇

ṫ
(1.2.7)

It’s easy to state the canonical variables found in this way are not indepen-
dent from each other: we can substitute the expression for pq in the equation
(1.2.6) and write a constraint over canonical variables

C(t, q, pt, pq) = pt +
p2q
2m

+ V (q) = 0 (1.2.8)

This happens because only the rate q̇
ṫ
appears in the definition of the mo-

menta, thus the relations between momenta and velocities are not invertible.
The constraint we wrote substantially corresponds to the natural request
that the momentum conjugated to the time, that we expect to generate
translations respect to this variable, is exactly the Hamiltonian of the unpa-
rameterised system, which generates time translations in that context. On
the other hand, the Hamiltonian H, given by the Legendre transform of the
Lagrangian,

H = q̇pq + ṫpt − L (1.2.9)

is proportional to the constraint and then identically null on the space of
physical states.
the result just obtained is not surprising, since this Hamiltonian generates
the evolution of the system respect to the parameter τ , but the system itself
is invariant under τ reparametrization. The real dynamics of the system is
held by the relations between the variables q, t and their momenta, which
is expressed by the constraint C(t, q, pt, pq).
This procedure is very similar to what we do when we study the motion
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of a particle in special relativity, since we define the proper time τ and we
write the 4-vectors of position, velocity and momentum where the time t
is treated as one extra coordinate. In this case the constraint is the well
known relation p2 −m2 = 0 and the action is

S = m

∫
dτ
√
ẋµẋµ (1.2.10)

In general relativity the variables we want to study is the metric field gµν that
is ”parameterised” by a particular choice of a set of coordinates, or map, on
the manifold. Einstein general relativity is generally covariant, that means
the physical results it predicts do not depend on these coordinates and then
gµν(x

ρ) behaves in a way quite similar to q(τ) and t(τ) in this example.
It is also possible to study this problem from a more formal point of view,
with the theory of Hamiltonian systems with constraints[9].
A Lagrangian L(qi, q̇i) is singular if

det
∂2L

∂q̇i∂q̇j
= 0 (1.2.11)

The momenta conjugated to qi are defined as pi(qi, q̇i) =
∂L
∂q̇i

and this expres-
sion, together with the identity over the position space, can be seen as an
operator that permits to pass from the Lagrangian coordinates (qi, q̇i) to the
canonical set (qi, pi). An operator between two manifolds written in terms
of local coordinates is locally invertible if the determinant of its Jacobian is
not null. Hence, the direct consequence of a zero Hessian determinant of the
Lagrangian is that this operator is not invertible and there is not a set of
unique formulas q̇i(q, p) which expresses the velocities in terms of canonical
variables. The canonical variables are not independent of each others and
there exists a set of primary constraints

Cm(q, p) = 0 (1.2.12)

The Hamiltonian H given by H = p · q̇ − L is also not unique and can be
replaced by any alternative Hamiltonian H̃

H̃ = H +NmCm (1.2.13)

The new Hamiltonian gives a new set of equations of motion

q̇i = {qi, H̃} =
∂H

∂pi
+Nm

∂Cm
∂pi

(1.2.14)

ṗi = {pi, H̃} = −∂H
∂qi

+Nm
∂Cm
∂qi

(1.2.15)

which preserves the constraints. Obviously we expect the constraints to hold
over time, hence we can impose

Ċm = {Cm, H̃} = 0 (1.2.16)
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Sometimes it is automatically true, other times this procedure permits to
find some new secondary constraints to be added to the others.
All these considerations can be extended to field theories. Given a field ϕa,

the Lagrangian density is L
(
ϕa(x

µ), ∂ϕ∂xµ
)
and the action is the integral over

the whole spacetime of this density:

S[ϕa(x)] =

∫
d4xL

(
ϕa(x),

∂ϕ

∂xµ

)
(1.2.17)

The conjugated momenta respect to the fields ϕa are

πa =
δL

δ(∂0ϕa)
(1.2.18)

while the total Hamiltonian is

H =

∫
d3xH =

∫
d3x(πa∂0ϕa − L) (1.2.19)

Now the constraints will have the form

Cm = (ϕa, πa, ∂iϕa, ∂iπa) (1.2.20)

where Latin indices run over spatial dimensions, and the arbitrariness of the
Hamiltonian density H can be written as

H̃ = H+N(x)mCm (1.2.21)

In the example used above and in GR, the theory is respectively invariant
respect to τ reparametrization and diffeomorphisms, so the Hamiltonian is
composed only by constraints:

H = NmCm = 0 (1.2.22)

In a covariant theory where a particular momentum appears linearly, one
can solve the constraint and obtain a non covariant canonical system[10]: if
we have a constraint

C : pi(τ) = −H(pj ̸=i(τ), qk(τ)) (1.2.23)

we can transform the Lagrangian

L = pj q̇j +NC = pj q̇j (1.2.24)

in the form
L = pj ̸=iq̇j ̸=i

− Hq̇i (1.2.25)

and change the integration variable of the action

S =

∫
dτpj q̇j +NC =

∫
dqip

j ̸=idqj ̸=i

dqi
− H (1.2.26)
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In this way one can consider the variable qi as the non covariant time t and
H becomes the new non null Hamiltonian which generates translations along
t.
A similar procedure can be accomplished with field theories with linear
constraints and covariant respect a set of coordinates χα. In this case we
expect to find four constraints (one for each dimension of the spacetime)

πµ(χα) = −T0µ(πj ̸=µ(χα), ϕi(χ
α)) (1.2.27)

and we can write the action as

S =

∫
d4χπiϕ̇i +NµCµ =

∫
d4ϕπi ̸=0dϕi ̸=0

dϕ0
− T00 (1.2.28)

where the new set of proper coordinates xµ is composed by the field compo-
nents ϕµ and their associated components of the energy momentum tensor
are T0µ. In particular T00 = H is the non null Hamiltonian density.
However, as we will see in short time, in the GR case the constraint is of
second order in all fields and momenta, then it can’t be solved and it isn’t
possible to exclude all gauge degrees of freedom from the phase space in a
trivial way.

1.3 The Hamiltonian formulation of gravity (ADM)

A rigorous characterization of energy in a canonical formulation of grav-
ity was given by Arnowitt, Deser and Misner in [11].
The Lagrangian formulation of gravity is spacetime covariant but, in order to
apply a canonical quantization, we have to use the Hamiltonian formalism,
that requires a breakup of spacetime in space and time. Indeed, as a first
step, we choose a time function t and a vector field tν such that tν∇νt = −1.
Now it is possible to define a foliation of spatial surfaces Σt of constant t
with a unit normal vector uν ∝ ∇νt. We also define the lapse function

N = −gµνtµuν = (uν∇νt)
−1 (1.3.1)
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that represents the flow of proper time τ (defined by ∇ντ = uν) respect to
the coordinate t, and the shift vector

Nν = hνµt
µ (1.3.2)

where hµν = gµν + uµuν is the spatial metric induced in Σt. N
ν represent

the component of tν tangent to the spatial hypersurface. One can write the
normal vector in term of N , Nν and tν in the following way

uν =
1

N
(tν −Nν) (1.3.3)

Hence,the inverse spacetime metric can be substituted with

gµν = hµν − uµuν = hµν −N−2(tµ −Nµ)(tν −Nν) (1.3.4)

In the Hamiltonian theory we will take as field variables the spatial metric
hij , the scalar lapse function N and the covariant vector field Ni = hijN

j .
From the last equation we see that, once chosen t and tν , the information
in gµν , and consequently in gµν , is totally contained in the set (hij ,N ,Ni).
If we choose a good basis of coordinates which has a temporal generator
normal to the spatial surface, we will have the relation

√
−g = N

√
h, where

g and h are the determinants of the respective metric tensors.
From the results obtained in the preceding section, we can take as the pure-
gravitational Hilbert-Einstein action in a manifold M with boundary ∂M
the expression [12]

S =
1

16πG

[∫
M
d4x

√
−g(R− 2Λ) + 2

∫
∂M

d3x
√
σ(K −K0)

]
(1.3.5)

where Kij the extrinsic curvature of the hypersurface with K = Ki
i and K

0

the extrinsic curvature of ∂M embedded in a flat space, that has been added
in order to give zero action to the Minkowski spacetime for each boundary,
when Λ = 0.
Now we have to express it in term of (hij ,N ,Ni) and their space derivatives.
Two key elements to complete this task are the extrinsic curvature of Σt,
Kij = h k

i ∇kuj and the Riemann tensor of the 3-dimensional submanifold
3Rkilj [7]. Let’s consider a one form over Σt ωi, the 3d Riemann tensor is
defined as

3Rkiljωk = DlDjωi −DjDlωi (1.3.6)

where Di represents the covariant derivative in the spatial manifold and is
equivalent to apply the 4-dimensional covariant derivative and later contract
each index with the spatial metric hij . for example the 3d derivative of a

vector field is Div
j = hiµh

j
k ∇

µvk. We can expand D in the left term and
find

DlDjωi = Dl(h
k
j h

n
i ∇kωn) = h m

j h p
i h

r
l ∇r(h

k
mh

n
p ∇kωn) (1.3.7)
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but, from the definition of the spatial induced metric,

h m
j h r

l ∇rh
k
m = h m

j h r
l ∇r(g

k
m + umu

k) = Klmn
k (1.3.8)

that means

DlDjωi = h k
j h

n
i h

r
l ∇r∇kωn + h n

i Klju
k∇kωn + h k

j u
n∇kωn (1.3.9)

and

3Rkiljωk = h k
j h

n
i h

r
l R

m
rknωm −KijK

m
l ωm +KljK

m
i ωm (1.3.10)

for each one form ωi. So we can consider the last equation as a relation
between operators

3Rkilj = h k
j h

n
i h

r
l h

m
p Rprkn −KijK

m
l +KljK

m
i (1.3.11)

It’s easy to observe that the 4d Riemann tensor totally contracted with the
spatial metric is

Rµνρσh
µρhνσ = Rµνρσ(g

µρ+uµuρ)(gνσ+uνuσ) = 2Rµρu
µuρ+R = 2Gµρu

µuρ

(1.3.12)
Now, if we contract the expression for the three dimensional Riemann tensor
(1.3.11) with two induced metrics, we have

Gµνu
µuν =

1

2
[3R−KijK

ij +K2] (1.3.13)

In order to write R with the Hamiltonian variables, we still need a formula
for Rµρu

µuρ, that can be found in the following way:

Rνµνρu
µuρ = −uµ(∇µ∇ν −∇ν∇µ)uν

= (∇µu
µ)(∇νu

ν)− (∇µu
ν)(∇νu

µ)−∇µ(u
µ∇νu

ν) +∇ν(u
µ∇µu

ν)
(1.3.14)

thanks to the Leibniz rule and applying the definition of the extrinsic cur-
vature one obtains

Rµνu
µuν = K2 −KijK

ij −∇µ(u
µ∇νu

ν) +∇ν(u
µ∇µu

ν) (1.3.15)

The last two terms on the right side are pure divergences that we will con-
sider later in boundary terms. Then curvature scalar is

R = 2Gµρu
µuρ − 2Rµρu

µuρ (1.3.16)

and the Lagrangian density is

L =
1

16πG

√
hN [3R+KijK

ij −K2 − 2Λ] (1.3.17)
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We can define a time derivative of hij as ḣµν ≡ h ρ
µ h σ

ν £thρσ, where £t

represents the Lie derivative along tν , and we can compute the momentum
canonically conjugate to hij

πij =
δL
δḣij

=
1

16πG

√
h(Kij −Khij) (1.3.18)

We immediately see L does not contain temporal derivatives of N and N i,
then their conjugate momenta are identically null and N and N i are not
dynamical variable, but parameters which do not influence the evolution of
Σt. Thus,we finally write the Hamiltonian density

H = πij ḣij − L = (NH −HiN
i) (1.3.19)

with

H = − 1

16πG

√
h(3R− 2Λ) + 16πG(h−1/2πijπ

ij − 1/2h−1/2π2) (1.3.20)

H i = Djπ
ij (1.3.21)

and π = π i
i .

The configuration space has been reduced to the space of all Riemannian
metrics on Σt. It can be useful at this point to define a metric on such space,
usually called superspace, the Wheeler-DeWitt metric

Gijkl =
1

2
(hikhjl + hilhjk − hijhkl) (1.3.22)

It has the relevant property to have an hyperbolic signature (1,5) at ev-
ery point in the three-surface independently of the signature of spacetime.
We can also define the inverse of the supermetric Gijkl, which acts on the
momenta, with

GijnmGnmkl =
1

2
(δikδ

j
l + δilδ

j
k) (1.3.23)

The last relation implies

Gijkl = (hikhjl + hilhjk − 2hijhkl) (1.3.24)

The absence of an evolution of N and N i means they behave as a set of
Lagrange multiplier and with the Hamilton equations they give the Hamilton
constraint and the momentum constraint

H = − 1

16πG

√
h(3R− 2Λ) + 16πGh−1/2Gijklπ

ijπkl = 0 (1.3.25)

Hi = 0 (1.3.26)
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On the other hand the Hamilton equations applied to hij and π
ij give

ḣij =
δH
δπij

= 2h−1/2N

(
πij −

1

2
hijπ

)
+ 2D(iNj) (1.3.27)

π̇ij =
δH
δhij

= −N
√
h

(
3Rij − 1

2

3

Rhij
)
+

1

2
Nh−1/2hijGijklπ

ijπkl

−2Nh−1/2

(
πikπ j

k − 1

2
ππij

)
+
√
h(DiDjN − hijDkDkN)

+
√
hDk(h

−1/2Nkπij − 2πk(iDkN
j)

(1.3.28)

One can verify equations from (1.3.25) to (1.3.28) are equivalent to the
Einstein equation, thus we have an Hamiltonian formulation of Einstein’s
gravity. The presence of two constrains means there are still some gauge
degrees of freedom in hij .
The momentum constraint is the easiest to manage, since it is linear in the
momenta and belongs to the general case treated in the previous section.
We can act in a similar way to what is usually done in Maxwell theory
of electromagnetism. In that field theory the interesting field is the four-
potential Aµ and the action is

Sem[A] =
1

4

∫
d4xFµνF

µν (1.3.29)

where Fµν = ∂[µAν] is the Maxwell field. One can immediately see from the
last expression that, thanks to the antisymmetry of Fµν , the time derivative
of A0 does not appear in the action and then the zero component of the vec-
tor potential, usually called scalar potential V , is not a dynamical quantity,
exactly as N and N i in GR. So V can be arbitrarily fixed and it defines a
constraint on the canonical variables of electromagnetism. After the usual
decomposition of the Maxwell field in electric field Ei = F0i and magnetic
field Bi = −1

2ϵijkFjk, the action is

Sem[Ai, V, Ei] = −
∫
dt

∫
d3x(EiȦi − (E2 +B2) + V ∂iE

i) (1.3.30)

and the momentum πi associated to the vector potential Ai is

πi =
δL

δȦi
= −Ei (1.3.31)

The constraint given by a variation respect to V is∇·E = 0, the Gauss equa-
tion in vacuum, and is quite similar to the momentum constraint (1.3.26).
In electromagnetism the constraint is strongly connected with the residual
gauge freedom of the theory: We all know that the theory is invariant under
transformations Ai → Ai + ∂iλ where lambda is a scalar function. Such a
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transformation does not have any effects over the fields Ei and Bi, then the
only contribution to the action that could change with this substitution is∫

dt

∫
d3xEiȦi →

∫
dt

∫
d3xEi(Ȧi + ∂iλ̇) (1.3.32)

but we can integrate by part the spatial integral and obtain a total diver-
gence null at infinity and the term λ̇∂iE

i that is equal to zero if the Gauss
constraint is respected. The constraint permits us to restrict the phase
space to the equivalence class of the vector field Ai configurations where
two vector fields are equivalent if they differ only by a gauge transforma-
tion, i.e. by the gradient of a scalar function. In GR the physical system
represented by a 3-metric is invariant under diffeomorphism and then H
have to be invariant too. A more appropriate configuration space is the
space of equivalence classes of metrics respect to diffeomorphic equivalence
and the relative cotangent space πij is the space of linear functionals which
act on metrics variations. Let’s consider a transformation xi → xi + vi, the
variations of the metric tensor change as δhij+D(ivj) and, if π

ij acts on the
space of equivalence classes, we must have∫

M
πij(δhij +D(ivj)) =

∫
M
πijδhij (1.3.33)

that implies, in order to have a divergence on the left side, the momentum
constraint (1.3.26).
In a similar way the Hamilton constraint represents the gauge arbitrariness
in the choice of the function t and the corresponding spatial foliation Σt,
but now the momenta πij appear quadratically in the constraint, so it isn’t
possible to deparametrize the theory by solving the constraint and restrict-
ing the phase space.
Thanks to the two constraints, it does not exist a nontrivial definition of
energy in any manifold without boundary, since H = 0 for each spacetime
which is solution of the Einstein equation. We expected a similar behaviour
from the example exposed above, because H generates t translations, but
the theory is invariant under t reparametrization by construction.
It doesn’t mean there is no dynamics in general relativity or time evolu-
tion is frozen: the dynamics of the system is given by the Wheeler-DeWitt
equation and the evolution is held by the relative changes in the different
components of hij and π

ij in the same way as, in the example of the previous
section, the time evolution wasn’t in the null Hamiltonian written for the
arbitrary evolution parameter τ , but rather in the constraint C and in the
relation between the physical variables q and t.
However boundary terms can give a meaningful energy in some particular
cases, then now we will consider their contribution to the Hamiltonian. With
a compact spacetime without spatial boundaries, the manifold can be repre-
sented byM = I×Σt and its boundaries are Σ0 and Σ1, if we take I = [0, 1].
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The boundary contributions in the action (1.3.5) are exactly nullified by the
term ∇µ(u

µ∇νu
ν) in eq. (1.3.15), since g ν

µ ∇νu
µ = (h ν

µ − uµu
ν)∇νu

µ =
h ν
µ ∇νu

µ = K, and, thanks to Stokes theorem,
∫
M ∇µ(u

µK) =
∫
∂M uµuµK.

The argument of the divergence in the fourth term in the equation (1.3.15) is
normal to uν , because 2uνu

µ∇µu
ν = uµ∇µ(u

νuν) = 0, so temporal bound-
aries do not give any contribution to the energy. But, if we have a spa-
tial boundary ∂M , the foliation Σt can be naturally induced on it with
∂M ∩ Σt = ∂Σt and the boundary contribution to the Hamiltonian is∫

∂Σt

d2xN
√
σ [−2(Θ−Θ0) + nµ(−uµ∇νu

ν + uν∇νu
µ)] (1.3.34)

where σ is the determinant of the induced metric of ∂Σt, Θ is the trace of
its extrinsic curvature and nµ is the unitary normal vector of the surface
∂Σt[13][14]. This expression can’t be taken ”as it is” to define an energy of
the spacetime, since it directly depends on N , that is an arbitrary param-
eter. We define the quasi-local energy, or Brown-York energy [15], of the
foliation the value of the Hamiltonian that generates unit time translations
orthogonal to the spatial boundary, that means the Hamiltonian obtained
with the parametrization that has n · u = 0 and |N | = 1 on ∂Σt.
With this definition the boundary energy is reduced to∫

∂Σt

d2xN
√
σ [−2(Θ−Θ0) + nµu

ν∇νu
µ] (1.3.35)

If the spatial boundary do not changes over time, we can apply the Leibniz
rule and write nµu

ν∇νu
µ = uν∇ν(nµu

µ) − uµu
ν∇νn

µ = 0 and obtain an
easier formula for the quasi-local energy

Eql = − 1

8πG

∫
∂Σt

d2x
√
σ(Θ−Θ0) (1.3.36)
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A particular case is the asymptotically flat spacetime, where the boundary
is taken in the limit r → ∞, with r representing the radial coordinate. Near
this boundary the metric is almost flat, then there is a parametrization t
such that ∇µu

ν = 0, N = 1 and N i = 0. The result is

EADM = − lim
r→∞

1

8πG

∫
∂Σt

d2x
√
σ(Θ−Θ0)

= lim
r→∞

1

8πG

∫
∂Σt

d2xri

(
∂hji
∂xj

−
∂hjj
∂xi

) (1.3.37)

and the total energy is Htot =
∫
M H + EADM = EADM . This expression

for energy in asymptotically flat spacetimes is usually called ADM energy.
This means classical general relativity is a field theory where energy can be
expressed as a surface term if a spatial boundary exists, otherwise energy is
trivially zero.

1.4 Quantization

Canonical quantization

Now we want to proceed with the canonical quantization and introduce a
wave functional defined on the superspace Ψ[hij ]. In the canonical approach
we will follow the technique developed by Wheeler and DeWitt [16]. The
wave functional hasn’t got a direct dependence on time t, since the intrin-
sic geometry of a particular submanifold Σt is enough to know its relative
location in the spacetime. The usual substitutions in Dirac quantization
give

hij |Ψ⟩ = hijΨ[hij ] (1.4.1)

πij |Ψ⟩ = −i δ

δhij
Ψ[hij ] (1.4.2)

while the inner Hilbert product on Schrdinger functionals is

⟨Ψ|Φ⟩ =
∫

D[hij ]Ψ
∗[hij ]Φ[hij ] (1.4.3)

Considering (1.3.25) and (1.3.26) as operator equations would yield to no
dynamics at all, so the classical constraints must be taken as requests of
annihilation of the wave functional:

Hi |Ψ⟩ = 2iDj
δ

δhij
Ψ[hij ] = 0 (1.4.4)

H |Ψ⟩ =
[
−16πGh−1/2Gijkl

δ

δhij

δ

δhkl
− 1

16πG

√
h(3R− 2Λ)

]
Ψ[hmn] = 0

(1.4.5)
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Obviously the substitution of momenta with functional derivatives gives
some ordering problem, since the supermetric depends on the field hij , but
we will discuss them in a second moment. The Wheeler-DeWitt (WDW)
equation (1.4.5) is a second order hyperbolic functional differential equation
which describe the dynamical evolution of the wave functional. In general,
there are many solution of the Wheeler-DeWitt equation, then only bound-
ary conditions on the superspace permit to have some predictive power in
cosmological models.
The invariance under 4-diffeomorphism of classical general relativity has as
a result the constraints (1.3.25) (1.3.26) showed above. After quantization,
the role of those equations is taken by the Wheeler-DeWitt equation. One of
the consequences of the WDW equation is the so called ”problem of time”:
while in other field theories, where time is an external parameter, one ob-
tains a Schrdinger equation ∂Ψ

∂t = HΨ that determines the time evolution of
the wave functional, in the canonical quantization of general relativity time
is just an arbitrary parametrization. How to obtain a well defined concept
of time emerging from the classical limit is one of the great problems of
quantum gravity theories.

Path integral quantization

An alternative quantization procedure is the path integral method and we
will deal with it following the Hawking approach to the problem [17]. In the
path integral approach to the quantization of a field ϕ, the amplitude to go
from a field configuration ϕ1 at time t1 to a configuration ϕ2 at time t2 is
expressed by

⟨ϕ2, t2|ϕ1, t1⟩ =
∫
D[ϕ]eiS[ϕ] (1.4.6)

where the integration is over all paths that begins in ϕ1 at time t1 and
finish in the configuration ϕ2 at time t2. On the other hand, in Schrdinger
representation,

⟨ϕ2, t2|ϕ1, t1⟩ = ⟨ϕ2, t2| e−iH(t2−t1) |ϕ1, t1⟩ (1.4.7)

After a Wick rotation with the substitution t1 − t2 = iβ we can compare
the two expressions for the probability amplitude. If we take ϕ2 = ϕ1, i. e.
we consider periodic paths with period β in imaginary time, and sum these
amplitudes over a complete base of the Hilbert space {|ϕ⟩}, we obtain

Z = Tr e−βH =

∫
D[ϕ]e−I[ϕ] (1.4.8)

where I is the euclidean form of the action, which means the result of the
Wick rotation of S. Thus,one has a partition function Z for the field ϕ in
a similar way respect to a statistical ensemble. It is possible to evaluate
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the moments of the distribution from it, which are exactly the n points
propagators of the field.
Our aim is to apply this procedure to the 3 metric field hij , since, as showed
above, it contains all the physical information of gµν , but there are some
difficulties. A path for the spatial submanifold is a family of surfaces Σt
to varying of t, hence it corresponds to a configuration of gµν . In order
to fix the extremes of integration we have to consider only metrics of the
spacetime which have as time boundaries the requested three surfaces and
three metrics, but are free to vary off these surfaces. Actually, the only
physical freedom is the specification of hij in the Σt surfaces which do not
have extremal positions, then we will have to manage some gauge freedom
in the integration. Consequently the quantum mechanical superposition of
two configurations hij and h

′
ij at the extrema of the paths appears as

⟨
h′ij
⏐⏐hij⟩ = ∫ D[g]eiS[g]+gauge fixing terms (1.4.9)

Now we would like to apply again a Wick rotation and define a partition
function

Z =

∫
D[g]e−I[g]+gauge fixing terms (1.4.10)

Written with canonical variables, the Minkowskian gravitational action (1.3.5)
is

S =

[∫
M
πij ḣij − (NH −HiN

i) +
1

8πG

∫
∂M

d3x
√
σ(Θ−Θ0)

]
(1.4.11)

while the euclidean partition function takes the form

Z =

∫
D[N i]D[N ]D[hij ]D[πij ] exp

{
−
∫ β

0
dt

[ ∫
Σt

d3x(iπij ḣij +NH −HiN
i)

− 1

8πG

∫
∂Σt

d2x
√
σ(Θ−Θ0)

]
+ gauge fixing terms

}
(1.4.12)

where the integration over πij can be done explicitly, since it appears only
quadratically in H. However the euclidean action is not positive definite
as in the scalar field, or at least semi-definite, as in usual gauge theories
(electromagnetism and Yang-Mills). Indeed, since the supermetric (1.3.22)
that appears in H is hyperbolic (it has a negative signature respect to the
trace component

√
h), the euclidean action is not bounded from below for

each direction chosen in the Wick rotation. Hence,the path integral will not
converge with paths over real euclidean metrics. Convergence is achieved
only carrying out integrations over complex contours in the space of complex
four-metrics. Moreover the integration result to be dependent of the chosen
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contour and is not clear how to return to a Minkowski framework after the
Wick rotation.
It is possible to define a wave functional of the spacetime with the help of
functional integration [18]: once chosen an initial state |Ψ0⟩ =

⏐⏐h̄ij⟩, thanks
to the transition amplitude (1.4.9), the functional Ψ0[hij ] is given by

Ψ0[hij ] =
⟨
h̄ij
⏐⏐hij⟩ = N

∫
D[g]e−I[g]+gauge fixing terms (1.4.13)

where N is a normalization and the integration is done over all 4-geometries
with a final spacelike boundary with induced metric hij and an initial bound-
ary with induced metric h̄ij . Obviously from this formula one can obtain
also state functional with more complex initial condition, for example with
a superposition of eigenstates of the operator ĥij .
The wave functional obtained in this way is independent of the time parametriza-
tion t and then of the scalar field N . Thus,the variation respect to N at the
ending boundary of the path integral must be null:

0 =
δΨ

δN
= N

∫
D[g]

δI

δN(tf )
e−I[g]+gauge fixing terms (1.4.14)

The derivative of the action δI
δN(tf )

= −H can be brought out of the integral

after the canonical substitution πij → −i δ
δhij

, since it depends only from the

fixed boundary conditions. The result is exactly the WDW equation (1.4.5)
HΨ[hij ] = 0 and an analogue argument can be applied to 3 dimensional
diffeomorphisms on the spatial manifold, giving the momentum constraints
H iΨ[hij ] = 0. A rigorous demonstration of the consistence of canonical
quantum constraints with the path integral wave function, which take ac-
count of possible variations of the integration measures and ghosts, can be
found in [19].
The choice of an integration path and an initial state, i. e. the the choice of
class of paths over which the integration is done, has a role comparable to
the choice of boundary condition in the research of solutions of the WDW
equation.
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Chapter 2

Approximations and
perturbative methods

2.1 Minisuperspace

The superspace, that represents the configuration space of Hamiltonian grav-
ity, is infinite dimensional, then practical calculations on it result very diffi-
cult. A common method to resolve this problem is the minisuperspace[12]:
in minisuperspace framework almost all the degrees of freedom of super-
space are frozen, except of one or two parameters. This machinery permits
to represents spacetimes with strong symmetries (for example homogeneous
or spherical symmetric manifolds) and to reduce the field theory of gravity
to a simpler problem of quantum mechanics.
Clearly the minisuperspace is not a rigorous approximation of the full the-
ory since many criticalities emerge in the freezing process: the request to
set identically to zero most of the field modes and its conjugated momenta
violates the uncertainty principle and the interferences of modes in the full
theory could bring to results far from the minisuperspace model predictions.
Anyway minisuperspace can be seen as a toy model useful in order to pre-
dict some general behaviour and can be used as a base for a more complete
perturbative theory. In this Chapter we will momentarily ignore the 16πG
factors in order to simplify the expressions. we will gradually reintroduce
them in the second part, with semiclassical approximations.
In a minisuperspace model one chooses a finite set of variables {qα}, which
completely fix an highly symmetric spacetime, and evaluates the metric fab

induced on the minisuperspace by the supermetric Gijkl. For example, in a
spatially homogeneous spacetime

ds2 = −N2(t)dt2 + a2(t)dΩ2
3 (2.1.1)

a good choice of variable could be the conformal factor a(t), to be accom-
panied by N(t) and N i = 0. It is important to notice that the metric fab,
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exactly as the supermetric, can be not positive semi-definite (this surely
happens in this example, since the variable a of the minisuperspace is the
conformal factor of the spacelike hypersurface, that correspond to the neg-
ative mode of Gijkl).
One way or another, one can always obtain an action of the form

S[qα(t), N(t)] =

∫ 1

0
dtN

[
1

2N2
fαβ(q)q̇

αq̇β − U(q)

]
=

∫
Ldt (2.1.2)

Such an action has the same form of the action of a relativistic particle in a
curved spacetime and then, with a variation respect of qα, gives an equation
of motion that describes a geodesic time evolution with a forcing term

1

N

d

dt

(
q̇α

N

)
+

1

N2
Γαβγ q̇

β q̇γ + fαβ
∂U

∂qβ
= 0 (2.1.3)

where Γαβγ is the connection respect to the metric fαβ. A variation respect
to the parameter N permits to write the constraint

1

2N2
fαβ(q)q̇

αq̇β + U(q) = 0 (2.1.4)

These equations clearly have to be consistent with the Einstein equation,
that means a solution (qα, N), once inserted in the original metric, must
give

Rµν(q
α, N) +

[
Λ− 1

2
R(qα, N)

]
gµν(q

α, N) = 0 (2.1.5)

This is not always guaranteed, hence only the cases when the equivalence is
true can be treated with minisuperspace.

Using canonical variables, can find as usual the momenta pα = fαβ
q̇β

N and
the Hamiltonian

H = N

[
1

2
fαβpαpβ + U(q)

]
= NH (2.1.6)

The equations of motion are

q̇α = N{qα, H} =
∂H

∂pα
, ṗα = N{pα, H} = − ∂H

∂qα
(2.1.7)

and the Hamiltonian constraint given by variations respect to N

H =
1

2
fαβpαpβ + U(q) = 0 (2.1.8)

grants again the invariance of the theory under time reparametrizations. In
fact, given a transformation t→ t+ ϵ(t), we have

δqα = ϵ(t){qα, H}, δpα = ϵ(t){pα, H}, δN = ϵ̇(t) (2.1.9)
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and the action variation

δS =

[
ϵ(t)

(
pα
∂H

∂pα
−H

)]1
0

(2.1.10)

vanishes if and only if ϵ(0) = ϵ(1) = 0, since the constraint is quadratic in
momenta.
In the case of the example (2.1.1), the minisuperspace action is

S[a(t), N(t)] =

∫ 1

0
dtN

[
− 6a

N2
ȧ+ (6k − a22Λ)a

]
=

=

∫ 1

0
dtN

[
− 1

24a
p2 + (6k − a22Λ)a

] (2.1.11)

where the momentum p is p = −12aȧN and k is respectively equal to 1, 0
or -1 if the spatially homogeneous manifold is spherical, flat or hyperbolic.
The Hamiltonian constraint descending from this action is

1

24a
p2 + (6k − a22Λ)a = 0 (2.1.12)

By means of canonical quantization, it is possible to define a time inde-
pendent wave function Ψ(qα) and write a minisuperspace Wheeler-DeWitt
equation

H(qα,−i ∂
∂qα

)Ψ(qα) = 0 (2.1.13)

Since the metric fαβ depends on qα, there can be some ordering issues in
the WDW equation.
Bringing on the spatially homogeneous example, one finds a continuous fam-
ily of Wheeler-DeWitt equations [20][

1

24

1

ai
∂

∂a

1

aj
∂

∂a

1

ak
− (6k − a22Λ)a

]
Ψ(a) = 0 (2.1.14)

depending from the real parameters i, j, k which respects the constraint i+
j+k = 1. They represent the arbitrariness in the ordering of the operator 1

a
and the derivatives respect to a. If we want to exclude part of the ordering
dependence from the differential problem, we can redefine the wave function

as Ψ(a) = a1+
k−i
2 Φ(b) with b = 6a2, thus the equation to solve is

d2Φ

db2
+

1

b

dΦ

db
−
(
k − b

18
Λ +

1

16b2
(j + 1)2

)
Φ = 0 (2.1.15)

where now only the parameter j appears. However, as we will see in the next
section, the effect of ordering is impossible to resolve in a semiclassical limit.
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The minisuperspace can be quantized also with the path integral formal-
ism. We still have a residual invariance under reparametrizations of N(t),
so we have to impose a gauge fixing condition that satisfies the following
restrictions[21]:

• it must completely fix the gauge arbitrariness, that means there must
be only one point of intersection between the surface identified in the
phase space by the constraint and the submanifold characterised by
the gauge fixing condition. This condition can be represented in some
cases by the relation δχ = N{χ,H} ̸= 0, since it means that a trans-
formation along the constraint surface does not preserve the gauge
fixing condition. However, if the hypersurface determined by the con-
straint is topologically non trivial, it can be more difficult to find a
suitable gauge fixing that respect this request. It is called the Gribov
problem.

• the gauge condition must be reachable by any path via some gauge
transformations which do not change the action

In this case a good gauge-fixing has the form

χ = Ṅ − χ∗(p, q,N) = 0 (2.1.16)

It can be shown with the Fradkin-Vilkovisky theorem[22][23] that the path
integral with such a gauge fixing is independent of χ∗ and its total action is

S =

∫ 1

0
dt[pαq

α −NH +Π(Ṅ − χ∗)] + Sgh (2.1.17)

where Π = Π(t) is a Lagrange multiplier associated to the gauge fixing and
Sgh is the ghosts’ contribution to the action. If we chose the gauge Ṅ = 0,
the ghost fields decouple from the physical quantities, then we obtain only
a constant Faddev Popov determinant, and we find again the equations of
motion of the theory without gauge fixing (2.1.7). Thus, the path integral
formula for the wave function

Ψ(q̄α) =

∫
DpαDq

αDNeiS[p,q,N ] (2.1.18)

where q̄α sets the boundary condition qα(1) = q̄α on the possible paths, is
reduced to

Ψ(q̄α) =

∫
dN

∫
DpαDq

αeiS[p,q,N ] (2.1.19)

This happens because with χ∗ = 0 the functional integration over Π forces N
to be constant along the path integral and its functional integral is reduced
to a Riemannian integration. A relevant question about this equation is the
interval of integration of N . If we rename

ψ(q̄α, N) =

∫
DpαDq

αeiS[p,q,N ] (2.1.20)
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the wave function ψ is solution of a Schrdinger equation respect to N and
the Hamiltonian H: with change of variable dtN = dN the wave functional
is

ψ(q̄α, N) =

∫
DpαDq

α exp

[
i

∫ N

0
dN ′ (pαq̇

α −H)

]
(2.1.21)

and it automatically solves the equation

i
∂ψ

∂N
= Hψ (2.1.22)

Hence,the Hamiltonian constraint over the total wave function (2.1.13) takes
the form

HΨ =

∫
dNHψ =

∫
dNi

∂ψ

∂N
= iψ|N2

N2
(2.1.23)

with N1 and N2 representing the extrema of integration. Clearly the WDW
constraint is respected only if the right hand side of the last equation is null
and the most used solutions are to take the N integration over a complex
closed contour or over a path from −∞ to +∞ with ψ → 0 when |N | → ∞.
Also in this case one can apply a Wick rotation and use the euclidean time
β = it. After integrating out the momenta, the Euclidean functional integral
is

Ψ(q̄α) =

∫
dN

∫
Dqαe−I[q

α(β),N ] (2.1.24)

with

I[qα(β), N ] =

∫ 1

0
dβN

[
1

2N2
fαβ(q)q̇

αq̇β + U(q)

]
(2.1.25)

We can define an Euclidean partition function for the minisuperspace

Z =

∫
dN

∫
Dqαe−I[q

α(β),N ] (2.1.26)

where the integration is carried over periodic paths.
Again the indefiniteness of the metric used in the action forces us to use
complex integration contours in order to obtain a meaningful path integral.

2.2 Semiclassical approximations

In order to make real computations it is common to use semiclassical limits
as the WKB approximation or the equivalent steepest descent method in
the path integral formulation.
In the WKB approximation we suppose to have a wave function with the
form Ψ = CeiS , where S, at the moment, is a generic function of the vari-
ables qα and C variate slowly respect to S with qα. If we want to make a
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semiclassical approximation, we need a scale parameter that permits to sepa-
rate classical from quantum phenomena. In this case we choose mp = G−1/2

as a large parameter and we reinsert it in the WDW equation, obtaining[
− 1

2m2
p

∇2 +m2
pU(q)

]
C(q)eiS = 0 (2.2.1)

where ∇ represent the covariant derivation respect to qα with the metric
fαβ. Then we expand the function S as S = S0m

2
p + S1 + ... and we equate

different orders of mp in eq (2.2.1). The leading one is

1

2
(∇S0)2 + U(q) = 0 (2.2.2)

that is the Lorentzian Hamilton-Jacobi equation and can be used in order
to find in another way the classical equations of motion, as we will show
below.
A canonical transformation (p, q) → (P,Q) with a second type generating
function G0(q, P ) fulfils the classical relations

P =
∂G0

∂q
, Q =

∂G0

∂P
(2.2.3)

In quantum mechanics, the equivalent transformation of the wave function
ψ(q), is given by

Ψ(P ) =

∫
dqe−iG(q,P )ψ(q) (2.2.4)

where G = G0 in a first order approximation in Plank’s constant. If we take
a WKB wave function and we look for a transformation

P = p− ∂S

∂q
, Q = q (2.2.5)

a good generator is G0(q, P ) = qP + S(q). The transformed wave function
result to be Ψ(P ) = δ(P ) to leading order, thus we can consider the equation

p = m2
p

∂S0
∂q

(2.2.6)

as a strong correlation between momenta and coordinates respected by wave
functions generated by S0. Moreover, if one consider the ordering arbitrari-
ness in eq (2.2.1), will immediately notice that all the emerging therms will
be of order O(m−1

p ) or lower, because the only source of mp factors is the
derivative of the wave function Ψ. That means at leading order the deriva-
tives have to act on Ψ and the possible q-depending terms can be set without
problems to the left side of derivatives. However, if one desires to make a
more accurate computation, must consider also higher orders where ordering
choices have tangible effects.
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At the moment, we do not have a good definition of classical time in our
quantum theory, however we can take the affine parameter of the evolution
of the function S0 as a proper time emerging in the semiclassical limit. This
is a meaningful choice, since if we take

d

ds
= fαβ

∂S0
∂qα

∂

∂qβ
(2.2.7)

where s is the proper time defined by ds = Ndt, we find the canonical

relation between momenta and velocities pα = fαβ
dqβ

ds .
After a differentiation respect to qγ of (2.2.2), one obtains

1

2

∂fαβ

∂qγ

∂S0
∂qα

∂S0
∂qβ

+ fαβ
∂S0
∂qα

∂2S0
∂qβ∂qγ

+
∂U

∂qγ
= 0 (2.2.8)

and, by plugging in pα and ds,

dpγ
ds

+
1

2m2
p

∂fαβ

∂qγ
pαpβ +m2

p

∂U

∂qγ
= 0 (2.2.9)

that is exactly eq (2.1.3), while (2.1.4) is already implied by the Hamilton-
Jacobi equation.
Hence,S0 is the classical Hamilton’s principal function, since it gives the
classical equations of motion, and eiS0 is a superposition of a set of classical
solutions of the spacetime evolution around which the WKB wave function
is peaked. Moreover S0 itself permits to define a semiclassical notion of time.
We want to apply the WKB formalism to the minisuperspace example con-
sidered previously (2.1.1), so we obtain the equation

1

24a

(
∂S0
∂a

)2

+ (6k − a22Λ)a = 0 (2.2.10)

In the regions classically allowed with aU(a) = (6k − a22Λ)a2 < 0 we find
two oscillatory solutions

Ψ
(1)
± (a) = exp

[
±i
∫ a

a0

da′a′
√

−(6k − a′22Λ)∓ iπ

4

]
(2.2.11)

where a0 is the point where the allowed region begins, i.e. 6k − a22Λ = 0.
On the other hand, when aU(a) > 0, we have quantum tunnelling and an
exponential behaviour

Ψ
(2)
± (a) = exp

(
±
∫ a0

a
da′a′

√
6k − a′22Λ

)
(2.2.12)

At this point boundary conditions are fundamental in choosing the right
combination of solutions of the WKB form of the WDW equation that grants
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continuity of the wave function in a0. The semiclassical time evolution of
the wave function can be computed with the derivative just defined and,

for example, one can find that the solution Ψ
(1)
+ (a) describes a contracting

universe, while Ψ
(1)
− (a) is an expanding spacetime[24].

The method equivalent to the WKB approximation in the path integral
quantization is the steepest descent technique. In this case one considers
the path integral wave function (2.1.24) and notes that classical solutions of
Euclidean gravity are minima of the action I, then they have more relevance
in the integration. The result, also in this case, is a wave function peaked
near to classical solutions of Euclidean gravity. We can expand the wave
function near a solution Icl and write

Ψ(q̄α) = e−Icl
∫
dN

∫
Dq̃αe−I2[q̃

α,N ] (2.2.13)

where q̃α is the difference q̃α = qα− qαcl and I2 is the second variation of the
action. In the same way the leading order of the partition function is

Z = e−Icl
∫
dN

∫
Dq̃αe−I2[q̃

α,N ] (2.2.14)

However the indefiniteness of the metric introduces some trouble, since these
solutions are just relative minima and not absolute. We will study the effects
of this problem later.

2.3 Inhomogeneous perturbations of the metric

Our aim is to treat a complete theory of quantum gravity, then, once found
a semiclassical limit in the minisuperspace toy model, we try to return to the
full theory in a perturbative way [12][25]. We take a WKB state ei(m

2
pS0+S1)

and we call ḡij(q
α) the classical solution of the equation of motion of the

action S0, while the field gij = ḡij + hij will be the complete spatial metric.
We consider some Inhomogeneous perturbations hij of the three metric near
to the minisuperspace model, hence the variations of action and Hamiltonian
are

S[gij , N ] = S0[ḡij(q
α), N ] + S2[q

α, hij , N ] (2.3.1)

H = N (H0 +H2) +N iHi (2.3.2)

The resulting Wheeler-DeWitt equation is[
− 1

2m2
p

∇2 +m2
pU(q) +

∫
d3xH2

]
Ψ[qα, hij ] = 0 (2.3.3)

where the operator ∇ acts only on qα, not on perturbations. If we consider
solution of the form

Ψ[qα, hij ] = ei(m
2
pS0+S1)ψ[qα, hij ] (2.3.4)
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At the leading order we clearly obtain again the Hamilton-Jacobi equation
(2.2.2) for S0 and we can define the semiclassical time ∂

∂t = ∇S0 · ∇. At the
next to leading order we have

ψ

[
∇S0 · ∇(S1 + ordering)− i

2
∇2S0

]
= i∇S0 · ∇ψ −H2ψ (2.3.5)

where we have included also the possible contributions from the ordering
arbitrariness. Given an Hilbert product (1.4.3) on the space of wave func-
tionals ψ, we set ⟨ψ[hij ]|ψ[hij ]⟩ = 1 and consequently d

dt ⟨ψ|ψ⟩ = 0. That

means
⟨
i∂ψ∂t

⏐⏐⏐ψ⟩ =
⟨
ψ
⏐⏐⏐i∂ψ∂t ⟩, hence the last product is real. Thus,an in-

ner product with |ψ⟩ of (2.3.5), shows that the left hand side of the WDW
equation have to be real, since H2 is Hermitian. The result is the condition

∇S0 · ∇[Im(S1 + ordering)]− 1

2
∇2S0 = 0 (2.3.6)

because S0 is the classical Hilbert-Einstein action and then it is real. Finally
the WDW equation becomes, after a redefinition ψ = eiRe(S1+ordering)ψ,

i
∂ψ

∂t
=

∫
d3xH2ψ (2.3.7)

that is an emerging nontrivial Schrdinger equation. Moreover the wave
functional has taken the form

Ψ[qα, hij ] = C(q)eiS0m2
pψ[qα, hij ] (2.3.8)

where C(q) is the usual WKB prefactor that now contains the term eiReS1−Im ordering

which varies slowly respect to eiS0m2
p with q. That means the Wheeler-

DeWitt equation reduces in a semiclassical limit to a quantum field theory
for the fluctuations hij in a classical fixed background ḡij .
In the path integral computation, the same perturbations hij give a partition
function

Z = e−Icl[ḡij ,N ]

∫
dN

∫
Dhije

−I2[hij ,N ] (2.3.9)

Actually there can be more than one classical solution of the equation of
motion, given a set of boundary conditions. In this case the complete parti-
tion function will be the sum of the contribution given by the saddle point
expansions made near to different classical spacetimes (or instantons). Ask-
ing which of these instantons is more relevant corresponds to searching the
best ground state for a quantum theory of gravity.

Variations respect to the metric

To make something a bit more practical, we have to compute the second
order variations of booth the Hamiltonian and the action. They are really
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strongly correlated, then we will find the second order variation of the action
in a covariant spacetime, and only in a second time we will introduce the
foliation and obtain the variation of the Hamiltonian function. As stated
in the first section, the relation gµρgρν = δµν brings some complications in
variational calculus respect to the metric tensor. In this section we will dis-
tinguish the variation of the inverse metric δgµν = h̃µν from the perturbation
of gµν , that we will call hµν , with indices risen by ḡµν , hµν . The requirement
of a Kronecker delta implies the transformation h̃µν = −ḡρµḡσνhρσ = −hµν .
In a similar way h = ḡµνhµν = −ḡµν h̃µν .
Moreover we will consider only variations of the metric hµν which are null
on the boundary and also have null normal derivatives there. This will per-
mit us to ignore the boundary terms. Thus, in spite of the complete action
(1.3.5), we will variate only the euclidean Lagrangian density

− 1

16πG

√
g(R− 2Λ) (2.3.10)

Where the prefactor 16πG has been reintroduced. At the first order we
obviously obtain an expression similar to the Einstein equation

I1 =
1

16πG

∫
M
d4x

√
ḡ[Rρσ ḡ

µρḡσν − 1

2
ḡµνR+ Λḡµν ]hµν (2.3.11)

The second variation will be

I2 =
1

2

δI1
δḡρσ

hρσ (2.3.12)

From [7] we know

δ
√
g =

1

2

√
ggµνhµν (2.3.13)

and

δRµν = −1

2
∇µ∇νh− 1

2
∇ρ∇ρhµν +∇ρ∇(µhν)ρ (2.3.14)

hence

I2 =
1

32πG

∫
M
d4x

√
ḡ

[
1

2
(hRµνhµν −

1

2
Rh2 + Λh2)− 2Rµσh

σνhµν+

+hµν(−1

2
∇µ∇νh− 1

2
∇ρ∇ρhµν +∇ρ∇µhνρ) +

1

2
Rhµνh

µν +
1

2
hRµνhµν

+
1

2
h∇ρ∇ρh− 1

2
h∇µ∇νhµν − Λhµνhµν

]
(2.3.15)

It can be put in a more familiar form with the definition of the Riemann
tensor

(∇µ∇γ −∇γ∇µ)hαν = R ρ
µγα hρν +R ρ

µγν hαρ (2.3.16)
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that implies, after a contraction with ḡαγ ,

∇α∇µhαν = ∇µ∇αhαν +R ρ
µ hρν −R α ρ

µ ν hαρ (2.3.17)

Consequently we can define the Lichnerowicz operator

∆µρνσ
L = −∇γ∇γ ḡ

µρḡνσ − 2Rµρνσ +Rµρḡνσ +Rµσ ḡνρ (2.3.18)

and obtain

I2 =
1

16πG

∫
M
d4x

√
ḡ

[
1

4
hµν∆

µρνσ
L hρσ −Rµσh

σνhµν +
1

2
hµν∇µ∇ρhνρ+

+
1

2
hRµνhµν −

1

8
Rh2 +

1

4
Λh2 − 1

2
h∇µ∇νhµν −

1

2
Λhµνhµν+

+
1

4
Rhµνh

µν +
1

4
h∇ρ∇ρh

]
(2.3.19)

On the spatial manifold

In a 3+1 dimensional spacetime the Lagrangian density has the form (1.3.17),
where we can substitute

Kij =
1

2N
(iġij −DiNj −DjNi) (2.3.20)

where the imaginary unit i comes from the Wick rotation. A good choice is
taking N i = 0, that gives

LE =
1

16πG

√
3gN [−3R+

1

4N2
ġij ġ

ij − 1

4
ġ2 + 2Λ] (2.3.21)

with ġ representing the trace ġijg
ij and 3g being the determinant of the

spatial metric gij . The second variation of the new part containing time
derivatives of the metric is√

3ḡ

N

[
1

4
hij

∂2hij
∂t2

− 1

4
h
∂2h

∂t2

]
(2.3.22)

if the background metric is static ˙̄gij = 0. Hence,the variation of the action
after a space-time separation is

I2 =
1

16πG

∫
t
dt

∫
Σt

d3x

√
3̄gN

[
1

4
hij∆

ikjl
L hkl −Rjkh

kihij +
1

2
hij∇i∇khjk+

+
1

2
hRijhij −

1

8
3Rh2 +

1

4
Λh2 − 1

2
h∇i∇jhij −

1

2
Λhijhij +

1

4
3Rhijh

ij+

+
1

4
h∇k∇kh− 1

4N2
hij

∂2hij
∂t2

+
1

4N2
h
∂2h

∂t2

]
(2.3.23)
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In case one prefers to use the canonical quantization, one will obtain H =
NH and, since πij is already quadratic in H, the only part to consider is
−
√

3g(3R−2Λ). This is substantially the 3-dimensional case of the variation
of the action found above, then

H2 = 16πGh−1/2Gijklπ
ijπkl +

1

16πG

√
3̄g

[
1

4
hij∆

ikjl
L hkl −Rjkh

kihij+

+
1

2
hij∇i∇khjk +

1

2
hRijhij −

1

8
3Rh2 +

1

4
Λh2 − 1

2
h∇i∇jhij −

1

2
Λhijhij+

+
1

4
3Rhijh

ij +
1

4
h∇k∇kh

]
(2.3.24)

where covariant derivatives and the Riemann tensor are computed re-
spect to the background metric ḡij .
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Chapter 3

Zero point energy

In this chapter we will explain how to compute a semiclassical approximation
of the zero point energy of a spacetime of pure gravity. We will stress and
try to manage the most relevant criticalities in a one loop computation in
quantum gravity.

WDW equation as a Sturm-Liouville problem

First of all, we have to put the WDW equation in a more transparent form[5].
The Einstein equation, that describes the dynamics of a classical spacetime,
is

Rµν −
1

2
gµνR+ Λcgµν = 0 (3.0.1)

when we exclude any matter field from the system. However, in a quantum
theory, a vacuum energy will emerge, so we can add an energy momentum
tensor to the right side Tµν = −⟨ρ⟩gµν . This contribution can be interpreted
as an induced cosmological constant and moved again to the left side

Rµν −
1

2
gµνR+ Λeffgµν = 0 (3.0.2)

There Λeff is the effective cosmological constant, equal to the classical term
Λc summed with the quantum effects represented by Λq. Clearly the energy

density, given by Tµνu
µuν , is ⟨ρ⟩ = Λq

8πG . With the Hamiltonian formalism
described above, we have

[−
√

3g
3
R+ (16πG)2g−1/2Gijklπ

ijπkl]Ψ[gij ] = −2
√

3gΛeffΨ[gij ] (3.0.3)

If we rename

1

2
[−
√

3g
3
R+ (16πG)2g−1/2Gijklπ

ijπkl] = Λ̂Σ (3.0.4)

we obtain
Λ̂ΣΨ[gij ] = −ΛeffΨ[gij ] (3.0.5)
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Let’s consider again the minisuperspace spatially homogeneous model, the
WDW equation with all the 16πG factors is[

−a−q ∂
∂a
aq

∂

∂a
+

9π2

4G2
(ka2 −

Λeff
3

a4)

]
Ψ(a) =

=

[
− ∂2

∂a2
− q

a

∂

∂a
+

9π2

4G2
(ka2 −

Λeff
3

a4)

]
Ψ(a) = 0

(3.0.6)

where has been chosen an ordering convention i = 1 − q, j = q and k = 0.
This expression has the form of the Sturm-Liouville differential equation[26]

d

dx

(
p(x)

dy(x)

dx

)
+ q(x)y(x) + λw(x)y(x) = 0 (3.0.7)

with a normalization of the function y(x) defined by∫
dxw(x)y∗(x)y(x) (3.0.8)

Such a differential equation is usually treated as a variational problem trough
the functional

−
∫
dxy∗(x)

[
d
dx

(
p(x) ddx

)
+ q(x)

]
y(x)∫

dxw(x)y∗(x)y(x)
= F [y(x)] (3.0.9)

If y(x) is an eigenfunction of the differential equation with eigenvalue λ, the
functional F assume the value λ, while the search of a minimum for F [y(x)]
respect to y or y∗ variations gives the following Euler-Lagrange equation[

d
dx

(
p(x) ddx

)
+ q(x)

]
y(x)∫

dxw(x)y∗(x)y(x)
+ λm

w(x)y(x)∫
dxw(x)y∗(x)y(x)

= 0 (3.0.10)

where λm is the minimum of F . It is equivalent to the Sturm-Liouville
problem (3.0.7), hence a local minimum to F is an eigenfunction of the
differential equation and the global minimum corresponds with the lowest
eigenvalue.
With the substitutions

x→ a (3.0.11)

p(x) → aq (3.0.12)

q(x) →
(
3π

2G

)2

aq+2 (3.0.13)

w(x) → aq+4 (3.0.14)

y → Ψ(a) (3.0.15)

λ→ Λ

3

(
3π

2G

)2

(3.0.16)
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the equation we have to consider is∫
daaqΨ∗(a)

[
− ∂2

∂a2
− q

a
∂
∂a +

9π2

4G2 (ka
2 − Λeff

3 a4)
]
Ψ(a)∫

daaq+4Ψ∗(a)Ψ(a)
=

3Λπ2

4G2
(3.0.17)

The generalisation to the complete quantum theory permits to hold the for-
mal structure of the functional F derived from the Sturm-Liouville problem.
By multiplying the expression (3.0.5) by Ψ∗[gij ] and integrating it on gij ,
we can rewrite it as an expectation value of the operator Λ̂Σ

1

V

∫
D[gij ]Ψ

∗[gij ]
∫
Σ d

3xΛ̂ΣΨ[gij ]∫
D[gij ]Ψ∗[gij ]Ψ[gij ]

= −Λeff (3.0.18)

with the normalization condition given by the Hilbert product (1.4.3). At
this point it could be useful to exclude the classical effects, then we de-
compose again the spacelike metric gij in a stationary background part ḡij ,
which is solution of the classical Einstein equation, and a perturbation hij

gij = ḡij + hij (3.0.19)

and we expand near ḡij the operator Λ̂Σ. Thus,eq (3.0.18) becomes

1

V

⟨Ψ|
∫
Σ d

3x
[
Λ̂
(0)
Σ + Λ̂

(1)
Σ + Λ̂

(2)
Σ + ...

]
|Ψ⟩

⟨Ψ|Ψ⟩
= −Λeff (3.0.20)

where Λ̂0
Σ is independent of hij and equal to Λc, since ḡij is a classical so-

lution. In (3.0.4) the kinetic term is already quadratic in momenta, so we
only have to expand

√
3g 3R to the second order. It is important to notice

that, thanks to definition (3.0.4), Λ̂
(2)
Σ is substantially proportional to the

variation of H2 found in section 2.3, except for the absence of Λ, that has
been moved to the right side before the functional derivative.

Energy from euclidean path integral

A similar expression can be reached also from the partition function Z[27].
If we define as F = − lnZ the free energy of the statistical system associated
to the Euclidean section, it is useful to consider the functional derivative

2√
−g

δF

δgµν
=

∫
Dgµν

δI[gµν ]
δgµν

e−I[gµν ]

Z
(3.0.21)

Now, the functional derivative of the action gives the left side of the Einstein
equation (3.0.1), so we have again an expression for ⟨Tµν⟩. With a use of
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the cosmological constant similar to what has been made for the WDW
equation, we obtain

2√
−g

δF

δgµν
= −Λeffg

µν (3.0.22)

where now F do not contain anymore Λeff in the action. Moreover it is
possible to apply a saddle point approximation, that gives F = F0+F1loop+
.... Clearly the classical part gives 2√

−g
δF0
δgµν

= Λcg
µν , since there is no

functional integration, while the derivative of the one loop expansion of the
free energy is an estimation of the contribution of quantum fluctuations Λq.
With N i=0, the cosmological energy density is

2√
−g

δF

δN
= −Λeff (3.0.23)

3.1 Disentangling the gauge modes

If we want to make some real calculation with booth quantization methods,
we have to identify the meaningful degrees of freedom in hij and separate
them from the pure gauge variables. With this aim, first of all we decompose
the tensor hij .

Orthogonal decomposition

We have defined Gijkl and chosen a background metric ḡij , so we can in-
troduce an inner product on the tangent space of the superspace, i. e. the
space of metric variations,

⟨h, k⟩ :=
∫
Σ

√
3ḡGijklhij(x)kkl(x)d

3x (3.1.1)

and an analogue product in the cotangent space

⟨p, q⟩ :=
∫
Σ

√
3ḡGijklp

ij(x)qkl(x)d3x (3.1.2)

A good decomposition, in order to make computations, is the following[28]:

hij = hTTij + (Lξ)ij +
1

3
(σ + 2∇ · ξ)ḡij (3.1.3)

where the longitudinal and traceless part (Lξ)ij is

hLij = (Lξ)ij = ∇iξj +∇jξi −
2

3
ḡij∇ · ξ (3.1.4)

with ξi representing a covariant field, the trace part is

(σ + 2∇ · ξ) = h = hii (3.1.5)
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while hTTij is, as we will see below, the transverse and traceless part of the
symmetric field hij , that means

hi TTi = 0, ∇ihTTij = 0 (3.1.6)

In fact the traceless condition is trivially satisfied by construction, since hTTij
is defined by

hTTij = hij −
1

3
hḡij − (Lξ)ij (3.1.7)

while the transversality request is equivalent to the equation

∇i(Lξ)ij = ∇i

(
hij −

1

3
hḡij

)
(3.1.8)

It can be shown that always exists a unique solution ξi of the last equation,
modulo conformal killing vectors. A conformal killing vector is a vector
field such that the transformation of coordinates it generates preserves the
conformal structure of the metric, then gij → Ωgij . Given a vector field vi,
this property is equivalent to

∇ivj +∇jvi =
2

3
ḡij∇ · v (3.1.9)

and (Lv)ij = 0. Thus,the arbitrariness in the choice of ξi respect to con-
formal killing vectors can’t influence hTTij because of definition (3.1.7) and
the decomposition is unique. Such decomposition is also orthogonal, since
1
3hḡij is poinwise orthogonal to hTTij and (Lξ)ij as they are traceless, and

the product ⟨(Lξ)ij , hTTij ⟩ is clearly null if we integrate by parts: it can be
easily seen that

⟨(Lξ)ij , hTTij ⟩ = −2⟨ξi,∇ihTTij ⟩ = 0 (3.1.10)

if the tensor field hij is null on the boundary of the three-surface.
Now we will study the behaviour of different components under conformal
transformations and diffeomorphisms. Let’s consider a conformal transfor-
mation with conformal factor ϕ: it acts as ḡij → g̃ij = ϕ−4ḡij on the back-
ground and the variation of the metric will clearly scale in the same way.
The transverse traceless decomposition (3.1.7) can be seen as

hTTij = ϕ4
(
h̃ij −

1

3
h̃g̃ij

)
− (Lξ)ij (3.1.11)

Since the connections coefficients, under conformal maps, transform as

Γ̃ijk = Γijk + 2(δij∇k lnϕ+ δik∇j lnϕ− ḡjk∇i lnϕ) (3.1.12)

the following equations are true:

(Lξ)ij = ϕ4
(
∇̃iξj + ∇̃jξi −

2

3
g̃ij∇̃kξk

)
= ϕ4(L̃ξ)ij (3.1.13)

ϕ−4∇i

(
hij −

1

3
hḡij

)
= ∇̄i

(
h̃ij −

1

3
h̃g̃ij

)
(3.1.14)
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and we can define

h̃TTij = ϕ−4hTTij =

(
h̃ij −

1

3
h̃g̃ij

)
− (L̃ξ)ij (3.1.15)

The component h̃TTij is obviously traceless and also transverse, because the
condition

∇̃i(L̃ξ)ij = ∇̃i

(
h̃ij −

1

3
h̃g̃ij

)
(3.1.16)

is completely equivalent to (3.1.8), as can be shown with the help of (3.1.12),
(3.1.13) and (3.1.14), that means they have the same solution ξi. Thus,a
conformal transformation do non change the TT transformation, except for
a multiplicative factor ϕ−4.
If we consider a three dimensional diffeomorphism generated by an infinites-
imal coordinate shift xi → xi + vi, the change in the metric is δgij =
∇ivj +∇jvi, while the metric variation respect to ḡij becomes hij → hij +
∇ivj+∇jvi. The new longitudinal part must solve the new form of equation
(3.1.8)

∇i(Lξ′)ij = ∇i

[
hij +∇ivj +∇jvi −

1

3
(h+ 2∇ · v)ḡij

]
(3.1.17)

which imply ξ′i = ξi + vi, since (3.1.8) is linear, and

h′
TT
ij = hTTij (3.1.18)

Hence,the longitudinal part is a pure gauge contribution, because the phys-
ical system do not change under diffeomorphisms and the transformation
generated by −ξi nullifies it. The only therm corresponding to a variation
of the intrinsic conformal geometry is hTTij , while the trace component hḡij
generates conformal transformations.

Decomposition of Λ̂
(2)
Σ

The part containing momenta in the operator Λ̂
(2)
Σ is an inner product of

those defined in the precedent paragraph, then we can decompose the mo-
menta and write

Gijklπ
ijπkl = π(TT )ijπTTij − 1

6
π2 + π(L)ijπLij (3.1.19)

In general, as explained in the first chapter, to different boundary conditions
correspond different wave functionals solving the WDW equation. In this
work we will consider only Gaussian wave functionals of the type

Ψ[hij ] = N exp

{
− 1

4G

[
⟨h,KTT −1h⟩TT + ⟨(Lξ),KL −1(Lξ)⟩+

+⟨h,KTr −1h⟩Tr
]} (3.1.20)
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where K are a set of propagators we will determinate with a variational
method. We are looking for a ground state of quantum gravity, that we
expect to be located in a minimum of the potential. A minimum can always
be approximated by an harmonic oscillator, so a Gaussian structure of the
wave functional seems to be a reasonable assumption. Moreover, this choice
has been made in order to reproduce the separation of momentum compo-

nents observed in Λ̂
(2)
Σ also in the part containing the field hij . Such a wave

functional can be factorised in

Ψ[hij ] = NΨ[hTTij ]Ψ[ξi]Ψ[σ] (3.1.21)

and permits to neglect Λ̂
(1)
Σ and cross terms between different components

in the decomposition of Λ̂
(2)
Σ , since the first moment of a Gaussian integra-

tion is always null. The traceless-transverse decomposition also involves
a redefinition in the measure of functional integration, in fact we have
Dhij → DhTTij DσDξJ , where J is the Jacobian determinant induced by
the new variable ξ [29]

J =

[
det

(
∆gij +

1

3
∇i∇j −Rij

)]1/2
(3.1.22)

We have

1

V

∫
DhTTij DσDξJΨ

∗[hij ]
∫
Σ d

3x
[
Λ̂TTΣ + Λ̂ξΣ + Λ̂σΣ

]
Ψ[hij ]

⟨Ψ|Ψ⟩
= −Λq (3.1.23)

where Λ̂TTΣ Λ̂ξΣ and Λ̂σΣ are the components of the variation Λ̂
(2)
Σ .

The factorised structure of the wave functional permit us to treat separately
different parts of the perturbation and, since we have shown ξ is pure gauge,
we can fix ξ = 0. The contribution of Λ̂ξΣ will be null and the determinant
J will be cancelled by an equal term at the denominator.
Once treated 3-diffeomorphisms, there is still one exceeding degree of free-
dom in the wave functional: the Hamiltonian constraint hides another non
physical component of hij , but it can’t be solved trivially. Despite this ob-
stacle, following the work of ADM[10], we can observe that, at the first order
in the perturbation of the Hamiltonian constraint, we have(

−∆+
1

2
R

)
σ = −H = −RijhTTi j − (16πG)2Gijklπ̄

ijπkl (3.1.24)

That means it is possible, in linear gravity, to take σ as the momentum
associated to semiclassical time t = −1/2∆π. The choice to consider the
trace component as the degree of freedom associated to classical time seems
natural since, as we observed in the first chapter, the trace has negative
signature respect to the superspace metric given by eq. (1.3.22).
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In the full theory, as already widely discussed, the constraint isn’t such
simple, but in general it is possible to write something with the same form,
where the right side is now a nonlinear function of hij and πij . Thus, one
can solve this equation, at least by a perturbation-iteration expansion, for
h.
The final result is that the only physical degrees of freedom are held by hTTij ,
so we have

Λ̂TTΣ =
(16πG)2

2
g−1/2Gijklπ

(TT )ijπ(TT )kl+

+
1

2

√
3ḡ

[
1

4
hij∆

ikjl
L hkl −Rjkh

kihij +
1

4
3Rhijh

ij

] (3.1.25)

In a 3-dimensional torsion free manifold the Weyl tensor, i. e. the traceless
part of the Riemann tensor, is null, that means all the information in Rijkl

is already present in Rij . Then it is true the equivalence

Rikjl = gijRkl − gilRkj − gkjRil + gklRij −
R

2
(gijgkl − gilgkj) (3.1.26)

and the operator Λ̂TTΣ can be rewritten as

Λ̂TTΣ =
(16πG)2

2
g−1/2Gijklπ

ijπkl +
1

8

√
3ḡ
[
−hij∇k∇khij + 2hijRilh

l
j

]
(3.1.27)

that is the energy density operator for the graviton.
The next step will be to calculate the contribution to the one loop cosmo-
logical constant brought by the traceless transverse sector of the operator

Λ̂
(2)
Σ

⟨Λ̂TTΣ ⟩ = 1

V

⟨Ψ|
∫
Σ d

3xΛ̂TTΣ |Ψ⟩
⟨Ψ|Ψ⟩

(3.1.28)

Gauge fixing in path integral

If one prefer to work with the path integral from expression (3.0.22), one
have to put more attention on determinants coming from changes of variables
and gauge fixing. We will mainly work with the totally covariant form of
path integral, as happens in [30] and [3]. Obviously the decomposition
showed in 3.1 is valid for each dimension of the manifold where the tensor
hµν lives, at the cost of substituting 3 with the dimension of the manifold
d in all denominators, since gµνg

µν = d. In this situation, if we consider
only spacetimes with null classical cosmological constant Λc, ḡµν describes
an Einstein spacetime with Rµν = 0.
The integration measure is Dhµν = DhTTµν DhD(Lξ)µν where the space of 2-
tensors (Lξ)µν is substantially isomorphic to the space of vector fields ξ after
a quotient over conformal killing vectors. Now we are capable to manage
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the gauge freedom brought by diffeomorphisms of the type xµ → xµ + vµ,
which induces the change Lξ → L(ξ + v) =: Lξ(v) and h → h + 2∇µv

µ in
the metric variations. We want to treat these nonphysical fields in the usual
way in path integral quantum field theory, introducing a Dirac delta in order
to fix gauge freedom with the following identity

1 =

∫
Dvδ(G(Lξ(v))) det

(
δ(G(Lξ(v)))

δv

)
(3.1.29)

The most convenient gauge fixing function G would be Lξ(v) itself, but the
operator L has not a well defined determinant, since it is an operator that
goes from vector fields to 2-tensors. To avoid this complication, we consider
the module of the longitudinal mode ⟨L(ξ + v), L(ξ + v)⟩. The product
is evaluated respect to the supermetric, which is positive definite on the
longitudinal sector, since Lξ has null trace. In this case it reduces to

⟨L(ξ + v), L(ξ + v)⟩ =
∫
M
d4x

√
−ḡL(ξ + v)µνL(ξ + v)µν (3.1.30)

With an integration by part, we obtain ξL†Lξ in the integrand, thus setting
Lξ(v) to zero is equivalent to set ξ(v)L†Lξ(v) = 0 and consequently L†Lξ(v) =
0. Then we will use the square root of the determinant of the quadratic
operator L†L.
This determinant is independent of Lξ and the action I2 is gauge invariant,
so we can shift the variable hµν to hµν −∇µvν −∇νvµ and obtain∫

DhTTDhD(Lξ)e−I2[h
TT ,Lξ,h] =

=

∫
Dv

∫
DhTTDhD(Lξ)e−I2[h

TT ,h−2∇µvµ]δ(Lξ) det
(
L†L

)1/2
(3.1.31)

After a last change of variable σ = h− 2∇µv
µ, the functional integral is∫

Dv

∫
DhTTDσe−I2[h

TT ,σ] det
(
L†L

)1/2
(3.1.32)

where the integration over v is an infinite multiplicative factor that can be
cancelled by a normalization. The quadratic part of the action is

I2 =
1

16πG

∫
M
d4x

√
ḡ

[
1

4
hµν∆

µρνσ
TT hρσ +

3

32
σ∇µ∇µσ

]
(3.1.33)

thus we can reduce the partition function to

Z = det
hTT

(∆TT )
−1/2 det

ξ
(L†L)1/2 det

σ
(−∆)−1/2 (3.1.34)
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with ∆ = −∇µ∇µ. The next step is computing the factor det
(
L†L

)1/2
in

order to obtain a more manageable expression.
We know from Gaussian integration that

det
(
L†L

)−1/2
=

∫
Dξe−

1
2

∫
M d4x

√
ḡξL†Lξ (3.1.35)

were conformal killing vectors, which compose the kernel of L, are excluded
from the integration over ξ. The quadratic operator has the form

(L†L) νµ = −2

(
−∆δ ν

µ +

(
1− 2

d

)
∇µ∇ν +R ν

µ

)
(3.1.36)

but it can be simplified even more with the assumption Rµν = 0 and d = 4.
Moreover, with the help of Hodge decomposition, we can write

ξ = dψ + ξH + δω = ∇ψ + ξH + ξT (3.1.37)

where d now stands for the external derivative, and δ is the adjoint operator
respect to d. In this decomposition ψ is a scalar field, ξH is an harmonic
vector field (∆ξH = 0) and ω is a 2-form that generate the transverse part of
the vector (∇·ξ = 0). In fact the harmonic part often can be neglected, since
the dimension of the space of harmonic n-forms is equal to the dimension
of the nth cohomology group of the manifold associated with ḡµν [3]. The
expression ξµ(L†L) νµ ξν becomes

2ξTµ∆ξTµ − 3ψ∆2ψ − ξHµ∇µ∇νξHν (3.1.38)

The change of variable Dξ → DξTDξHDψ brings a Jacobian factor with
the form det(∆)1/2 and therefore

det
(
L†L

)1/2
= det

ψ
(−∆)1/2 det

ξT
(∆)1/2 det

ξH
(∇µ∇ν)1/2 (3.1.39)

Hence,the effective partition function is

Z = det
hTT

(∆L)
−1/2 det

σ
(−∆)−1/2 det

ψ
(−∆)1/2 det

ξT
(∆)1/2 det

ξH
(∇µ∇ν)1/2

(3.1.40)
The field σ and ψ are both scalar, then it would be interesting to know
whether the two determinants cancel each other. With this aim, it is impor-
tant to consider over which field configuration we are effectively integrating.
We have excluded all configurations of ξ corresponding to conformal killing
vectors and the conformal killing condition (3.1.9) applied to the longitudi-
nal sector of ξ becomes

∇µ∇νψ =
1

d
gµν∆ψ (3.1.41)
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Yano and Nagano have shown that, if a connected Einstein space of dimen-
sion d > 2 admits a non-trivial conformal killing vector field which do not
generates an homothetic transformation, then it has constant curvature and
is homeomorphic to the sphere Sd[31]. In this paper we will mainly discuss
Schwarzschild and Minkowski spacetimes, that means we can reduce the
excluded conformal killing vectors to true killing vectors and homotheties.
In particular the Schwarzschild spacetime do not admit conformal killing
vectors at all, thus only killing vectors remain out of functional integration
and correspond to the configurations of ψ whose second derivatives are null.
Anyway some of the zero modes of the Laplacian is not comprehended in the
integral over ψ, while they are considered in the determinant given by the
field σ. So it is not possible to simplify expression (3.1.40) without taking
the decision to exclude conformal modes of perturbation.

3.2 Expectation value of Λ̂
(2)
Σ

The wave functional form (3.1.20) is convenient in computing expectation
values, in fact we have

⟨Ψ|hTTij (x)hTTjk (y) |Ψ⟩
⟨Ψ|Ψ⟩

= KTT
ijkl(x, y) (3.2.1)

Moreover, with the canonical substitution of momenta in Dirac quantization
we can easily compute also ⟨πijπkl⟩[6]. We have

πij(x)πkl(y) |Ψ⟩ = − δ2Ψ[h]

δhij(x)δhkl(y)
(3.2.2)

and then

πij(x)πkl(y) |Ψ⟩ = 1

2
K−1 klij(x, y)

√
g(x)

√
g(y)Ψ[h]−

−1

4

∫
d3zd3z′

√
g(x)

√
g(y)

√
g(z)

√
g(z′)K−1 mnij(x, z′)hmn(z)×

×K−1 klpq(y, z′)hpq(z
′)Ψ[h]

(3.2.3)

After a contraction with ⟨Ψ| it becomes

⟨Ψ|πij(x)πkl(y) |Ψ⟩
⟨Ψ|Ψ⟩

=
1

4
K−1 ijkl(x, y)

√
g(x)

√
g(y) (3.2.4)

These results permit us to rewrite the expectation value of Λ̂TTΣ in the form

⟨Λ̂TTΣ ⟩ = 1

8V

∫
Σ
d3x
√

3ḡGijkl

[
(16πG)2KTT −1 ijkl(x, x)+

+∆ j
TT mK

TT imkl(x, x)
] (3.2.5)
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where the transverse Laplacian operator ∆ j
TT m is

∆ j
TT m = ∆δjm + 2Rjm = ∆j

L m − 4Rjm +Rδjm (3.2.6)

We do not have any expressions for the propagatorKTT , but we can write it
as a combination of eigenfunctions of the potential energy operator, which
weights will be set by the minimisation of the energy of the spacetime.
Since we are interested only in some expectation values, we can consider
only diagonal terms in this representation, hence

KTT
ijkl(x, y) =

∑
τ

h
(τ)TT
ij (x)h

(τ)TT
kl (y)

2λTT (τ)
(3.2.7)

where h
(τ)TT
ij is a complete set of eigenfunctions of ∆TT normalized respect

to the inner product ⟨·, ·⟩, while λTT (τ) is a set of variational parameters
will be fixed by means of minimisation of the zero point energy.
Thus,the expectation value is

⟨Λ̂TTΣ ⟩ =
∑
τ

1

8V

[
(16πG)2λTT (τ) +

ωTT 2(τ)

λTT (τ)

]
(3.2.8)

with ω2(τ) representing the eigenvalues of the eigenfunctions h(τ). A quick
differentiation respect to the parameters λTT (τ) shows that the energy den-

sity has a stationary point for λTT (τ) =
√
ωTT 2

16πG . The following expression
can be taken as good approximation of the cosmological energy density:

⟨Λ̂TTΣ ⟩ = 1

V

∑
τ

2πG
√
ωTT 2(τ) (3.2.9)

The last expression make sense only if ω2 > 0, then eventual negative modes
must be considered separately.
At this point the main task in order to have an estimation of energy is to
find the eigenvalues and eigenfunctions of the differential operator ∆TT . It
can be quite hard, then an alternative way is the WKB method used by
’tHooft in the brick wall problem[32], that consist in counting the density
of modes as a function of the energy eigenvalue ω2.
However, also with this procedure there is a tricky aspect: In general the
operator ∆TT we want to study is not an endomorphism of the traceless
transverse subspace. the transverse Laplacian operator ∆j

TT a = ∆δja+2Rja
appears in the expectation value of the cosmological constant in a sandwich
product between two time the traceless-transverse component of the metric
variation hTT i

j ∆j
TT ah

TT a
i . We can immediately see the Laplacian ∆ =

−∇k∇k is a scalar operator, then it conserves the traceless property and
symmetry of hTTi j, while Ria, seen as an operator acting on the superspace, is

46



not in general an endomorphism of the traceless-transverse sector, moreover
it isn’t an endomorphism of symmetric matrices.
The notion of eigenvalue and eigenvector clearly has sense only when we
consider endomorphisms over a certain space, so we have to reduce the
operator ∆j

TT a to an endomorphism of the traceless-tansverse sector of
metric variations. This is possible because, as we stated above, ∆TT is
totally contracted in the inner product and in this product the different
subspaces we are going to consider are orthogonal to each other.
first of all we substitute the Ricci tensor acting on the metric variation
2Riah

TT a
j with a symmetrized form Riah

TT a
j + Rjah

TT ai and we subtract
the trace in order to have a traceless tensor

2Riah
TT a
j → Riah

TT a
j +Rjah

TT ai − 2

3
δijR

k
ah

TT a
k (3.2.10)

In this way we have obtained a traceless symmetric tensor from ∆j
TT ah

TT a
i

without modifying the inner product. The following step should consist
in removing an eventual emerging longitudinal part. We can separate the
modified transverse Laplacian operator in the Laplacian and a second part
containing the Ricci tensor.

∇i∇k∇khTT i
j = ∇k∇i∇khTT i

j −R k
ikl ∇lhTT i

j −R i
ikl ∇khTT l

j +

+R l
ikj ∇khTT i

l = ∇k∇i∇khTT i
j +R l

ikj ∇khTT i
l

(3.2.11)

After another commutation between derivatives and using the null diver-
gence of hTT i

j

∇i∇k∇khTT i
j = −∇kR i

ikl h
TT l
j +∇kR l

ikj h
TT i
l +R l

ikj ∇khTT i
l (3.2.12)

In a three-dimensional manifold the Riemann tensor can be written in terms
of the Ricci tensor, so

∇i∇k∇khTT i
j = ∇kRklh

TT l
j +∇k(Rklh

TT l
j − gkjR

l
ih
TT i
l +Rijh

TT i
k )+

+Rkl∇khTT l
j −Rli∇jh

TT i
l

(3.2.13)

The contracted Bianchi identities grant null divergence of the Ricci tensor,
hence we can write

∇i∇k∇khTT i
j = 3Rkl∇khTT l

j −∇jR
l
ih
TT i
l + hTT i

k ∇kRij −Rli∇jh
TT i
l

(3.2.14)
The divergence of the second part of the modified transverse Laplacian op-
erator applied to hTT is

∇iR
i
kh

TT k
j +∇iRjkh

TT ki − 2

3
∇jR

k
l h

TT l
k (3.2.15)
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and, summing the two contributions, the total divergence is

∇j∆
j
TT ah

TT a
i = ∇j(∆h

TT j
a +Rjah

TT a
i +Riah

TT aj − 2

3
δjiR

k
ah

TT a
k )

= −2Rkl∇khTT l
i +Rjk∇ih

TT k
j +

1

3
∇i(R

j
kh

TT k
j )

(3.2.16)

We have just shown that in general the transverse Laplacian operator does
not preserve the transversality of hTTij . Removing the emergent longitudi-
nal part is not trivial, because one have to find a vector η such that the
divergence ∇i(Lη)ij is equal to the latter expression.

∇j(Lη)ij = ∇j∆
j
TT ah

TT a
i (3.2.17)

The eigenvalue equation to solve should have the form

∆hTT i
j +Riah

TT a
j +Rjah

TT ai − 2

3
δijR

k
ah

TT a
k − (Lη)ij = λhTT i

j (3.2.18)

All these problems are far more easy to manage in the particular case of
spatial manifold solving the Einstein equation: in this situation the 3d Ricci
tensor has the form

Rij = Λcgij (3.2.19)

and trivially commutes with covariant derivatives. Moreover also the diver-
gence of the Laplacian operator (3.2.14) is null, since, with this form of the
Ricci tensor, the first term is equal to the divergence of hTT , the derivatives
of Rij are null and RijhTTij is proportional to the trace hTT i

i = 0.
In this case, if one is capable to reduce the problem to an eigenvalue equation
of the type

d2f(x)

dx2
+ (ω2 − V (x))f(x) = 0 (3.2.20)

as happen for example with a separation of radial modes and spherical har-
monics in a spherically symmetric spacetime, it is possible to apply the
WKB approximation to the wave function f(x) and define the wave number
k2 = ω2 − V . In such a framework one can obtain the number ν of modes
of the function f with energy less or equal than a certain level ω2 with the
relation

πν =

∫
dx

√
k2 (3.2.21)

where the domain of integration corresponds with the region where k2 > 0.
Once found the mode density dg

dω , where g(ω) is the number of modes with
energy less than ω of the metric perturbation h, the sum over the complete
set of eigenvalues can be substituted with the integration∫ ∞

0
dωω

dg

dω
(3.2.22)
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Thus,we have

− Λq =
Gπ

V

∫ ∞

0
dωω

2dgTT (ω)

dω
(3.2.23)

This integral usually gives divergent results, which can be regularized and
renormalized at first loop. However it isn’t a definitive solution, since the
quantum field theory of the spin 2 graviton is not renormalizable at each
perturbative order with a finite set of running parameters.

Spherically symmetric spaces

Let’s consider a spherically symmetric spatial manifold. In a wide set of
cases, its background metric can be written as

ḡijdx
idxj =

dr2

1− b(r)
r

+ r2dΩ2
2 (3.2.24)

where b(r) is an arbitrary positive function and dΩ2 is the measure of the
2-sphere dθ2 + sin2 θdϕ2. The Ricci tensor of these spaces is

Rij = diag

[
b′(r)

r2
− b(r)

r3
,
b′(r)

2r2
+
b(r)

2r3
,
b′(r)

2r2
+
b(r)

2r3

]
(3.2.25)

while the curvature scalar is 3R = 2 b
′(r)
r2

.
In such a class of manifolds we can follow the Regge-Wheeler decomposition
[33] when dealing with the perturbations hij . We consider modes with fixed
parity, angular momentum l and m, and frequency ω2. Since the system is
spherically symmetric, we can set the angular momentum component along
the z axis m as we prefer in the interval (−l,−l+1, ..., l) and we will choose
m = 0.
In the best case, that means it is possible to write a meaningful eigenvalue
equation for the modified operator ∆L, we expect to find something like[

− d2

dx2
+
l(l + 1)

r2
+m2(r)

]
f(x) = ω2f(x) (3.2.26)

where m(r) is an r dependent effective mass. Hence,the eigenvalue problem

has been reduced to the desired form (3.2.20), where V = l(l+1)
r2

+ m2(r).
Following the path indicated above, we define

k2(ω, r, l) = ω2 − l(l + 1)

r2
−m2(r) (3.2.27)

and

ν(ω, l) =
1

π

∫
dx
√
k2(ω, r, l) (3.2.28)
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and then we obtain the estimation of the number of states with energy less
than ω with

g(ω) =

∫ lmax

0
dlν(ω, l)(2l + 1) (3.2.29)

where the discrete sum over l has been transformed in an integral and lmax is
the maximum value of the angular momentum that permits to hold k2 ≥ 0.
The factor (2l + 1) obviously comes from the m degeneracy of eigenstates.
The expression we actually need is the derivative of g(ω), that result to be

dg(ω)

dω
=

1

π

∫
dx

∫ lmax

0
dl
2l + 1

2
√
k2i

dk2

dω
=

1

π

∫
dxω

∫ lmax

0
dl
2l + 1√
k2

(3.2.30)

The integration over l can be immediately solved, since 2l+1
r2

is exactly the
l derivative of k2 and k2(ω, r, lmax) = 0 by definition of lmax, then

dg(ω)

dω
=

2

π

∫
dxr2ω

√
ω2 −m2(r) (3.2.31)

The contribution of the traceless transverse component will respect the fol-
lowing equation

− ΛTTq =
4G

V

∫
dxr2

∫
dωω2

√
ω2 −m2(r) (3.2.32)

The domains of integration of x and ω are not trivial, since the approxi-
mation of ν from WKB theory has sense only if k2 ≥ 0. We want to have
an integration over the whole space, so we can fix as lower extreme of the
energy integration a certain value ω∗(r) > 0, that is the minimum energy
which grants k2 ≥ 0 in a certain point r(x). Now, with an integration over
the entire space, we can write the latter formula as

4π

V

∫
dxr2

(
ΛTTq +

G

π

∫ ∞

ω∗(r)
dωω2

√
ω2 −m2(r)

)
= 0 (3.2.33)

that can be seen as a weak identity

− ΛTTq (r) =
G

π

∫ ∞

ω∗(r)
dωω2

√
ω2 −m2(r) (3.2.34)

The contribution to the cosmological constant is UV divergent in the ω
integration, then a regularization is needed.

3.3 Regularization and renormalization

In order to regularize this one loop diverging result, we use the zeta function
regularization scheme, that consists in changing the exponent of the wave
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number in the integrand and introduce a mass parameter in order to restore
the correct dimension in regularized quantities.

− ΛTTq = µ2ϵ
G

π

∫ ∞

ω∗(r)
dωω2(ω2 −m2(r))1/2−ϵ (3.3.1)

where ϵ is taken small. We can reduce this computation to two relevant
cases: when m(r) > 0 and when m(r) < 0.
If m(r) > 0 the integral is∫ ∞

ω∗(r)
dωω2(ω2 −m2(r))1/2−ϵ (3.3.2)

and, after a change of variable t = ω/
√
|m2(r)|, it becomes

m(r)4−2ϵ

∫ ∞

1
dtt2(t2 − 1)1/2−ϵ (3.3.3)

We can use the integral relation 3.251.3 in [34] that states∫ ∞

1
dttµ−1(tp − 1)ν−1 =

1

p
B

(
1− ν − µ

p
, ν

)
(3.3.4)

where B is the beta function related to the gamma functions via

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
(3.3.5)

and find

m(r)4−2ϵB

(
3

2
, ϵ− 2

)
(3.3.6)

If m(r) < 0 the integral is∫ ∞

0
dωω2(ω2 + |m2(r)|)1/2−ϵ (3.3.7)

and with the same substitution it can be reduced to

m(r)4−2ϵ

∫ ∞

1
dtt2(t2 + 1)1/2−ϵ (3.3.8)

In this case the most useful formula is the 3.251.2 of [34]∫ ∞

0
dttµ−1(t2 + 1)ν−1 =

1

2
B
(µ
2
, 1− ν − µ

2

)
(3.3.9)

Applied to our integral the result is

m(r)4−2ϵB

(
ϵ− 2,

3

2
− ϵ

)
(3.3.10)
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The Gamma function has poles in negative integers, but we can use the
recursive relation Γ(n− 1) = Γ(n)/(n− 1) and the first order expansions

Γ(1 + ϵ) = 1− γE +O(ϵ2) (3.3.11)

Γ

(
ϵ+

1

2

)
= Γ

(
1

2

)
[1− ϵ(γE + 2 ln 2)] +O(ϵ2) (3.3.12)

where γE is the Euler constant, in order to study its behaviour near the
singularities for ϵ→ 0.
In both cases described above, the O(1) approximation of the cosmological
energy density is [35]

ΛTTq =
G

16π
m4(r)

[
1

ϵ
+ ln

(
µ2

|m2(r)|

)
+ 2 ln 2− 1

2

]
(3.3.13)

Hence, in the rest of the chapter, we will use m(r)2 to indicate its absolute
value.
The next step is to separate the divergent part for ϵ→ 0 and define

ΛTT,divq =
G

16πϵ
m4(r) (3.3.14)

Consequently we redefine in the cosmological constant ΛTTeff = ΛTT0 + ΛTTq

the quantities ΛTT0 → ΛTTc + ΛTT,divq and ΛTTq → ΛTTq − ΛTT,divq , absorbing
the diverging quantities in the classical therm[36]. Hence,one obtains

ΛTTq (µ, r) =
G

16π
m4(r)

[
ln

(
µ2

m2(r)

)
+ 2 ln 2− 1

2

]
(3.3.15)

the quantity ΛTTeff is a physical observable, but, at the moment, it depends
from an arbitrary mass µ, then, in order to cancel such a dependence, we
request ΛTTeff to respect a renormalization group equation

µ
dΛTTeff
dµ

= 0 (3.3.16)

It means the bare cosmological constant now behave as a running parameter,
which respect the evolution equation

µ
dΛTT0 (µ)

dµ
= −µ

dΛTTq (µ)

dµ
= − G

8π
m4(r) (3.3.17)

and we can write

ΛTT0 (µ, r) = ΛTT0 (µ0, r) +
G

8π
m4(r) ln

µ0
µ

(3.3.18)
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At low energy we expect to find the classical cosmological constant, that is
independent of r, then

ΛTT0 (µ, r) = Λc + lim
µ0→0

G

8π
m4(r) ln

µ0
µ

(3.3.19)

and the r dependence of ΛTT0 (µ, r)− Λc comes only from the factor m4. So
we can express the effect of the starting point µ0 in a mass parameter Ω

Ω = µ0e
8π

Gm4(r)
(ΛTT

0 (µ,r)−Λc)
(3.3.20)

that is homogeneous and gives

ΛTT0 (µ, r) = Λc +
G

8π
m4(r) ln

Ω2

µ
(3.3.21)

The parameter Ω plays the role of a fundamental energy scale, analogue to
the Λqcd scale. Thus,the cosmological constant is

ΛTTeff (r) = Λc +
G

16π
m4(r)

[
ln

Ω2

m(r)2
+ 2 ln 2− 1

2

]
(3.3.22)

At this point we have a one loop regular theory that can be applied to some
real computation in order to find the zero point energy of different spacetime
background configurations.
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Chapter 4

Testing quantum stability of
the Minkowski spacetime

Gravity, already at classical level, is an universally attractive force that
can’t be screened. This feature, that permits us to detect such a weak
coupling force, is source of a great number of instabilities. An homogeneous
distribution of matter interacting through Newtonian gravity is unstable
respect to long wavelength density perturbations (Jeans instability) and the
attractiveness of gravity in general relativity provokes the collapse of matter
in spacetime singularities. Given the presence of these phenomena, a logical
argument of research is the existence and the stability of an eventual ground
state of the quantum theory of gravity.
We have already outlined the fact that the gravitational action is not semi-
positive definite and sometimes admits any negative modes and this feature
will have great consequences in this chapter.

4.1 Using path integral

The first who showed an instability of the Minkowski spacetime in a thermal
pure gravity quantum field theory were Gross, Perry and Yaffe [3], so in the
rest of this section we well follow their discussion. Moreover, from now on,
we will take spacetimes with null classical cosmological constant.

False vacuum states in a toy model

let’s consider a toy model of a pointwise particle interacting with a potential
V (x). The transition amplitude with imaginary time β is

⟨xi|xf ⟩ = ⟨xi| e−Hβ |xf ⟩ =
∫
D[x]e−I[x] (4.1.1)

where ⟨x| are eigenstates of the position operator and the functional integral
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is made over path that goes from xi to xf . We want to study the behaviour
of a false ground state, i. e. a metastable equilibrium state, in order to
reproduce the same procedure in the gravity field theory. The euclidean
action clearly will be

I =

∫ β/2

−β/2
dt

[
1

2

(
dx

dt

)2

+ V (x)

]
(4.1.2)

and we can again make a saddle point expansion next to a classical solution
x̄(t).

Let’s consider a minimum in the potential x = 0, we can expand the
action in an harmonic oscillator form and write

I2 =

∫ β/2

−β/2
dt
1

2

[(
dx

dt

)2

+ ω2x2

]
(4.1.3)

If it is a true ground state, the only classical solution of the equation of
motion

d2x

dt2
− dV (x)

dx
= 0 (4.1.4)

with boundary condition xi = xf = 0 will be x(t) = 0. Then the transition
amplitude from the state x = 0 to itself will be

e−Icl
∫
D[x]e−I2[x] ≈ N det

[
− d2

dt2
+ ω2

]
≈
(ω
π

)1/2
e−βω/2 (4.1.5)

in the big β limit. This expression corresponds with the ground state energy
of the harmonic oscillator and, returning to the real time it = β, we have
| ⟨x = 0, t2|n = 0, t1⟩ |2 ≈ ω

π , where |n = 0⟩ is the ground state of the system,
since the exponential is pure imaginary. That respects our expectation from
the harmonic oscillator ground state.
But, if we consider a potential with a barrier of height V (a) = V0 and where
x = 0 is just a local minimum V (0) = 0, there will be other classical solutions
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of the equation of motion around which make a saddle point expansion.
Equation (4.1.4) is clearly the usual equation of motion of a particle in a
potential field −V (x), then the new periodic classical solution (or instanton)
will be the trajectory x(t) where the particle goes down from the point
x = 0 and return back after passing through the barrier and reaching a
point x1 with the same potential energy V (x1) = V (0). The euclidean

energy E = −1
2

(
dx
dt

)2
+ V (x) = 0 is a constant of motion, hence we can

compute the period needed to pass under the potential barrier and return
to the point x = 0, that results to be τ =

∫ x1
0 dx(2V )−1/2 = ∞. So, with

β → 0, the instanton can be included in the path integral. We will call B
the classical action of this solution, that can be simply computed with

B =

∫ x1

0
dx
√
2V (x) =

∫ β/2

−β/2
dt

(
dx

dt

)2

(4.1.6)

Moreover, for |t| big, the solution is approximately x̄(t) = e−ω|t|, if the
instant t = 0 is set in correspondence with the centre of the bounce. Thus,
the instanton is substantially localised in a region of order 1

ω , while in the
rest of the time, the particle remains in the local minimum x = 0. this
feature permits us to account in the integration every path with an arbitrary
number of bounces in any possible instant, since it is a good approximation
of an action’s minimum. The resulting transition amplitude will be [37][38]

Σ∞
n=0e

−βω/2 (Ke
−Bβ)n

n!
= exp

(
−βω/2 +Ke−Bβ

)
(4.1.7)

where K is the result of the functional integration of variations near to a
path with one bounce.

We would expect K ∝ det
[
− d2

dt2
+ d2V (x̄(t))

dx2

]
and if would be so the con-

tribution of the bounce would be negligible in the high β limit, but the

operator − d2

dt2
+ d2V (x̄(t))

dx2
has a negative mode, then the Gaussian integral

that gives the determinant is not well definite. In fact the path δx(t) = dx̄
dt
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is zero on the extrema and has the property[
− d2

dt2
+
d2V (x̄(t))

dx2

]
δx(t) =

d

dt

[
−d

2x̄

dt2
+
dV (x̄(t))

dx

]
= 0 (4.1.8)

thanks to the equation of motion. The variation dx̄
dt is substantially the result

of an infinitesimal time translation and changes sign during the bounce,
then it has a zero. Hence,there must exist an eigenfunction of the operator

− d2

dt2
+ d2V (x̄(t))

dx2
that doesn’t change sign and with an eigenvalue smaller than

zero. The presence of a negative eigenvalue forces us to consider complex
path in the functional integration and gives an imaginary part to K that
has a fundamental role. After some calculation one obtains

ImK =
1

2

√
B/2π

⏐⏐⏐⏐⏐⏐
det′

[
− d2

dt2
+ d2V (x̄(t))

dx2

]
det
[
− d2

dt2
+ ω2

]
⏐⏐⏐⏐⏐⏐
−1/2

(4.1.9)

where det′ means zero eigenvalues are excluded from the determinant. This
reduced determinant appears because the summation over time translations
and solutions with any number of bounces n is equivalent to accounting the
translational zero mode of the operator.
An important aspect is that the treatment by GPY is true if there exists
only one negative eigenvalue, since, if they are more, one have to consider
their complex product in the determinant evaluation. If we consider again
the real time transition amplitude, we have a factor e−βΓ with Γ = e−B ImK
that is the decay probability per unit time of the false ground state. After an
explicit evaluation of determinants, one can find it is also equal to −2 ImE0,
the well known result of quantum tunnelling in quantum mechanics. Now,
if we extend this result to the entire ensamble at low temperature 1/β,
the tunnelling probability will be proportional to the imaginary part of the
average energy, so Γ = −2 ImF where F is the free energy computed with
the path integral.
If the temperature is not zero, the instanton individuated above doesn’t
respect the periodicity condition, since it need unlimited time to return to
x = 0, consequently quantum tunnelling from the point x = 0 can’t happen.
Anyway quantum tunnelling is not the only possible phenomenon, given that
at higher temperatures also thermal excitation permits to cross the barrier.
In this case we can’t restrict our research to the classical low energy solution
x(t) = 0 and we have to consider also solutions with energy E > 0. When
β < 2π

−V ′′(a) , the period of the bounces with any energy in the interval [0, V0]

τ(E) =

∫ x2

x3

dx[2V (x)− E]−1/2 (4.1.10)

is bigger than the period imposed by the imaginary time, and this type of
solution degenerate to the static solution x̄(t) = a. This means at high
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temperature quantum tunnelling is suppressed. The static instanton has a
very simple classical action βV0 and its contribution to the imaginary part
of the free energy is

ImF =
1

2
e−βV0

⏐⏐⏐⏐⏐⏐
det′

[
− d2

dt2
+ d2V (x̄(t))

dx2

]
det
[
− d2

dt2
+ ω2

]
⏐⏐⏐⏐⏐⏐
−1/2

(4.1.11)

because a is a local maximum of the potential and its second derivative is

negative. Finally, in the thermal process, Γ = V ′′(a)β
π ImF .

While the tunnelling process represents a particle that passes from one clas-
sically allowed region to the other, the thermal barrier crossing represents
the probability to have a thermally excited particle on the top of the barrier,
that immediately after will roll down one of the two sides of the wall.

The quantum gravity case

It’s time to consider the gravitational case. The Minkowski spacetime is
surely stable at classical level, since the ADM energy defined in the first
chapter is always ≥ 0 in pure gravity and furthermore EADM = 0 only in
the Minkowski space if we consider asymptotically flat spacetimes. At the
quantum level the situation is more complicated and depends on the tem-
perature 1

β of the euclidean path integral.
At zero temperature the boundary conditions of the euclidean path inte-
gral are called asymptotically Euclidean (AE). An AE spacetime is approxi-
mately flat outside a compact subset of the four dimensional manifold. The
positive action theorem states that any AE spacetime which has also R = 0
must have euclidean action I ≥ 0. In particular it has I = 0 if and only
if the spacetime is flat. A consequence is that the only AE instanton of
the euclidean gravitational action is the flat space. This is true since the
action must be invariant under diffeomorphisms, while the transformation
of coordinates x → λx acts on the metric as gµν → λgµν . So the boundary
term of the action, the only one remaining when R = 0, behaves in the same
manner. The result is an action that scales with λ, but this is compatible
with the diffeomorphism invariance only if I = 0, then the spacetime is
flat. With a saddle point expansion near the flat space, The 4-dimensional
Lichnerowicz operator ∆L is reduced to the Laplacian and then is positive
definite and the Gaussian functional integral can be carried out without the
problem of negative modes.
The zero temperature flat spacetime is stable at first loop, however some-
thing different happens when one considers the finite temperature case. Now
the boundary conditions are called asymptotically flat and they demand the
spacetime to be periodic in time with period β and asymptotically flat in its
spatial submanifold. the result is a spacetime that approaches the flat metric
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with topology S1 ×R3 outside a compact subset. The semiclassical calcula-
tion in the saddle point approximation near the flat instanton is not much
different from the zero temperature case, except for the periodicity condition
over the eigenfunctions of quadratic operators. If we would consider higher
orders in the expansion we should account the graviton-graviton interaction
in the thermal gas of gravitons that fills the spacetime when T > 0, and this
would produce an unrenormalizable ultraviolet divergence and an infrared
divergence that is the quantum equivalent of Jeans instability.
Anyway, from our point of view, the most relevant aspect of the finite tem-
perature perturbation theory is that in this case there are other instantons
different from the trivial flat space, like the Kerr black hole and in particular
the Schwarzschild solution. The classical action of the Schwarzschild black
hole is, for an arbitrary mass M ,

I =
1

2
Mβ + 2GM2

(
β

4MG
− 2π

)
(4.1.12)

that is zero with null mass and has a maximum I = 4πGM2 for M = β
8πG .

After this value the action decreases to −∞. The particular value of the
black hole mass that maximise the action is also relevant since the request of
periodicity of the spacetime over imaginary time brings to a conical singu-
larity in r = 2GM for any other mass. This behaviour of the action arouses
the suspicion that the Schwarzschild solution of the equation of motion could
behave in a way similar to the static bounce x(t) = a in the latter example.
If one studies the operator ∆L with a decomposition in radial modes and
spherical harmonics similar to what we have done with its 3-dimensional
form in the preceding chapter, will discover all odd variations and also even
ones with l > 1 have positive eigenvalues, while there is an even eigenvec-
tor of the radial operator with l = 1 which generates spatial translations
of the black hole and has zero eigenvalue. It remains to consider the l = 0
even modes and, from a numerical computation, we know ∆L has one neg-
ative mode with eigenvalue λ ≈ −0, 19(GM)−2 in this sector. Thus,the free
energy acquires an imaginary part as happened in the latter example. Ac-
cording to Coleman [39], this is a signal of a transition from a false vacuum
to a true one.
In the toy model we had to consider as different paths all possible time
translations of the bounce and also paths with multiple instantons, the same
procedure with collective coordinates must be done with the Schwarzschild
black hole, where now are taken in account all 3-dimensional translations.
this process permits again to exclude zero modes from functional determi-
nant.
The first loop evaluation in curved spacetime has an UV divergence that is
proportional to the Euler character of the manifold. This topological prop-
erty is null in the flat space but equal to 2 in the Schwarzschild instanton.
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So it’s necessary the introduction of a regulator mass µ. The result is a
decay rate of the flat spacetime

Γ ≈ 0, 87

β
(µβ)212/45

1

64(Gπ2)3/2
e−

β2

16πG (4.1.13)

The instability is absent at T = 0, then it isn’t a tunnelling process. the
imaginary part of the free energy means there is a non null probability in the
flat euclidean spacetime to nucleate a black hole with mass M = β

8πG . Once
created, the singularity will grow or evaporate depending on the temperature
of the surrounding matter and its thermal Hawking radiation.

4.2 Hamiltonian research of a ground state

Until now, we have seen quantum instability just as a thermal phenomenon.
However, if we consider also spacetimes with different topologies, something
similar can happen also without considering temperature.
The ADM formalism is defined in such a way to give zero classical energy to
the Minkowski spacetime, moreover, with a Minkowskian background, also
the spatial submanifold identified by t = const is an Einstein space and it
has a spherical symmetry, so we can easily apply the formalism described
above in order to make first order quantum calculations.
The effective potential defined in the previous chapter m(r) is trivially null
and the trace transverse energy density is just

− ΛTTq (r) =
G

π

∫ ∞

0
dωω3 (4.2.1)

that gives a ω4 divergence but, after the renormalization, the energy density
(3.3.15) is null. So we can state that the Minkowski spacetime has exactly
null energy in this framework.

The Schwarzschild wormhole
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As we have learnt from the path integral, the Schwarzschild solution
has a fundamental role in the stability of Minkowski spacetime is semiclas-
sical gravity. In this section we will try to treat this problem with the
canonical quantization and we will try to evaluate the ZPE of the extended
Krustal-Schwarzschild solution and compare it with the one loop energy of
the Minkowski spacetime.
With the Krustal null coordinates (U, V ) substituting t and r, the line ele-
ment has the form

ds2 = −32(MG)3

r
exp

(
− r

2MG

)
dUdV + r2dΩ2

2 (4.2.2)

. The usual coordinates t and r can be evaluated from the relations(
1− r

2MG

)
exp

(
− r

2MG

)
= UV (4.2.3)

t = 2MG ∈
⏐⏐⏐⏐−VU

⏐⏐⏐⏐ (4.2.4)

This spacetime is the union of four regions, or wedges, R+, R−, T+ and T−.
The regions R+ and R− are asymptotically flat and we have U < 0, V > 0
in R+ and U > 0 and V < 0 is R−. On the other side the regions T+ and
T− represent respectively the inner region of the black hole and the white
hole.
The line element (4.2.2) is also invariant respect to the symmetries

I : U → −U, V → −V ; L : U → −V, V → −U (4.2.5)

that means the spacetime is invariant respect to the bifurcation surface
S0, the intersection of the future and past horizons H+ and H−. We can
construct a spatial foliation of the eternal Schwarzschild black hole, such that
the manifold with constant t Σt has the topology R1 × S2 of the Einstein-
Rosen Bridge and the metric

ds2 = dx2 + r2(x)dΩ2
2 (4.2.6)

It has substantially the structure of the spatially symmetric spacetime (3.2.24)
with b = 2MG, except of x that now runs from −∞ to ∞. The regions with
different sign correspond to submanifolds of the two asymptotically flat re-
gions, which are in touch through the bifurcation surface S0 in x = 0 or
equivalently r = 2MG. This surface in the Einstein-Rosen topology is usu-
ally called the throat of the wormhole. We denote by Σ± the the part of
Σ lying in R± respectively. Consequently the radial coordinates in the two
different sectors are defined by

dx = ± dr√
1− 2MG/r

(4.2.7)
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Moreover all the hypersurfaces Σt are invariant respect to transformation L.
In this calculation we want to consider only a part of the total Krustal space-
time, so we fix some spatial and temporal boundaries in the AF regions. We
take a temporal interval [t′, t”] and we consider the foliation Σt of the region
included between Σt′ and σt”. On the spatial side we fix a three dimensional
boundary B composed by an hypersurface B+ with constant x+ ≥ 2MG in
R+ and an analogue manifold B− characterised by x = x− ≤ −2MG embed-
ded in R−. We will call the resulting region bounded by those hypersurfaces
M = M+ ∪M− while the spatial boundary of a time slice is composed by
S2
± = Σ± ∩ B±. Thus,we have a foliation of hypersurfaces with structure
IΣ × S2 where IΣ is a spacelike interval, on the other hand the boundaries
B± have topologies It × S2

±, where It is a finite timelike distance.
The classical energy is the integral of expression (1.3.36) evaluated over
both the boundaries of the spatial manifold S2

±. The timelike unitary vector
normal to the spacelike foliation is uµ = 1

N δ
µ
t , where the lapse function is

N =
√

1− 2MG
r(x) in M+ and −N in M−. On the other side the outgoing

spatial normal vector on the boundaries S2
± is equal to nµ = ±δµx . That im-

plies the two normal vectors are orthogonal (n·u = 0) all over the boundaries
and the quasi-local energy can be reduced to the expression

Eql = E+−E− = − 1

(8πG)

∫
S2
+

d2x
√
σ(Θ−Θ0)++

1

(8πG)

∫
S2
−

d2x
√
σ(Θ−Θ0)−

(4.2.8)
In the latter expression σ is the determinant of the submanifolds S2

±, which
inherit the induced metric

σij = diag[r(x)2, r2(x) sin2 θ] (4.2.9)

So
√
σ = r2(x) sin θ, while the trace of the extrinsic curvature Θ± has the
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form

Θ± = σijΘ±ij = ∇·n =
1√
σ
∂i(

√
σni) = ± 1

r2(x)
∂x(r

2(x)) =
2
√
1− 2MG/r

r(x)
(4.2.10)

A flat space with the same topology would have an equal boundary metric
with r(x) = |x|, hence the extrinsic curvature subtracted is

Θ0± =
2

r
(4.2.11)

We have found a quasi-local energy that receives contributions of opposite
sign from the wedges M± and depends from the mass associated to the
black hole and the position of the spatial boundaries

Eql(r) =
1

G
{[r(1−

√
1− 2MG/r)]x=x+ − [r(1−

√
1− 2MG/r)]x=x−}

(4.2.12)
Booth the terms E± approach to the ADM mass M for x± → ±∞, while
they assume a value near to 2M when x± → 0. However if x± = 0 the
lapse function is null and the energy itself is zero, because doesn’t exist a
reparametrization with |N | = 1.
This is a quite interesting result: if one considers spacetimes with ”doubly
flat” asymptotic behaviour, that means there are two disconnected asymp-
totically flat regions, it is possible to find configurations with zero Brown-
York energy different from a couple of separated flat Minkowski spacetimes.
In the next step we will consider quantum contributions. Thanks to the sign
change in N , the total Hamiltonian can be written as

Htot = Eql +

∫
M+

d3xN(r(x))H −
∫
M−

d3xN(r(x))H (4.2.13)

after a functional derivative respect to N we obtain the WDW equation{
H = 0 for x > 0

−H = 0 for x < 0
(4.2.14)

Obviously the two wedges behave in the same manner, hence if we consider
the Sturm-Liouville problem (3.0.18) we obtain

−ΛqVM = 4π
⟨Ψ|

[∫ x+
0 dxr2(x)Λ̂

(2)
Σ +

∫ 0
x−
dxr2(x)Λ̂

(2)
Σ

]
|Ψ⟩

⟨Ψ|Ψ⟩

= 4π
⟨Ψ|

(∫ x+
0 +

∫ x−
0

)
dxr2(x)Λ̂

(2)
Σ |Ψ⟩

⟨Ψ|Ψ⟩

(4.2.15)

The equation for the quantum contributions to the cosmological constant
has been reduced to the sum of two terms with a spherical symmetry, so we
can try to apply the formalism explained above.
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Even modes

With b = 2MG, according with the Regge-Wheeler representation, the
spherical harmonics decomposition of the even perturbations of the met-
ric has the form

hij =

(
H(r) r−2MG

r
h1(r)∂θ

r−2MG
r

h1(r)∂ϕ
1
r2
h1(r)∂θ K(r)+G(r)∂2θ G(r)(∂θ∂ϕ−cot θ∂ϕ)

1
r2 sin2 θ

h1(r)∂ϕ
1

sin2 θ
G(r)(∂θ∂ϕ−cot θ∂ϕ) K(r)+G(r)( 1

sin2 θ
∂2ϕ+cot θ∂θ)

)
Yl,m(θ, ϕ)

(4.2.16)
In a spacetime with spherical symmetry, energy do not depends on angular
components, thus we can fix m = 0 and all ϕ derivatives become null. the
result is the mixed tensor

hij =

⎛⎝ H(r) r−2MG
r h1(r)∂θ 0

1
r2
h1(r)∂θ K(r) +G(r)∂2θ 0
0 0 K(r) +G(r) cot θ∂θ

⎞⎠Yl,0(θ) (4.2.17)

We have reduced the metric perturbations to four independent radial func-
tions, and we can still impose the gauge choice and the traceless condition in
order to reduce the object of our studies to the traceless-transverse sector.
The null trace request and the gauge fixing condition ∇ih

i
j = 0 can be

represented by three equations

H + 2K − l(l + 1)G = 0 (4.2.18)

−
(
∂r +

3

r

)
H +

1

r2
h1l(l + 1) = 0 (4.2.19)(

−3MG

r2
+

2

r

)
h1 +

(
1− 2MG

r

)
∂rh1 +K +G[1− l(l + 1)] = 0

(4.2.20)

Since we have four unknown functions and three constraints, we expect to
reduce the radial dependence to only one function. The second degree of
freedom expected to be found in the graviton representation is carried by the
ϕ-dependent angular part, which do not influences the energy expectation
value.
The eigenvalue problem we have to solve (3.2.18) is[
−r − 2MG

r
∂2r −

2r − 3MG

r2
∂r +

1

r2
l(l + 1) + 4

r − 2MG

r3
− 8MG

3r3

]
H(r)−

−2
r − 4

3MG

r3
(2K − l(l + 1)G)− 4

r − 2MG

r4
l(l + 1)h1 − (Lη)11 = λH

(4.2.21)

64



[
−r − 2MG

r
∂2r −

2r − 3MG

r2
∂r +

1

r2
l(l + 1) + 2

r − 2MG

r3
+

+
4MG

3r3

]
(K +G∂2θ )− 4

r − 2MG

r4
l(l + 1)h1∂

2
θ −

2

r2
G(∂2θ − cot2 θ∂θ)+

+

(
4MG

3r3
− 2

r − 2MG

r3

)
H − 2MG

3r3
(K +G cot θ∂θ)− (Lη)22 = λ(K +G∂2θ )

(4.2.22)[
−r − 2MG

r
∂2r −

2r − 3MG

r2
∂r +

1

r2
l(l + 1) + 2

r − 2MG

r3
+

+
4MG

3r3

]
(K +G cot θ∂θ)− 4

r − 2MG

r4
l(l + 1)h1 cot θ∂θ+

+
2

r2
G(∂2θ − cot2 θ∂θ) +

(
4MG

3r3
− 2

r − 2MG

r3

)
H − 2MG

3r3
(K +G∂2θ )−

− (Lη)33 = λ(K +G cot θ∂θ)

(4.2.23)[
−r − 2MG

r
∂2r −

4r − 5MG

r2
∂r +

1

r2
l(l + 1) +

2r − 7MG

r3

]
1

r2
h1∂θ+

+
2

r3
H∂θ +

2

r3
G cot θ(∂2θ − cot2 θ∂θ) +

2

r3
(K∂θ +G∂3θ )− (Lη)21 = λ

1

r2
h1∂θ

(4.2.24)

We can immediately observe that the null trace condition is compatible with
the first three equations of the eigenvalue problem, in fact if we sum these
expressions we obtain[

−r − 2MG

r
∂2r −

2r − 3MG

r2
∂r +

1

r2
l(l + 1)

]
(H + 2K − l(l + 1)G)

= λ(H + 2K − l(l + 1)G)

(4.2.25)

thanks to the null trace of (Lη)ij . If also the two differential constraints
coming from the request of transversality are compatible with the latter
system of equations, we can reduce it to just one relevant equation. If we
substitute (4.2.18) and (4.2.19) in (4.2.21), we have[

−r − 2MG

r
∂2r −

2r − 3MG

r2
∂r +

1

r2
l(l + 1) + 6

r − 2MG

r3
− 2MG

r3

]
H

−4
r − 2MG

r2

(
∂r +

3

r

)
H − (Lη)11 = λH

(4.2.26)

Except for the contribution of (Lη)11, which is an unknown tensor at the
moment, we have reduced the problem to a differential equation respect to

65



only one radial function H(r).
We need to write (Lη)ij as a function of hTTij , its derivatives and Rij . The
right side of equation (3.2.17) for the even mode is

∇j∆
j
TT ah

TT a
i =

⎛⎝ MG
r3

(
2∂r +

3
r

)
H

−4MG
r3

H∂θ +
6MG
r4

[
MG
r + (r − 2MG)∂r

]
h1∂θ

0

⎞⎠Yl,0(θ)

(4.2.27)
Also the vector ηi can be decomposed in an even and an odd part, the even
part with m = 0 can be represented with the form

ηi =

⎛⎝ U
V ∂θ
0

⎞⎠Yl,0(θ) (4.2.28)

Now we can work on the left side of (3.2.17).

∇j(Lη)ij = −∆ηi+∇j∇iηj−
2

3
∇i∇jη

j = −∆ηi+
1

3
∇i∇jη

j+Rjiηj (4.2.29)

One can notice the second term of the last expression is a covariant derivative
of a scalar, that can be substituted by a simple partial derivative

∇i∇jη
j = ∂i∇jη

j = ∂i

[
2r − 3MG

r2
U +

r − 2MG

r
∂rU − l(l + 1)

r2
V

]
(4.2.30)

The three-dimensional Laplacian of η is

−∆ηi = ∇k∇kηi =

⎛⎝ [
r−2MG

r
∂2r+

2r−MG

r2
∂r− 1

r2
l(l+1)−2 r−2MG

r3

]
U+

2l(l+1)

r3
V[

r−2MG
r

∂2r+
MG
r2

∂r− 1
r2
l(l+1)+MG

r3

]
V ∂θ+2 r−2MG

r2
U∂θ

0

⎞⎠Yl,0(θ)
(4.2.31)

If we put together all these pieces we find two equations[
4(r − 2MG)

3r
∂2r +

8r − 4MG

3r2
∂r −

l(l + 1)

r2
− 8r − 12MG

3r3

]
U+

+
l(l + 1)

r2

(
4

3r
− 1

3
∂r

)
V =

MG

r3

(
2∂r +

3

r

)
H

(4.2.32)

[
r − 2MG

r
∂2r +

MG

r2
∂r −

4

3r2
l(l + 1) +

2MG

r3

]
V+

+

(
8r − 15MG

3r2
+
r − 2MG

3r
∂r

)
U =

= −4MG

r3
H +

6MG

r4

[
MG

r
+ (r − 2MG)∂r

]
h1

(4.2.33)
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Odd modes

On the other hand, the odd modes with m = 0 have the form

hij =

⎛⎝ 0 0 r−2MG
r f1(r) sin θ∂θ

0 0 − 1
2r2
f2(r) sin θl(l + 1)

1
r2 sin θ

f1(r)∂θ − 1
2r2 sin θ

f2(r)l(l + 1) 0

⎞⎠Yl,0(θ)

(4.2.34)
When we consider odd perturbations, the diagonal components in spherical
coordinates are null, then the total contraction between the Ricci tensor and
hTTij is null and the third term in the divergence (3.2.16) is also null.
The request of null trace is automatically fulfilled, while transversality con-
dition can be reduced to just one equation[(

∂r −
MG

r(r − 2MG)
+

1

r

)
(r − 2MG)r + (r − 2MG)

]
1

r2 sin θ
f1(r)∂θ−

−(∂θ + 3 cot θ)
1

2r2 sin θ
f2(r)l(l + 1) = 0

(4.2.35)

the eigenvalue problem can be reduced again to only one equation, in par-
ticular we will consider the eigenvalue equation for the component hTT 3

1[
−r − 2MG

r
∂2r −

4r − 5MG

r2
∂r +

1

r2
l(l + 1) +

2r − 10MG

r3

]
1

r2 sin θ
f1(r)∂θ+

+
2

r3
(∂θ + 3 cot θ)

1

2r2 sin θ
f2(r)l(l + 1)− (Lη)31 = λ

1

r2 sin θ
f1(r)∂θ

(4.2.36)

An easy substitution of equation (4.2.35) in the last expression gives[
−r − 2MG

r
∂2r −

2r −MG

r2
∂r +

1

r2
l(l + 1) +

8r − 20MG

r3

]
1

r2 sin θ
f1(r)∂θ−

−(Lη)31 = λ
1

r2 sin θ
f1(r)∂θ

(4.2.37)

The result is very similar to the even mode: we have an eigenvalue equation
with the unknown contribution of (Lη)31.
In this case the odd part of the vector field is

ηi =

⎛⎝ 0
0

D(r) sin θ∂θ

⎞⎠Yl,0(θ) (4.2.38)

and (Lη)31 is equal to

(Lη)31 = (∂r −
2

r
)D(r) sin θ∂θYl,0(θ) (4.2.39)
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Also in this case we should find an expression for D(r) = D(f1(r)) from the
equation (3.2.17), but in the odd mode ∇ · η = 0 for each function D, then
the left side of the equation is reduced to

∇j(Lη)ij = −∆ηi +Rjiηj (4.2.40)

The Laplacian of the odd vector is

−∆ηi = ∇k∇kηi =

⎛⎜⎝ 0
0[

r−2MG
r ∂2r −

l(l+1)
r2

+ MG
r2
∂r +

MG
r3

]
D(r) sin θ∂θ

⎞⎟⎠Yl,0(θ)

(4.2.41)
Regarding the right side of eq (3.2.17), the total contraction between the
Ricci tensor and the odd mode of the metric Rjkh

TT k
j is zero, since Rij

is diagonal, while hTT k
j has only off diagonal terms. That means (3.2.16)

receives only contributions from the first two terms. The result is

∇j∆
j
TT ah

TT a
i =

=

( 0
0

4MG
r3

[
∂r

r−2MG
r

−MG
r2

− r−2MG

r2

]
f1(r) sin θ∂θ+

MG
r5

sin2 θ(∂θ+3 cot θ)
l(l+1)
sin θ

f2(r)

)
Yl,0(θ)

(4.2.42)

We can immediately remove f2 from the last equation thanks to the relation
(4.2.35).
The eq (3.2.17) is finally reduced to

MG

r3

[
∂r
r − 2MG

r
− MG

r2

]
f1(r) =

=

[
r − 2MG

r
∂2r −

l(l + 1)

r2
+
MG

r2
∂r +

2MG

r3

]
D(r)

(4.2.43)

Near the throat

One could try to consider The operator ∆TT as a perturbed version of
the Lichnerowicz operator ∆L and find an eigenfunction basis of the latter
operator.
The original Lichnerowicz operator in 3Dim is

(△Lh)ij = −∇a∇ahij − 2Rikjlh
kl +Rikh

k
j +Rjkh

k
i . (4.2.44)

This is traceless and for the divergence, one gets

∇i (△Lh)ij = −∇k∇k

(
∇ihij

)
+Rlj

(
∇ihil

)
−
(
∇jR

l
k

)
hkl . (4.2.45)

While the first two terms vanish for the null divergence condition on hTT ,
for the third one we get for j = 1

9h11(r, θ, ϕ)MG

r4
(4.2.46)
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while for j = 2, we have

− 3h12 (r, θ, ϕ)MG

r4
(4.2.47)

and, finally for j = 3, we obtain

− 3h13 (r, θ, ϕ)MG

r4
(4.2.48)

The equations for the even mode are simpler, but they still need a vector
field ηi.
We have are working in WKB approximation, under the hypothesis that
the derivative of the potential is negligible. This is equivalent to state(
∇jR

l
k

)
hkl ≈ 0. If we want to have a non null potential in this approx-

imation, we need, on the diagonal components, Rii ≫ ∂rR
i
i, that means

M ≫ 1 in plank units. As expected, the semiclassical approach loses valid-
ity at Planck scale, since we would need a complete quantum theory, however
we can hope to obtain some meaningful qualitative information in the quasi
Planck region.
Following this procedure, we find the TT sector to be ∆L invariant. Now
we have an operator which can be studied with an eigenvalue equation in
the TT space and we would like to introduce the difference between ∆TT

and ∆L as a perturbation depending on the parameter γ.[
−r − 2MG

r
∂2r −

2r − 3MG

r2
∂r +

1

r2
l(l + 1) + 6

r − 2MG

r3
+

2MG

r3

]
H

−4
r − 2MG

r2

(
∂r +

3

r

)
H − γ

4MG

r3
H = λH

(4.2.49)

Passing to the new variable H = h/r we have[
−r − 2MG

r
∂2r −

(
2
r − 2MG

r2
+

2r − 3MG

r2

)
∂r +

1

r2
l(l + 1)

−6
r − 2MG

r3
+

3MG

r3

]
h− γ

4MG

r3
h = λh

(4.2.50)

and, respect to the proper distance x[
−∂2x − 4

√
r − 2MG

r2
∂r +

1

r2
l(l + 1)

−6
r − 2MG

r3
+

3MG

r3

]
h− γ

4MG

r3
h = λh

(4.2.51)

We expect to observe quantum effects mainly in the region near the throat,
where gravity is stronger. Hence, for r ≈ 2MG,[

−∂2x +
1

2MG2
l(l + 1) +

3

8(MG)2

]
h− γ

2

(2MG)2
h = λh (4.2.52)
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With the zeta function renormalization, we find

ΛTTeff (r) =
G

16π

[
3− 4γ

8(MG)2

]2 ⎡⎣ln Ω2⏐⏐⏐ 3−4γ
8(MG)2

⏐⏐⏐ + 2 ln 2− 1

2

⎤⎦ (4.2.53)

However, it isn’t clear if this approach is actually meaningful, as the correc-
tion ∆TT −∆L should be projected on the TT subspace, that is our effective
Hilbert space, and this operation could change its contribution to the eigen-
value equation. With a value of m(r) near to Ω, that is the limit we are
interested in studying, a small variation in the correction inserted with the
parameter γ could change the sign of the logarithm and consequently of the
energy contribution.
Moreover, by considering the extra Lichnerowicz term as a perturbation, we
can see that the parameter γ cannot be small, therefore we conclude that
an appropriate technical approach should be fully variational according with
the whole approach of this thesis. This means that the analysis of the modes
in this context should be non-perturbative.
On the other hand, we can immediately observe that, near the throat, all
the components of the divergence of the Lichnerowicz operator are null in
the odd mode, since we have

h13 =
r − 2MG

r
f1(r) sin θ∂θYl,0(θ) (4.2.54)

that is zero when r → 2MG. So the odd mode is TT in this spatial region.
With these conditions we do not need any auxiliary vectors η and the eigen-
value equation we have to solve is[
−r − 2MG

r
∂2r −

2r −MG

r2
∂r +

1

r2
l(l + 1) +

8r − 20MG

r3

]
1

r2 sin θ
f1(r)∂θ =

= λ
1

r2 sin θ
f1(r)∂θ

(4.2.55)

From this expression emerges a new problem: the term containing the first
derivative is the leading one and can’t be absorbed in the second derivative
with a non-singular redefinition of the function f1(r). If one decides to study
the equation for h13 in spite of h31, it is equivalent to accomplish a change of
variable F1 = (r − 2MG)f1. With this choice, the eigenvalue equation for
the Lichnerowicz operator near the throat is identical to the one associated
to the even mode (4.2.53). However, a not null F1 near the throat induces
a divergence in the component h31 of the metric perturbation.
Anyway, we can suppose that odd and even modes have the same energy
spectrum, as stated by Chandrasekhar in classical GR[40].
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Chapter 5

Conclusion and perspectives

From the euclidean point of view, the Minkowski spacetime is unstable re-
spect to thermal nucleation of black holes. The same unstable mode appears
also when we introduce a temperature and we look at the thermodynamic
stability of a S-AdS black hole within isothermal cavities [41][42][43]. It
is interesting to note that the same pattern appears for the de Sitter (dS)
space [44][45][46]. This quantum instability is related to the S2×S2 instan-
tons. This instanton, termed the Nariai instanton[47], is nothing but the
extreme Schwarzschild-de Sitter (SdS) solution written in another system of
coordinates. This instability leads to spontaneous nucleation of black holes
signaling a transition from a false vacuum to a true one[39]. This transition
is possible when the energy stored in the boundaries is the same for both
spaces[48]. Therefore, it seems that the presence of a black hole or a pair of
black holes leads to an instability of the corresponding asymptotic space.
The case of T = 0 temperature examined with a Hamiltonian approach has
been considered in [49] and [50], where the black hole has been substituted
by a wormhole.
Discussing the Minkowski background case, we found the operator we wanted
to study is not always an endomorphism of the TT Hilbert space, hence it
must be projected over this subspace before some actual calculation.
In a spacetime that has not an Einstein space as spatial submanifold, this
projection is highly non trivial. We tried to consider only the region near
the wormhole throat, since we expect to find quantum effects mainly in this
region, where gravitational interaction is stronger. In this spatial limit the
equations become simpler and the Lichnerowicz operator is TT preserving,
however it is still complicated to insert the difference between the Lichnerow-
icz and the operator ∆TT as a perturbation, since this difference presents
the same difficulties explained above.
If the quantum energy density would result negative after the solution of the
problems described above, we would have a back ground configuration that
has a pure gravity zero point energy smaller than a couple of Minkowski
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spacetimes. Obviously a single wormhole wouldn’t be homogeneous and
isotropic as we observe to be our universe, but we could consider a space-
time with a great number of Planckian or quasi Planckian size wormhole
homogeneously distributed all around the spacetime[51].
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