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Introduction

This thesis concerns Luttinger-Ward theorem, one of the foremost results
of the whole many-body theory. The interest rises from the strong feeling
of not grasping it after 70 years of involved literature, notwithstanding its
apparent simplicity.

The content of the theorem can be stated in a simple form: the number
of single-particle momentum states where the frequency-dependent Green
function evaluated at the chemical potential is positive equals the number
of particles of the system. We can rephrase it in an even simpler fashion:
the inner volume of the Fermi Surface is an adiabatic invariant; i.e. it does
not change when we switch-on the interactions.

It is an exact result whose presentation and discussion raised the inter-
est of theoretical physicists like Joaquin Luttinger and John Ward or Igor
Dzyaloshinskii to name some. Regardless its lingering history, we don’t know
how to cast this statement in a physical fashion. This fact by its own, even
ignoring its huge range of applicability is, in my opinion, sufficient to devote
to it the whole thesis. A surprising fact that anyone facing this theorem
encounters is that, regardless its apparent simplicity, all the existing proofs
are deeply technical.

The reader will find out that 60 years ago the vision on the state of
affairs was slightly different from today’s one. I will then present the line
connecting them up in the most transparent and simple way I’ll be able
to. As well as J. Luttinger I won’t deal with particles living in dimension
different from three, since the arguments and definitions generalize trivially,
with the only exception being given by one-dimensional systems. The latter
demand a separate treatment, as could be felt thinking that it doesn’t make
sense to talk about cross-sections in one dimension.

The thesis is structured as follows: the first chapter begins with a pre-
sentation of the original proof of the Luttinger-Ward theorem. The chapter
is divided in two parts: the first one concerns what nowadays we understand
to be a collateral fact, namely the possibility for the momentum distribution
function of an interacting fermionic system to develop a discontinuity in the
zero temperature limit, just like it does in the non interacting case giving
rise to the standard Fermi Surface. The second part dwells with the actual
content of the theorem as we think it today, that is the conservation of the
volume enclosed by the Fermi Surface when interactions are switched-on
(making no reference to any discontinuity at all).
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The proof given by Luttinger and Ward and almost any other proof of the
same theorem in essence make use of the existence of a special functional that
has to do with a diagrammatic dressed expansion for the Grand Potential of
the theory. The second chapter is then devoted to the derivation and analysis
of such expansion and to clarify how such functional could be constructed.

The content of the third chapter is the theory of quasi-particles. The
Luttinger-Ward theorem has to do with them and the possibility that an
elementary excitation of the interacting system behaves approximately like
one of the non-interacting one, since an adiabatic switching-on of the inter-
actions is reasonably involved in the validity of the Luttinger-Ward theorem
and the conservation of the Fermi Sphere inner volume.

Quite the same reason makes out chapter number four dwell with the
theory of the Fermi liquids. This paradigm involves ideas first devised by
Landau in the early ’60s, who was the first to put the understanding of the
metallic behaviour of a system on a firm theoretical basis and to relate the
macroscopic to the microscopic physics.

Chapter five brings closer to the present day since it deals with some
recent proofs of the Luttinger-Ward theorem. In particular it is reported
Dzyaloshinskii’s derivation of it and extension of the very same theorem
to non-Fermi liquids and Mott insulators, thus opening the doors to new
questions to be addressed in order to understand properly what the full
range of validity of the Luttinger-Ward theorem. Secondly it is given one
more proof, by Giuliani and Vignale where they use a novel way to approach
the result, still keeping an eye on the already existent ones.

The last chapter contains some considerations of mine that aim at of-
fering some firm points in comprehension of the theorem. Starting with a
formulation on a finite lattice, I use the Khällen-Lehmann representation of
the propagator and with few hypothesis I obtain bounds and relations that
clarify some of the main steps of the proof.
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1 Luttinger-Ward Proof
There is a side fact about the theorem: under appropriate hypothesis the
momentum distribution function develops a discontinuity and the points
where it is discontinuous define a surface. We will discuss it before the proof
of the theorem. The reason for doing so is that such fact seems somewhat
separated from the theorem and somewhat involved all the same, so it seems
logical to me to make it come first. We will then clarify whether or not it is
a necessary consequence of our theorem and their precise relation.

1.1 The discontinuity in n(k)

Here follows Luttinger’s investigation [2] of the possibility, pointed out first
by Migdal [3], that in the interacting ground state of a fermionic system the
mean occupation number of single-particle momentum states still possess a
discontinuity, just like it does in the purely kinetic theory. If it is the case
such singularity defines a surface, that should reasonably still be called the
Fermi Surface (F.S.).
It was already clear to Luttinger that the existence of a F.S. should depend
on the nature of the interactions. Indeed, for example, in a system of lo-
calized electrons there is no trace of such surface and we have experiments
showing off that many systems exhibit those states, the most famous one
being the Wigner solid [4] [5]. Moreover Luttinger’s derivation is done under
the explicit assumption that the perturbative theory is valid but whether or
not it is so for practical cases was and still is an open question. With this
in mind we can begin.
The partition function of the grand-canonical ensemble is

Z(β, V, µ) = Tr{exp[−β(H − µN)]} = exp (−βΩ)

and the mean occupation number for a state k is defined by

nk = Tr{ak†ak exp[β(Ω−H + µN)]} (1)

It may be expressed in terms of the two-point Green function as

nk = lim
η→0+

1

β

∑︂
l

exp(η ζl)
1

ζl − ϵk − Σk(ζl)
(2)

where the sum runs over the complex fermionic Matsubara frequencies

ζl = µ+ i
(2l + 1)π

β
(3)
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ϵk is the free-particle kinetic energy and Σk(ζ) is the so-called “self-energy”,
a precise definition of which is found later on in this paper. In the zero-
temperature or equivalently β → +∞ limit the series is said to become an
integral. Reasonably this is legitimate in many cases, so we have

nk = lim
η→0+

1

2πi

∫︂ µ+i∞

µ−i∞
dζ exp(η ζ)

1

ζ − ϵk − Σk(ζ)
(4)

The contour is then closed to the left to encircle the portion of the real axis
starting at µ and extending to −∞, turning the expression into

nk =
1

2πi

∫︂ µ

−∞
dx [

1

x− ϵk −Kk(x)− iJk(x)
− c.c.] (5)

with Kk(x) and Jk(x) the real and imaginary part of the self-energy respec-
tively. It’s noteworthy to say this expression may be derived starting at
zero-temperature instead of going to the zero-temperature limit from the
finite temperature theory. Before we take the thermodynamic limit, that is

N → ∞, V → ∞, N/V = const. (6)

k is a discrete variable (taking values on a lattice in R3 indeed) so we can’t
talk about analytic properties. Conversely under such limit we can, and
Luttinger himself says there is no reason not to expect Σk(ζ) to become a
smooth function of k. This is still clearly an hypothesis and as it’s explicitly
stated in his paper the existence of the singularity we are concerned with is
a direct consequence of such assumption, which anyway is not the only one
necessary to prove nk is discontinuous somewhere, nor it seems necessary to
assume something as strong as smoothness to do it. Still if the analyticity is
satisfied then any possible discontinuous behaviour in nk must result from
a singularity in the integrand.
Then he makes use of the fact that Jk(x) approaches zero only in a neighbor-
hood of x = µ. Up to my knowledge this is an hypothesis too, without any
kind of rigorous proof existing. As we’ll see later some exact constraints may
be given about the behaviour of the imaginary part of the self-energy, but
they’re surely not strong enough to guarantee the validity of the statement.
Some perturbative arguments may be used to show such behaviour, but I
remark we don’t know when the perturbative approach is valid. Anyway
such issues will be dealt with later on in the thesis, so at the moment we’ll
content ourselves of exploring the consequences of it. Let’s consider then all
points in k-space making out

µ− ϵk −Kk(µ) = 0 (7)
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they lie on a surface in such space, that as expected is called the Fermi
Surface of the interacting system. Remind that a more general and say
modern definition of it will be given, without referring to any discontinuity
in nk at all. From here the best we can do is follow closely Luttinger paper
since his description of his own proof is probably already as clean and precise
as possible, regardless looking a little cumbersome to me. The proof consists
in a sequence of changes in the integration variable and approximations from
power series expansions, using the aforementioned hypothesis, to make the
presence of the singularity in nk explicit. Let’s then consider those values
of k close the F.S. just defined. The equation

x− ϵk −Kk(x) = 0 (8)

will presumably in general have a solution x = Ek with Ek approaching µ.
It is natural to call Ek the true single-particle excitation energy. If we pick
up the closest point to it on the F.S. and call it k0 we have k = k0 + y,
with y perpendicular to the F.S. at k0. Now we expand at fixed k

x− ϵk −Kk(x) = Zk
−1(x− Ek) + ... (9)

with the so-called “quasi-particle weight”

Zk
−1 = 1− ∂xKk(x)|x=Ek

(10)

The reason for this name, if it’s not yet, will be clear when we will deal with
quasi-particles. Combining (9) with the perturbative result that Jk(x) =
Ck(x− µ)2 + .. in a neighborhood of x = µ the denominator in (5), when k
is close to k0, becomes

x− ϵk −Kk(x)− iJk(x) = Zk
−1(x− Ek)− iCk(x− µ)2 + ... (11)

Then we split the integral in (5) as∫︂ µ

−∞
=

∫︂ µ

µ−a
+

∫︂ µ−a

−∞
(12)

with a a fixed finite positive and small energy. It is clear that any possible
discontinuous behaviour of nk should come from the first integral since in
the second one the integrand is never singular. We then write

nk = n′k + n′′k (13)
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and focus on n′k. In the integral defining it we can use the aforementioned
expansion to get

n′k =
1

2πi

∫︂ µ

µ−a
dx{ 1

Zk
−1(x− Ek)− iCk(x− µ)2

− c.c.} (14)

at the leading order. Now we set

Ek = µ−∆k (15)

and use
Ek = Ek0+y = Ek0 ± |y||∇k0Ek0 | = µ± |y||∇k0Ek0 | (16)

where the ± depends on whether y is parallel or anti-parallel to the normal
to the F.S. at k0. Moreover at the lowest order

∆k = ∓|y||∇k0Ek0 | (17)

so if we define r = µ− x in (14) we are left with

n′k =
1

2πi

∫︂ a

0
dr{ 1

Zk
−1(∆k − r)− iCkr2

− c.c.} (18)

again to the leading order. There is only one more change of variable to do.
Putting

t = |∆k|/r (19)

yields for (18)

n′k =

∫︂ +∞

|∆k|/a
dt

(αk/π)

(Zk
−1)2(t∓ 1)

2
t2 + α2

k

(20)

with
αk = Ck|∆k| (21)

and the ∓ sign according to ∆k being greater or less than zero respectively.
If we let y go to zero we are going closer to the F.S. so also αk goes to zero.
This makes the argument of the integral approach the Dirac delta-function
starting from a sort of Lorentzian peak, so we can write:

n′k =

∫︂ ∞

0
dtδ[|Zk

−1|(t∓ 1)] (22)

The small values of t near zero give no contribution since α2
k is negligible

with respect to the first term in the denominator of (20). The only way to
get a non-zero contribution is then to have the minus sign in the expression
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(22). We have thus obtained that, in crossing the F.S. nk, changes by the
finite amount |Zk0 |. Since the occupation number can’t be greater than one
one can guarantee also

|Zk0 | ≤ 1 (23)
Besides this the manipulation above shows that the F.S. is the only discon-
tinuity found in nk under Luttinger hypothesis. The state of affairs looks a
little discouraging to me, the reason being the following: the game we play
consists often in saying something about the analytic structure of functions
(forgive my tiny tortuous sentence) that should be obtained as the limit of
a sequence of functions defined over some set of discrete variables, like for
example the self-energy as a function of k before the thermodynamic limit
is taken.
The problem is that before the limit there is no analytic structure at all,
and a mathematical theory of the analytic properties of functions emerging
in the way described is completely absent. So if one is unable to produce
explicit and exact expressions of the objects he wishes to take the limit of
then he’s left with an unsolved problem. The best we can do to address this
issue is to assume that the output of our limits will be made of piece-wise
analytic functions.
In the next part of the paper Luttinger, simply referring back to a previous
work he made with J.C.Ward [1], points out in few lines that the volume
of the F.S. defined above is exactly the same of the free theory. The next
logical step is then to follow their construction, that is what we’re going to
do.

1.2 Fermi Sphere inner volume

Here we will reconcile a little with the contemporary view. Indeed Luttinger
idea was to use the discontinuity in nk to define a surface and then to show
the enclosed volume is conserved. We don’t need this. What is going to be
proved presenting the content of Luttinger and Ward paper [1] is essentially
the statement of the theorem we use nowadays, as found in the introduction.
So we’ll end up with a conserved volume without any necessary reference to
the aforementioned discontinuity.
There will be again subtleties concerning the analytic structures in trying
to relate to the singularity in nk we talked so far, as could be expected.
Just think for example that the level set of a generic real function on R3

satisfying nothing but being non-negative and with a well defined integral
could be literally anything. So if one wishes to define a surface from the level
set of a function it has to be a somehow regular function or the definition is
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not possible. I pointed this out since we’re going to prove that the volume
where a function is positive is invariant with respect to some changes in the
underlying theory. Of course this volume would be the inner volume of the
Fermi Surface (as the reader is probably thinking) and the F.S. has to be
defined to be the boundary of such volume.
Nevertheless without assumptions upon the analytic structure this bound-
ary doesn’t even need to be a two-dimensional set in R3. Having said so, we
proceed with Luttinger-Ward’s proof that there is a volume in momentum
space that does not depend on interactions.
The proof makes use of what in the present day literature we call the
“Luttinger-Ward functional”. A modern expression for it is given by [6]
where is found

ΩLW [G, v] = Ω0 ∓
1

β
{Φ[G, v]− Tr[Σ[G, v]G+ log(1−G0Σ[G, v]) ]} (24)

In the equation above G0 and G are the free and interacting Green functions
of the system under consideration, v is the two points interaction function
and the lower sign is for fermions. The Φ-functional that appears is the
subject of next chapter so we won’t describe it much now. Almost the same
functional is constructed by Luttinger and Ward in the first part of the
paper [1] and we report it here using a little more standard notation

Y = lim
η→0+

− 1

β

∑︂
k,l

exp (ηζl){log [ϵk +Σ(k, ζl)− ζl] +G(k, ζl)Σ(k, ζl)}+ Y ′

(25)
For Y ′ is given a diagrammatic definition that makes it a functional of full
propagator and proper self-energy, contrary to [6] that uses G and v.

Y ′ =
∑︂

Closed Linked Skeleton Diagram (26)

and is the equivalent of the Φ-functional in the previous equation. The pre-
cise meaning of these words will be clear when we will study such functional
in detail. Here we don’t need to. The functional Y is stationary when Σ, G0

and G are related by the Dyson equation. The stationary property is men-
tioned since the proof makes use it. Such Y is constructed starting from
the standard expansion of the Grand Potential in terms of bare propagator
and interaction. What matters now is that Y equals the value of the Grand
Potential at the stationary point. Thus we may use it to compute the total
number of particles, that is

N = − d

dµ
Y (27)
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In such derivation two sources of terms are distinguished:

• the µ dependence which arises from the complex Matsubara frequen-
cies ζl defined in equation (3). For it ∂µ can be replaced by ∂ζl .

• the intrinsic µ dependence of Σ at the stationary point. This could be
ignored anyway since there we would get something like

∂Σ(k, ζl)

∂µ

δ

δΣ(k, ζl)
Y (28)

that vanishes thanks the stationary property.

So the expression for N turns into

N = lim
η→0+

1

β

∑︂
k,l

exp (ηζl)∂ζl{...} −
1

β

∑︂
k,l

Σ(k, ζl)∂ζlG(k, ζl) (29)

where the second term comes from the derivative of Y ′ and cancels out with
the same term but from the curly bracket, leaving us with

N = lim
η→0+

1

β

∑︂
k,l

exp (ηζl){∂ζl log [ϵk +Σ(k, ζl)− ζl] +G(k, ζl)∂ζlΣ(k, ζl)}

(30)
In the zero temperature limit the sum is switched to an integral over the
continuous variable ζ. The authors themselves put the reader in warning
about the fact this substitution may hide subtleties and that corrections to
such limit may occur. Nevertheless when valid this gives for the last term
in (30)

lim
η→0+

1

β

∑︂
k

∑︂
l

exp(η ζl){∂ζl [G(k, ζl)Σ(k, ζl)]− Σ(k, ζl)∂ζlG(k, ζl)} = (31)

= lim
η→0+

1

2πi

∫︂ µ+i∞

µ−i∞
dζ exp(η ζ)[−Σ(k, ζ)∂ζG(k, ζ)] (32)

since the boundary term coming from the total derivative vanishes when
the sum is replaced by the integral. The argument proceeds the following:
first one notes that, because of the diagrammatic definition, this term is
equivalent to the differentiation of every skeleton diagram with respect to
ζl followed by the replacement of sums by integrals. Then one uses the fact
he has integrals in which partials derivatives with respect to the integration
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variables appear. A partial integration with respect to them yields a term
proportional to

(∂ζ1 + ∂ζ2 + ∂ζ3 + ∂ζ4)δ(ζ1 + ζ2 − ζ3 − ζ4) (33)

due to the fact the Hamiltonian is time-independent. This makes the con-
tribution to N disappear when the sum over k is performed. This exact
cancellation is crucial to prove the theorem. We will then try to understand
it in a modern formulation. Having said all of this we’re left with a single
term that of course can’t cancel out

N = lim
η→0+

1

β

∑︂
k,l

exp (ηζl)∂ζl log [ϵk +Σ(k, ζl)− ζl] (34)

To do this last summation we employ the following trick, that is common
when dealing with Matsubara frequencies. Consider the function

f(ζ) =
1

1 + exp (β(ζ − µ))
(35)

Its poles lie exactly on the values of ζ we want to sum on. So if we multiply
it with the argument of (34) and choose a convenient contour Γ for the
integration in ζ, we get

lim
η→0+

1

β

∑︂
l

... = lim
η→0+

1

2πi

∫︂
Γ
dζ exp(η ζ)f(ζ)∂ζ log [ϵk +Σ(k, ζ)− ζ] (36)

The contour Γ may be deformed into Γ0 as shown in fig. 1. Now we can
use partial integration to make ∂ζ act on f(ζ). This gives a delta function
δ(ζ − µ) when β → ∞ and ζ approaches the real axis. So all is left is

N = lim
η→0+

∑︂
k

1

2πi
{log [ϵk +Σ(k, µ)− µ+ iη]− log [c.c.]} (37)

Now the branch-cut discontinuity of the logarithm of a complex number
makes out the result we wondered: the argument of the curly brackets in
(37) is zero when we’re upon the positive part of the real axis and equal to
2πi on the negative one, so the expression for N turns into

N =
∑︂
k

θ(µ− ϵk − Σ(k, µ)) (38)

with θ(..) the Heaviside theta-function.
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Figure 1: Paths involved in the contour integrals. Luttinger and Ward [1]

1.3 Some comments about the proof - why the thesis should
go on?

The proof of the theorem we have just seen is somehow an unsatisfactory
one, at least for the physicist. The good mathematician could feel that any-
thing is OK and that the given proof extinguishes any doubt, leaving one
with no possible question about it. However his is not mathematics so we
cannot content ourselves saying that a bunch of “hoketi poketi” math tricks
(as Richard Phillips would have called them) leaves us satisfied and prone
to focus on other issues.
First of all we don’t have any physical interpretation of the Luttinger-Ward
theorem and secondly it’s not even clear if it is just telling us about a some-
how accidental mathematical fact with no real relation with the physical
world or if it could be based on the experimental ground. Personally I think
it would be really strange if the first one is the case.
My wish is to rule out as much as possible what is going on physically
and that’s why in the following we will relate this theorem to the theory
of fermionic condensed matter that we can test with the experiments and
clarify the situation as much as we’ll be able to.
Of course I don’t presume to be able to address the issue to the necessary
extent, many other much more skilled than me tried to do it before unsuc-
cessfully. Nevertheless every drop is involved in making out the ocean so I
won’t just sit apart in silence but follow the hope that mine could be another
meaningful (regardless microscopic) contribution.
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2 Dressed Expansion of the Grand Potential
In this chapter we will be concerned with all the functionals and diagram-
matic expansions mentioned insofar. It is necessary to do it because of the
central role they play in the theorem and almost in every known proof.

2.1 Introducing the bubble-diagrams

Recall the fundamental equation

Z = Tr[exp [−β(H − µN)]] = exp (−βΩ) (39)

The operator we are taking the trace of is closely related to time-evolution
in Quantum theories, meaning that

exp [−βK] = UK(−iτ)|τ=β (40)

where K = (H − µN) and UK(t) the unitary operator giving time transla-
tions with K taken as a sort of Hamiltonian. If we have

K = K0 + V (41)

it is a standard result from Quantum Mechanics that we can write

UK(t) = UK0(t)UI(t) (42)

with UI(t) given by

UI(t) = P exp [−i
∫︂ t

0
dt′ VK0(t

′)] (43)

and P exp [..] denoting the path-ordered exponential. One should note that
these are exact relations. Using (40) and (42) in (39) gives

Z = Tr[UK0(−iτ)UI(−iτ)|τ=β] (44)

That by definition corresponds to

Z = Z0 ⟨P exp [−
∫︂ β

0
dτ VK0(τ)]⟩0 (45)

with ⟨..⟩0 denoting the thermal average given by the free theory K0. This is
an exact relation too and opens the doors to the diagrammatic expansions.
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As could have been presumed there are many different kinds of them, in-
deed the title of the chapter makes it explicit we will deal with a so-called
“dressed” one. It is logical anyway to arrive there starting from the most
natural one coming, that is the following: by definition the exp [...] is given
by a power series in the argument, so we can explicitly write it down and
consider for example the first few terms

Z = Z0 ⟨ 1 + (−)

∫︂ β

0
dτ VK0(τ) +

(−)2

2!

∫︂ β

0
dτdτ ′T [VK0(τ)VK0(τ

′)] + ... ⟩0
(46)

The first non-trivial one contains

⟨
∫︂ β

0
dτ VK0(τ) ⟩ (47)

Since we don’t need to be completely general we will focus only on a subset
of all the possible diagrammatic expansions, that is the one encountered
when dealing only with two-point interactions in a Many-Body theory. So
without loss of generality we can write down

V =
1

2

∑︂
⟨l, n| v |r, s⟩ al†an†asar (48)

where as probably already clear ⟨l, n| v |r, s⟩ is the two-particles interac-
tion matrix element and the a’s are second-quantized field operators. The
“imaginary-time” evolution of an operator O

O(τ) = exp (τK)O exp (−τK) (49)

could be invoked to setup a time-dependent perturbation theory but I pre-
fer a slightly different and simpler diagrammatic technique since it fits our
purposes and it can be related to the imaginary-time τ one only as much as
necessary. It is noteworthy to say this kind of approach is similar to the one
used by T.D.Lee and C.N.Yang in [7] to express Ω in terms of mean occu-
pation numbers, as it’s pointed out in [1] also, where Luttinger and Ward
say their functional is just the translation of Lee and Yang work into the
“modern” propagator language. For the moment let’s then content ourselves
to begin with the direct computation of (47). To do it one simply proceeds
the following:

• Exploit the C-number τ -dependence of the free Hamiltonian field op-
erators, explicitly

ak(τ) = exp (−τwk)ak(0) (50)
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ak
†(τ) = exp (τwk)ak

†(0) (51)

to separate the contribution in two factors, one of which is time inde-
pendent and given by

1

Z0
Tr[exp (−βK0)al

†an
†aras] (52)

contracted with v’s matrix element and the second one∫︂ β

0
dτ exp [−(wr + ws − wl − wn)τ ] (53)

that can be easily solved exactly.

• Make use of the fact that for the free Hamiltonian the field operators
map exact eigenstates into exact eigenstates. This allows to compute
explicitly (52) and products of that form involving an arbitrary number
of field operators.

It is now clear why we can focus on (52). Let me say this is nothing new
in standard literature. The algorithm for the computation of such kind of
product-forms is the content of G.Wick theorem [8] in its time-independent
version. An excellent and complete discussion on it is given by L.G.Molinari
in [9] so we won’t give it more space here. We will focus on the diagrammatic
representation of such product form instead because that is what we need
for our theorem. It’s a matter of fact that∑︂

K0

1

Z0
exp (−βK0)⟨K0|al†an†aras|K0⟩ (54)

multiplied by the corresponding interaction matrix element according to (48)
may be depicted graphically in the following way

(55)
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Figure 2: Diagrammatic representation of log(Z) in terms of the bare prop-
agator and interaction. Stefanucci-van Leeuwen [6]

where the two diagrams correspond to different contributions that have to
be summed over. The wiggly and straight lines should then be labelled by
the momenta that flow into them, a numerical factor that accounts for the
order of the diagram symmetry group has to be stick to it and then a sum
over all these labels has to be performed to compute (47). Since this is again
a standard procedure we don’t give it space here.
The only thing of importance to us is that this procedure may be extended
to arbitrary order giving us a diagrammatic representation of the partition
function of the grand canonical ensemble. To obtain the Grand Potential
one almost has to take the logarithm of it. This has the effect of leaving one
with the sum of every possible topologically distinct and connected diagram
taken just once. So we reached the conclusion that the the Grand Potential
of our theory may be expressed as such sum of bubble diagrams. On the
graphical level this is shown in fig. 2

2.2 Resummation of diagram classes - the proper self-energy

The diagrammatic interpretation we have come to opens the door to new
computational possibilities. Indeed it is well-known that usually is possible
to collect some specific classes of diagrams and sum all the elements of them
to cast the whole expression one was to compute into a new - and usually
simpler - one.
For example one may consider the class of diagrams specified by the fact
that a single straight line goes in and a single straight line comes out. This
of course gives what is commonly referred to as the improper self-energy.
Then one may consider a subclass of all such diagrams, that is the one given
by the same class just specified but with the additional restriction that none
of them may be cut into two distinct pieces by removing one single straight
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Figure 3: Graphical definition of the self-energy. Google Images

line. This is another standard procedure and the object obtained is known
as the proper self-energy. The graphical representation of such procedure is
summarized in fig. 3

2.3 G-skeleton bubble diagrams

Having seen some of the possibilities given by the diagrammatic interpre-
tation of the quantities we usually wish to compute we can focus on the
construction of the celebrated Φ-functional involved in Luttinger-Ward the-
orem’s proof. Such functional is defined at the algebraic level asking that its
functional derivative with respect to the full (or interacting) Green function
gives back the proper self-energy just defined.
This definition however doesn’t help much if one wish to come to some ex-
plicit expression of such functional, nor it serves in order to rule out its very
existence.Here the diagrammatic interpretations comes into play; indeed it
doesn’t take much to convince oneself that if we take the functional deriva-
tive of, for example, log(Z) with respect to the bare propagator this has
the effect of removing one single G0 line from every possible place where it
appears in the diagrams involved.
It is straightforward to check that all such diagrams with a single G0 line
removed constitute something that at least is related to the improper self-
energy. Actually if one writes log(Z) = log(Z0)−Φr[G0, v] it turns out that
the second addend does exactly such thing: its functional derivative with
respect to G0 coincides with the improper self-energy. This suggest we can
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Figure 4: Graphical representation of the Φ-functional. Stefanucci-van
Leeuwen [6]

sharpen our diagrammatic construction in order to get a functional with
the aforementioned property. Luckily it is the case. To have an intuition
one may think that taking the diagrammatic expression for log(Z) and re-
absorbing all the contribution to a single diagram that “dress” a single G0

line could do the work. At the end of this resummation the structure of the
original diagrams would be the same we had at the beginning but with the
full propagator G appearing in place of G0. Moreover it’s not difficult to
convince oneself that in such expansion there will be no diagrams contain-
ing self-energy insertions, since all of them have been absorbed into the full
propagator lines.
These are called the “G-skeleton” diagrams. The only issue left is about
symmetry factors. These are often annoying to keep track of and usually
doing it doesn’t help much to the extent of deepening the achieved compre-
hension of the state of affairs. So here we simply report that the correct
factor to all the G-skeleton diagrams of order n is exactly 1/2n. The final
expression for the Φ-functional we arrived to is then graphically given by
(lower sign for fermions)
which in formulae corresponds to

Φ[G, v] =
∑︂
n

1

2n

1

(2π)4

∫︂
dwd3kΣn(k,w)G(k,w)

where Σn(k,w) is the sum of all the topologically distinct G-skeleton self-
energy diagrams of order n with G0 replaced by G.
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2.4 Coming to the Grand Potential

We is left to relate the construction above to the expression for the Grand
Potential, defined to be −(1/β) log(Z). One could have an intuition of how
this would happen, indeed we have seen that log(Z) has a natural diagram-
matic expression in terms of the bare propagator and interaction and this
expression may be manipulated in order to cast it in a form which makes it
depending on the dressed propagator and bare interaction instead.
The actual state of affairs is a little bit more complicated than our sim-
plification. Nevertheless it’s just a matter of a some algebra to relate the
Φ-functional we constructed to the dressed expansion of log(Z). Since it
won’t be illuminating and it’s not what we really need for the investigation
of Luttinger-Ward theorem, for which the Φ-functional suffices, it seems
meaningless to repeat here such algebraic steps.
What should be mentioned in my opinion is that to arrive to the exact
expression of the Grand Potential Ω in terms of Φ and self-energy of G-
skeleton diagrams one has to start from a re-scaled interaction of the form
λV in the Hamiltonian, compute the corresponding λ-dependent Ω and then
manipulate the expression obtained always at the algebraic level (so with
no diagrammatic interpretation) to get rid of such λ keeping an eye on the
desired result. This procedure is given in details in the book by Stefanucci
and van Leeuwen [6] so we refer the reader to their work without falling into
technicalities. The final expression is

β(Ω− Ω0) = −{Φ[G, v]− Tr[ΣG+ log(1−G0Σ)]}

which was first derived in almost the same form by Luttinger and Ward
themselves. It may be formally regarded as a functional of the independent
variables G0,Σ and G, which takes the value of the Grand Potential of the
physical theory when the three variables are related by the Dyson equation
(G = G0+G0ΣG ) that turns out to be a stationary point for such functional.
In honor of its fathers in literature it is referred to as the Luttinger-Ward
functional.
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3 Quasi-particles
This chapter will be devoted to one of the most prominent concepts of con-
densed matter physics: the quasi-particle one. The reason for doing so it
that it is closely related with the Luttinger-Ward theorem.
This relation is reasonably based on the fact that such theorem is telling us
about a preferred set of single-particle states such that their number exactly
equals the number of particles. It comes natural then to think that such
states will have something to do with the particle-like behaviour of the ele-
mentary excitation of the physical system, thus involving the quasi-particle
theory.
The chapter is organized as following: first of all the presence of quasi-
particles will be related to the analytic structure of the two points Green
function of the theory (note there is no ambiguity in the previous sentence
since we implicitly assumed that any anomalous correlation function van-
ishes, so there is only one meaningful two points Green function). Then the
spectral representation of the propagator and the so-called “spectral func-
tion” is introduced since from it we can deepen the analysis of the quasi-
particle content of the aforementioned Green function.
It follows a section where we present the physics of the system and its prop-
erties starting from an ansatz on the form of such spectral function. Even-
tually the chapter is concluded with an eye on the experimental counterpart
of the quasi-particle theory, in particular showing how incredibly for a huge
variety of physical system the whole effect of the presence of the interactions
is to modify a very small set of measurable parameters, the most relevant
of which being given by the effective mass.

3.1 The single particle propagator

The zero-temperature single particle propagator in the time domain is de-
fined by

iG(xt, x′t′) = ⟨Tψ(xt)ψ(x′t′)†⟩ (56)

This function describes the amplitude for the propagation of the system
when at a certain time one particle or one “hole” is added to the ground-
state of the system (here denoted “⟩”) somewhere in space and then it is
destroyed somewhere else at a later time.
For a non-interacting system, as could be expected, the propagator is just
that of a free particle which propagates freely, conserving energy and mo-
mentum. Time and space translations invariance make G(xt, x′t′) a function
of x− x′ and t− t′ so its Fourier transform is G(k,w).
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3.2 The Spectral Function

As we will derive in section (4.1), regardless the interaction we have the
so-called “spectral” or “Källén–Lehmann” representation for it, that is we
can write

G(k,w) =

∫︂ ∞

−∞
ds

A(k, s)

w − s+ iη sgn(s− µ)
(57)

where the limit η → 0+ is implied if not otherwise stated. The function
A(k, s) is reasonably called the “spectral function” of the theory, it is real
and non-negative and satisfies the normalization condition∫︂ ∞

−∞
dsA(k, s) = 1 (58)

So we see that
G(k,w) is always given by some sort of weighted superposition
of free particle propagators.

A(k, s) is in fact the weight of a free particle that propagates with frequency
s and momentum k. This is important since the exact free particle behaviour
of G(xt, x′t′) in a free theory is a strict consequence of

A(k, s) = δ(s− ϵk) (59)

where ϵk is the free particle excitation spectrum. With this under considera-
tion it comes natural to ask oneself when it happens that our single particle
propagator still behaves approximately like that of a free particle one, if
interactions are turned on. Of course we can’t expect an exact behaviour of
such kind, otherwise the single particle momentum state involved won’t be
interacting with the remainder of the physical system.
Nevertheless it is reasonable that an elementary excitation of a somehow
weakly coupled system could still exhibit single particle properties, like sat-
isfying some kind of dispersion relation. The spectral function in a free
theory is a delta function centered at the dispersion relation indeed. This
is the same as saying that G(k,w) has only a single pole when w varies at
fixed k and this pole is also real. We thus investigate the implications of
single poles presence.

3.3 Quasi-Particle poles

Following L.G.Molinari [10] we define a quasi-particle to be a pole in the
propagator of the interacting theory

w − ϵk − Σ(k,w) = 0 (60)
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It seems necessary for it to be the only simple pole at fixed k, otherwise the
single-particle picture becomes meaningless. If the pole is given by

wpole(k) = w1(k) + iw2(k) (61)

the propagator splits up into a quasi-particle propagator plus a regular part

G(k,w) =
Z(k)

w − w1(k)− iw2(k)
+Greg(k,w) (62)

The residue at the pole Z(k) is naturally called “quasi-particle weight” and
it is a real number satisfying

0 ≤ Z(k) ≤ 1 (63)

thanks the normalization condition (58). At the same time (57) tells us
w2(k) has the same sign of µ − w1(k). So we can go back to time domain
and write

iG(k, t) = Z(k) exp [−iw1(k)t− w2(k)t] + iGreg(k, t) (64)

when t > 0 and w1(k) > µ. Is should be noted now that in the region of
k − space where Z(k) approaches the value 1 the quasi-particle propagator
effectively describes the whole physical system. Moreover if the imaginary
part of wpole(k) is small the resulting excitation’s lifetime becomes long,
resembling the infinite lifetime of a free particle. Since w2(k) is a dimensional
quantity saying it’s small doesn’t mean nothing. The requirement is made
precise when we ask for

| w2(k)

µ− w1(k)
| << 1 (65)

This is peculiar, indeed it is well-known //cita autori// that for a wide class
of interacting theories G(xt, x′t′) is constrained to vanish for large times, i.e.

lim
|t−t′|→∞

iG(xt, x′t′) → 0 (66)

as described in [6], so the particle-like behaviour of G(k, t) must be circum-
scribed in time and cannot last forever.

3.4 A Lorentzian approximation

Since we have seen that

• the spectral function of a free theory is a delta function
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• the simple poles in G(k,w) give quasi-particle properties

we can expect that for weak interactions the delta function behaviour gets
smoothed and broadened to some larger probability distribution maintaining
a well defined central peak somewhere and decaying indefinitely as s runs
away from it. A behaviour of this kind could be obtained if we set A(k, s)
to be a Lorentzian function

A(k, s) =
1

π

Γk

(s− ϵk)2 + Γk
2 (67)

As well known by mathematicians this is the prototypical example of a
pathological distribution, since almost none of its momenta are finite. Nonethe-
less it possesses finite limits and since ℑG(k,w) ≈ A(k,w) we must have
A(k, µ) = 0. In this case the propagator becomes

G(k,w) =
1

w − ϵk + iΓk sgn (ϵk − µ)
(68)

where it is evident the imaginary part has a finite discontinuity crossing
ϵk = µ. Of course if we make Γk → 0+ we reproduce the propagator of the
free system. If we go back to time domain we have

G(k, t) = exp (−iwkt− Γkt)− Γk

∫︂ µ

−∞
dw

1

π

exp (−iwt)
(w − ϵk)2 + Γk

2 (69)

and when wk >> µ + Γk the second term is negligible compared to the
first one, which in turn gives a quasi-particle propagating with energy wk

and lifetime Γk
−1. Keep in mind that since in Quantum theories the action

is dimensionless ϵk and wk are nothing but the same thing so I use them
interchangeably. Under our Lorentzian approximation it is straightforward
to check the momentum occupation number becomes

nk =
1

2
+

1

π
arctan

µ− ϵk
Γk

(70)

nk gives back the free distribution n0k when Γk goes to zero but is a smooth
function whenever such limit is not taken. Contrary to this we have that the
presence of a quasi-particle pole in the propagator (64) affects the analytic
structure of nk. Indeed

nk =

∫︂ +∞

−∞
dw

1

2πi
exp (iwη)G(k,w) (71)
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Figure 5: Momentum occupation number in the Lorentzian approximation;
µ is the energy unit, Γ/µ = 0.01, 0.05, 0.1 respectively, starting from the
steepest curve. Molinari [10]

may be computed exactly and the residue theorem gives

nk = nk
reg + Z(k)θ(µ− ϵk) (72)

So we see that nk has a discontinuous drop of magnitude Z(k) in crossing
ϵk = µ. Such locus of points in k − space is a two-dimensional surface
whenever ϵk is a sufficiently regular function of k. This two dimensional
surface should be called the Fermi Surface. So it is always true that if
there are quasi-particles the system will exhibit a Fermi Surface and such
surface will be the only singularity in the occupation numbers but we can’t
confidently state the converse anyway. Moreover at this level we can’t state
much about the FS volume. Still we can say something about such surface.
Indeed for example Compton scattering experiments allow the step Z(k) to
be measured [11]. Moreover we can relate it to the representation

G(k,w) =
1

w − ϵk − Σk(w)
(73)

since separating the real and imaginary part of (60) using (61) gives

w1(k)− ϵk −ℜΣk(w1(k)) = 0 (74)

w2(k) = Z(k)ℑΣk(w1(k)) (75)

thus we have
Z(k) = (1− ∂wℜΣk(w))

−1|w=w1(k) (76)
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Figure 6: nk for different values of rs in the homogeneous electron gas.
Ceperley et al. [25]

3.5 Mass renormalization in metals

Near the FS the imaginary part of the self-energy ℑΣk(w) approaches zero,
making quasi-particles lifetime in that region considerably long. I find note-
worthy to say experiments in metallic quantum wells done with thin Lead
(Pb) films on Silicon (Si) show lifetimes ranging around hundred of femto-
seconds (100fs) [12] and similar values are also found in graphene layers
[13]. A detailed discussion of quasi-particles lifetime in the two and three
dimensional electron liquid including temperature effects may be found in
[14]. If Z(k) is close to one we can expand the dispersion relation near the
FS. Assuming isotropy

w1(k) = µ+
1

2m∗kF (k − kF ) + ... (77)

with m∗ the effective mass of the quasi-particle. So using (76) and the fact
we’re close the FS gives

m

m∗ = Z(kF )(1 +
m

kF
∂kℜΣk(µ)|k=kF ) (78)
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As could be expected the lifetime is related to ℑΣk(w), so for our quasi-
particle we have

1

τk
= −2Z(k)ℑΣk(w1(k)) (79)

The parameters m∗, τk and Z(k) for the homogeneous electron gas can be
computed by means of different approximation techniques, as can be found
in [15] and [16]. In the first case we have

m

m∗ = 1− 0.083 rs(log rs + 0.203) + ... (80)

1

τk
= 0.252 (rs)

1/2 1

2m
(k − kF )

2 + ... (81)

where rs is the so called Seitz radius of the system. It is defined to be the
radius of the sphere that contains exactly one electron in units of the Bohr
radius, that is the length scale given by the elementary charge and electron
mass, aBohr = 1/me2. In symbols

4

3
π(

rs
aBohr

)
3
= n−1 (82)

It is interesting the mass renormalization in metals ranges wide since it could
run from few points percent up to hundred times the bare value for strongly
correlated materials [17]. Recently it has even been shown that the effective
mass could show divergences in two-dimensional electrons systems [18].
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4 The Fermi Liquid Theory
Since we have explored many particular aspects and peculiar facts concern-
ing the many-body physics it is appropriate to devote this next chapter to a
little contextualization of them. There is indeed a natural theoretical envi-
ronment in which the matter discussed find their place: the Landau-Fermi
liquid framework.
An excellent and complete treatment of it is given amongst many others by
Giuliani and Vignale [17], that will be referred to also for the alternative
proof of Luttinger-Ward statement they gave and that we will explore later.
The starting point for the Fermi Liquid Theory (usually an electron liquid)
is the experimental ground. Indeed we have evidences showing off that for
many common metals the valence or conduction electrons behave just like
if they were independent free particles, notwithstanding the actual mutual
interaction strength.
Since the early 30’s many aspects of their behaviour was predicted in terms
of the degenerate Fermi gas picture. The justification of such fact made the
physicists of that time struggle: for densities in the metallic range (rs ≈ 2−5)
the Coulomb interaction is even larger than the corresponding free gas Fermi
energy, so in principle it should not be valid to regard it as a perturbation
to the free system. For example in metallic Sodium (Na)

• rs ≈ 3.9

• ϵF ≈ 3.2 eV

• uint ≈ 4.3 eV

Around 1960 it was the genius of Lev Davidovich Landau that gave us the
basis to understand what is nowadays called the “normal” or low-energy
behaviour of an interacting Fermi system. As usual for him the good Lev
never provided a rigorous solution of the problem: he just gave us a working
one.
His work, nowadays referred to as the Landau-Fermi liquid theory, has been
proved so successful in describing metals that deviations from its forecast
are considered somehow exotic and are often prompt to rise the many-body
community interest. Standard exceptions may be found in low and especially
one-dimensional systems, where the physics itself literally becomes different
as we already told in the introduction.

26



4.1 A continuity principle

The key idea grounding Landau’s theory is that, for a wide class of fermionic
systems where interactions are through repulsive potentials, it is possible to
deform somehow continuously an elementary excitation of the free system
into one of the interacting one.
From a technical point of view today we know this connection is obtained
by means of the Gell-Mann and Low theorem. The classical derivation of
it, regardless unwieldy, has been given by several authors and among these
I prefer Fetter and Walecka’s one [19].
Still besides those proofs fortunately we can cite a modern and radically dif-
ferent approach to such theorem, given by Molinari [21], where the Schördinger
equation for the propagator is taken as starting point for a much simpler
proof. Anyway we don’t need to fall into its proof technicalities, which often
merely tend to obscure what should be clear from the very beginning. In-
deed what happens essentially is that one introduces a fictitious and suitably
slow switching-on of the interactions, i.e.

H(t) = H0 + fη(t)V (83)

fη(t) = exp (−η |t|) (84)

and uses the corresponding time evolution to evolve the eigenstates of the
free theory, with the hope that when the switching-on is made infinitely slow
one obtains something, so that the limit

lim
η→0+

lim
t′→+∞

Uη(0,−t′)|E0⟩
⟨E0|Uη(0,−t′)|E0⟩

(85)

exists. This procedure is called adiabatic switching-on of the interaction and
the corresponding unitary evolution the adiabatic evolution. In this case the
aforementioned theorem tells us this limit is an eigenstate of the interacting
Hamiltonian.
If the limit does not exists it is still possible that for very small values of
η the state obtained behaves approximately like an eigenstate, at least for
time intervals

∆t << η−1 (86)

Of course this behaviour is reminiscent of the quasi-particle properties seen
in the previous chapter and the condition (86) relates to quasi-particle’s
lifetime. Another thing to mention is that it seems quite nothing can be
said about the occurrence of level-crossing: we can start with a couple of
eigenstates of the free theory |E0⟩, |E′

0⟩, evolve them adiabatically and get
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a couple of states |E⟩, |E′⟩ with E0 < E′
0 but E > E′ (assuming the limit

exists). An example of such change of symmetry but in a few-body problem
is given by [20]. We will explore in the next chapter some relevant facts
happening if such level-crossing occurs on the ground state of the free theory.

4.2 Landau Effective Hamiltonian

Basing on the aforementioned continuity principle Landau postulated that,
since the occupation numbers n0(k) defined by

n0(k) = ⟨ak†ak⟩ (87)

specify the eigenstates of the free theory, at least for the low-energy sector
of the interacting theory

Eexc − Egs ≈ µ+∆ = µ[1 + (∆/µ)] (88)

∆/µ << 1 (89)

it should be possible to describe the elementary excitation of the interacting
theory using the same set of quantum numbers. Incidentally it is pecu-
liar that the conditions (87),(88) together tell us we are not describing any
collective excitation of the system, in case of which one would expect

Eexc − Egs ≈ Nµ (90)

or at high temperatures something like

Eexc − Egs ≈ Nβ−1 (91)

Of course these Nk represent no more the occupations of single-particle’s
momentum states. They rather represent, as should be quite clear now, the
occupation number of quasi-particle (or quasi-hole) states carrying the same
momentum. Another way to remark this is to say

[ak
†ak, V ] ̸= 0 (92)

with V the interaction potential, so the n0(k) will in general have a non-
trivial time evolution even during the adiabatic switch-on and won’t be
constants of the motion anymore. Since the free ground state is a filled
Fermi Sphere the line we’re following suggests then that the interacting
ground state would resemble a suitable “Fermi Surface” but filled with the
quasi-particles instead.
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This makes a variation of Luttinger-Ward statement immediate: the number
of quasi-particles in the interacting ground state equals the number of bare
particles of the non-interacting one. We are thus dealing with two number-
distributions at the same time:

• n(k) = ⟨ak†ak⟩ = number of bare particles with momentum k in the
interacting ground state (or any other state as well)

• N (k) = number of quasi-particles carrying momentum k in the ground
state (or in weakly excited states either)

Landau’s postulate then brings to ask oneself how the energy could depend
on the N (k). Concerning this he wrote down the most natural possible
thing: an effective Hamiltonian (or rather an energy functional) expanded
around Egs to the second order in the δN (k), that is the deviation of N (k)
from their equilibrium distribution, i.e. a filled Fermi Sphere. So we ended
up with is

E[{N (k)}] = Egs +
∑︂
k

εkδN (k) +
1

2

∑︂
k,k′

fk,k′δN (k)δN (k′) (93)

where εk and fk,k′ are the quasi-particle “kinetic” energy and the interaction
function. The conditions (88),(89) make clear the N (k) should not deviate
much from zero whenever k isn’t close to the Fermi Sphere for this functional
description to make sense.
This quasi-particle picture together with (93) gives us another way to ap-
proach some of the concepts seen in the previous chapter. For example since
εk represents somehow a kinetic term for the quasi-particle the analogy with
bare particles suggest to define the effective mass as

1

m∗ =
1

kF
∂kεk|k=kF (94)

or that we have to identify
εkF = µ (95)

Moreover it is noteworthy that the full single quasi-particle energy could be
computed as ˜︁εk =

δE

δN (k)
= εk +

∑︂
k′

fk,k′δN (k′) (96)

with the second term representing a contribution to the kinetic energy given
by the interaction with the remainder of the system, where the coefficient
fk,k′ given by

fk,k′ =
δ2E

δN (k)δN (k′)
(97)
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Figure 7: Particle vs quasiparticle momentum distribution function at zero
temperature. Google Images

4.3 Entropy for the quasi-particle ensemble

Another remarkable fact concerning Landau-Fermi liquid theory is that we
can formally regard the N (k) as a set of occupation numbers specifying a
grand-canonical ensemble. So it’s straightforward that its statistics will be
given by an entropy principle. The correct functional for it is (cf. [17])

S[N (k)] = −
∑︂
k

N (k) logN (k) + (1−N (k)) log (1−N (k)) (98)

Armed with this expression we can write down the corresponding grand
potential, that of course is

Ω[N (k)] = E[N (k)]− β−1S[N (k)]− µ
∑︂
k

N (k) (99)

At this level µ should be obtained minimizing Ω[N (k)]. Since expressions
(93) and (98) are given explicitly such computation is easily possible and
gives us the quasi-particle equilibrium distribution function at finite tem-
perature

N eq(k) =
1

1 + exp [β( ˜︁εk − µ)]
(100)

The last comment here is the latter equation should be solved at the same
time of (96) so a sort of self-consistency in this quasi-particle ensemble pic-
ture is evident.
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4.4 Freezing particles on the Fermi Surface

Having understood that continuity is the key to transform the non-interacting
low-energy sector of the statistical ensemble into the interacting one, whether
or not Landau-Fermi liquid theory could effectively describe the physical sys-
tem in such sector relies on the actual ineffectiveness of the occurrence of
the interactions to change the momentum occupation numbers when we are
close to the Fermi Surface.
We will reach this conclusion in a twofold way, one of which is a simple
application of standard perturbation theory while the other one is a more
qualitative argument.

4.4.1 A diagrammatic interpretation

As promised the result may be obtained by means of a perturbative di-
agrammatic expansion where, from the second order one, terms give the
self-energy a non-trivial w-dependence. It is quite a general fact that at the
first order the self energy is just a constant with respect to w. This could
be seen easily looking at the two diagrams below

kw

kw
k′w′

k′′w′′

(101)

kw

ps p′s′

kw

(102)
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where the labels are couples of linear momentum and energy values respec-
tively. For the theories we are interested in they are all the diagrams to
be considered for the first order self-energy’s computation and energy and
momentum are exactly conserved quantities. So in the diagrams above we
have to set k′w′ equal to zero and ps = kw − p′s′. Moreover the energy
dependence of the bare interaction is trivial, thus summing over the internal
labels we get a contribution independent of w. Of course the converse is not
true for k. Explicitly

Σ(1)(k,w) ≈ u(0)(N/V )− (βV )−1
∑︂
ps

eisηu(p)G0(k − p, w − s) = (103)

= u(0)n−
∑︂
p

u(p)n0(k − p) (104)

which makes the independence of Σ(1) on w evident. The conditions above
do not hold if we consider higher order diagrams, where it’s possible for the
self-energy to acquire some w-dependence. Again an exemplification of this
is given by

kw

kw − ps
ps

kw ps

qr

ps− qr

(105)

where the contribution to Σ(2) turns out to be proportional to

1

(βV )2

∑︂
ps

{G0(k − p, w − s)[u(p)]2
∑︂
qr

G0(qr)G0(p− q, s− r)} (106)

so even without pushing the computation further it’s easy to convince one-
self the non-trivial convolutions of (106) may give Σ the w-dependence we
mentioned insofar. It should be remarked that without it Luttinger-Ward
theorem becomes trivial and the Fermi Surface simply becomes

µ− ϵ(k) = 0 → µ− [ϵ(k) + Σ(1)(k, µ)] = 0 (107)
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This is evident since a propagator of the form

G(k,w) =
1

µ+ iw − x(k, µ)
(108)

would give an occupation number

n(k, µ;β) =
1

eβ[x(k,µ)−µ] + 1
(109)

that reasonably should satisfy

lim
β→∞

n(k, µ;β) → θ(µ− x(k, µ)) (110)

This is interesting since the value of µ has to be fixed to give back the correct
value for the total number of particles, that is

N =
∑︂
k

θ(µ− x(k, µ)) (111)

is an equation to be solved for µ and the thesis’ theorem statement becomes
somehow the result of a self-consistent condition. This fact is a characteristic
of the free theories also and it’s probably more involved in Luttinger-Ward
theorem than we understand nowadays.
Apart from this one can compute all the second order diagrams and get
the full contribution to Σ(2). This has been done by several authors (see
for example the renowned book of Fetter and Walecka [19]) so it’s quite
meaningless to repeat here their calculations. We just content ourselves to
state that at second order the imaginary part turns out to be proportional
to

ℑΣ(2)(k,w) ≈ c(k)(w − µ)2 (112)

This makes any excitation lifetime approach infinity when its momentum
approaches the Fermi Surface that’s what we wishes to check. We will elu-
cidate this in showing up the relation between it and the Spectral Function
of the previous chapter. Equation (112) is so relevant that sometimes it’s
taken as a defining feature of the Fermi liquid.

4.4.2 The Phase Space argument

As anticipated this will be a qualitative reasoning. Remark then that we
wish to rule out the possibility that particles scatter out the Fermi surface.
To avoid useless technicalities we will focus on the isotropic situation. So
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Figure 8: Schematic illustration of the quasiparticle decay process. Giuliani-
Vignale [17]

the natural starting point here is to consider a wave-vector close to the
FS but outside of it k : k > kF The admissible states for a decay process
condense in a thin shell outside the FS, since all the states inside of it are
already occupied. Since the probability of decay is proportional to the total
number of possible “out” states we get a factor for it proportional to the
shell thickness |k − kF |.
Since we have to conserve energy and momentum during the process we
have to excite a hole that lives in again in a shell of the same thickness
but this time it has to be below the Fermi Surface, giving us another factor
|k − kF | for the probability of the decay. We then have that the scattering
rate vanishes approximately like (k−kF )2 as we approach the Fermi Surface.
This is exactly the result we wanted. It should be remarked again that since
the momentum occupation numbers are not exactly conserved quantities one
would see them change if the system is observed for a long time.

4.5 Making profit of the Golden Rule

When we deal with Fermi liquids the main process that can make a quasi-
particle decay is the so-called “electron-hole pair production”. To avoid
complications related to temperature we will assume it to be sufficiently
low for our argument to be valid. So essentially what we do to estimate the
quasi-particle lifetime is to apply directly the famous “Fermi golden rule” for
the probability of the transition between the quasi-particle and electron-hole
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couple states. Let’s then consider a couple of electrons carrying momentum
p and p′ respectively. The scattering rate at exchanged momentum q, i.e.

p→ p+ q
p′ → p′ − q

(113)

according to the golden rule is

R(q, p′, p) = 2π|w(q)|2δ[ε(p+ q) + ε(p′ − q)− ε(p′)− ε(p)] (114)

where w(q) is the matrix element of the interaction potential corresponding
to the process and the ε(x) as usual are the free-particle energies at momen-
tum x. I hope to be crystal clear for the reader that (114) is an approximate
result. If we sum over all the possible decay processes where one of the two
electrons has momentum p we get the total probability of decay for a particle
with that momentum.

τp
−1 =

∑︂
p′,q

R(q, p′, p){n(p′)[1− n(p′ − q)][1− n(p+ q)]} (115)

again with n(x) the free theory occupation number at momentum x. The
three factors following R(q, p′, p) have a simple physical interpretation, in-
deed of course the probability to scatter off against a state with momentum
p′ should be proportional to the actual number of particles carrying such
momentum, thus giving the factor n(p′) and quite the same reasoning ap-
plies for the remaining ones.
From equation (115) a certain number of approximations (the details of
which are of no interest here and for which we refer back again to Giuliani
and Vignale’s book [17]) allow to do the calculation and cast the expression
for τp for a three-dimensional system in the somehow simpler form

τp
−1 =

π

8µ

(ε(p)− µ)2 + π2β−2

e−β(ε(p)−µ) + 1
ξ(rs) (116)

where rs is again the Seitz radius and the function ξ(rs) is defined as

ξ(rs) =
1

2[1 + g(rs)]
+

1

2

√︁
g(rs) tan

−1[1/
√︁
g(rs)] (117)

g(rs) = (9/4π)1/3(π/rs) (118)

An interesting fact is that when rs → 0 we have ξ(rs) →
√
rs so the decay

rate turns out to be proportional to the elementary charge e instead of the e4
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dependence one could have expected stemming from the standard scattering
theory. It seems indicated to remark that the dependence on the elementary
electric charge here is completely contained in the Seitz radius, explicitly:
rs = (me2)[3/4πn]1/3.
I conclude saying some reader may have imagined the naive result should not
apply since it’s a matter of a couple lines to show the Jellium hamiltonian
may be cast in the form of an energy scale times a dimensionless operator
whose sole parameter is the Seitz radius.

4.6 Summarizing the results

Last chapter we have explored many different aspects of the electron liquid
theory and one may feel confused about the huge amount of information to
be managed at once.
Nevertheless what is important in physics is always to try to keep evident
what is relevant and to wash away any remainder. So basically in this chap-
ter we have seen that a Fermi liquid is any physical system that can be
obtained by a suitably slow and continuous switching-on of the interactions
starting from a homogeneous electron gas. In this system we then found a
remnant of the Fermi surface and the existence of many long lived particle-
like excitation that we naturally called quasi-particles.
We investigated the possibility to describe the system as if these quasi-
particles were the true elementary degrees of freedom, thus defining an ef-
fective Hamiltonian for them and a quasi-particle ensemble and we have
shown it could be used in order to compute some properties of the system.
In the end we have examined in details the mechanism giving an excitation
close to the Fermi Surface an infinitely long lifetime, both from the qualita-
tive and quantitative point of view, relating the microscopic physics to the
intuitive results always working in the domain of perturbative approaches.
A last comment is mandatory: the historical Landau-Fermi liquid theory
has been recently revised in a novel fashion in the modern times, where the
Renormalization Group approach to the theory has been devised by many
authors [29] [30].
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5 More proofs of the theorem
As anticipated in the introduction the scientific literature in about 70 years
has literally clouded in folklore what the Luttinger-Ward theorem is and
whether or not the Fermi (or Landau-Fermi) liquid picture gives a valid de-
scription of a physical system.
I think probably anyone having spent enough time scratching his head in
this field of physics feels (or felt - we have to pay homage to the giants of the
past whose shoulders we’re trying to climb on) a concrete and strong sen-
sation that these apparently disconnected issues hide a connection instead,
way deeper than we can show and understand within the mathematics of
the present days.
It comes by itself that our purpose, as well as it was for those who tried
to do this before, is still try to address the question as much as possible.
To this end it is natural to slow down a little and spend a couple of words
trying to figure out what’s going on from the physical point of view.
On one side we are considering a system of interacting electrons and we wish
to tell when it behaves like if they were free particles. On the other side we
have a theorem that tells us something we know how to state mathemati-
cally:

The number of states such that G(k, µ) > 0 equals the number of
particles.

How could we say this physically?
As we pointed out earlier the propagator in the time domain has a simple
interpretation. It gives the probability amplitude between the initial and
final states after a certain time lapse, where both states are obtained adding
a particle or a hole to the many-body ground state. It is of course a function
of the time lapse only in our physical theories since there is no preferred point
in time. When the time lapse is positive we are describing the propagation
of a particle and when it’s negative we propagate holes.
It is good practice to picture this making use of the experiments. We can
inject holes by photo-emission on our bulk metal, shooting photons in it
with some powerful laser beam to kick-out electrons and all the same we
can inject an electron beam with a simple electron gun pulling electrons out
some hot filament. Since we can control quite easily the momentum of the
incident beam a measure of if for the outcoming one would give the value of
the injected momentum, so we are really implementing the field operators
ak, ak

†.
What is the interpretation when we switch to frequency domain? Basically
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we are taking the spectral components of G(k, t); that is we are looking
at each portion of the propagation process happening with a well-definite
energy separately. What is then so special in the energy value w = µ? We
again have a simple answer: it is the energy value connecting the ground
state of the N and N +1 particle systems. We can rephrase this saying that
G(k, µ) gives the amplitude to fall into the N+1 particles ground state when
we inject an electron carrying momentum k. Since in the thermodynamic
limit we expect

µN − µN−1 → 0 (119)

we may assume G(k, µ) simply also gets the contribution given by the am-
plitude that the system falls into the N − 1 particle ground state when we
remove an electron with the same momentum instead.
I feel necessary to comment that this hypothesis could hide subtleties from
the mathematical point of view. To have an intuition that they are present
one could simply think that, exactly in the same limit, (119) does not imply

G(k, µN )−G(k, µN−1) → 0 (120)

or any similar equation. This kind of result is evidently related to the
continuity of G(k,w). Again we see that the somehow emergent analytic
structure, when we take an infinite system, plays a pivotal role even at the
fundamental level of simply addressing the question: “What does the thing
I compute this way represents on the experimental ground?”. Moreover even
if we assume G(k,w) to be a continuous function it isn’t to any extent clear
what should be the physical interpretation.
The best I’m able to reason out to this end is the following. The sole fact
that ℑG(k, µ) vanishes regardless of k tells us that the processes involved
at the chemical potential energy are forced to interfere with a perfect phase
or anti-phase match, that is to say the interference can only be completely
constructive or destructive either.
From this perspective it seems the theorem, when cast in a physical fashion,
is telling us that the whole set of processes whose interference is constructive
must account for the total number of bare particles present in the system.
The reason why it should be so to the present day is still a fascinating
mystery to me which I hope someone to shed light on one day. In order
to try to get closer to its solution it seems a good thing to explore other
proofs that have been given during past year, probably with the very same
purpose.
Apart of the preamble being given by my little apology here is the content of
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the following chapter. First of all we will dwell with the proof of Luttinger-
Ward theorem given by Dzyaloshinskii. There are two reasons for doing so.
The first one is objective: such proof extends the validity of the theorem
to the Mott Insulators and to non-Fermi liquids. For the thesis to be self-
contained and for clarity I found appropriate to spend some words describing
what they are, so there will be a couple of subsections reserved to them.
The second one isn’t objective and is that such proofs seems to me and
to my supervisor one of the most beautiful appearing in the literature we
examined.
Then it follows a little part in which we show, always according to the
same author, how the extension of the theorem to electrons living in the
crystalline states of matter is almost a mere technicality. After such part
another original proof of the theorem, namely the one given by Giuliani and
Vignale, is presented since it differs from the most standard ones in many
ways.
The chapter is concluded with an argument given by Guraire which allows
to infer the existence of the Φ-functional involved in the proof we mentioned
and discussed insofar. To conclude I wish to mention a recent publication
by Pieri and Strinati [31] where they dwell with unbalanced Fermi system
(thus taking spin into account) since in this thesis we never give space to
such issue.

5.1 Dzyaloshinskii Proof

In a seminal paper dating back to the early 2000s [22] Igor Dzyaloshinskii
showed that a careful analysis of Luttinger theorem brings to conclude there
is a close analogue of the Fermi surface far beyond the metals domain. The
branches of Luttinger’s tree extend themselves pervading even the Mott in-
sulator and Non-Fermi liquids theories indeed.
As already told, it seems indicated to me to spend few words describing them
in order to appreciate the almost mystical wideness of the environment in
which Luttinger-Ward theorem holds.

5.1.1 Mott Insulators

In the Mott insulators standard band theory does not work: it predicts we
should have an ohmic behaviour but it turns out we really have insulators.
Thus they are a genuine example of a system where the interactions break
the free-particle picture.
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Moreover they are really peculiar since in this kind of materials the metal-
insulator transition takes place, as predicted by N.Mott himself [23] decades
ago and the transition has been subsequently observed for example [24] in
doped Silicon via electronic Raman spectroscopy.

5.1.2 Non-Fermi liquids

According to what we have understood about his counterpart, we can rea-
sonably define a non-Fermi liquid to be any physical system of (necessarily)
interacting fermions where the individuality of any low-energy excitation
fades into collective phenomena. That is to say we don’t find the particle-
like behaviour anymore.
Even if we avoid most of the complications we should be concerned with
when we describe a real system of interacting electrons (spin-glass states,
superfluid states, magnetic ordering, topological phases etc.), the sole intake
of the Coulomb interaction forces us to sketch a phase diagram with some
crystalline (or localized electrons) phases in it. A more realistic numeric
simulation makes out something looking like that in fig. 9. Naively one
could think it is the case because in such system the average kinetic energy
per electron should go like

ϵKin ≈ n2/3 (121)

while for the interaction one, assuming some sort of screening to assure the
energy is extensive

uint ≈ n
1
3 (122)

where the formulas refer to three dimensions. Still this prediction is not
the best one we can formulate, at least in my opinion, since whenever the
Hamiltonian is a sum of homogeneous functions (depending only on the
momentum or position of the particles) we can invoke the Virial theorem.
Contrary to the equations above it gives us exact an relation between the
averages of the total kinetic and potential energy on any true eigenstate of
the full Hamiltonian. If we can apply such theorem the relation should run

2⟨T ⟩+ ⟨V ⟩ = 0 (123)

so it would be no more obvious that we could have crystals. Nevertheless for
the systems we are dealing with (123) is wrong for more than one reason,
indeed we lied to the reader in the lines above; it’s not true that we can
use the Virial theorem here since we’re not dealing with any bound state of
particles living in the euclidean space. Anyway what matter to us is that,
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Figure 9: Phase diagram of the three dimensional HEG. Giuliani-Vignale
[17]
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as mentioned previously, we expect the emergence of crystalline states for
sufficiently low temperature and density.
In these states it’s not difficult to convince oneself that the most probable
low-energy physics is that of a vibrating crystal or equivalently an ensemble
of almost uncoupled harmonic oscillators, so only the collective excitations
appear and the Fermi liquid behaviour is completely lost. We have thus
an example of a real physical system of interacting electrons breaking the
Fermi liquid theory. To the same end of giving examples of such systems
in the real world it is noteworthy to mention one-dimensional systems also:
they display a non-Fermi liquid behaviour indeed we know there will be a
different physics, usually demanding a separate treatment.

5.1.3 The Luttinger Momentum

Having understood qualitatively what a Mott Insulator and a non-Fermi
liquid is, we can focus back on Dzyaloshinskii paper. In it the author applied
the Luttinger theorem in its modern (and “most general”, according to his
own words) form, that is

N

V
=

∫︂
d3p

(2π)3
θ[G(0, p) ] (124)

both to Mott Insulators and non-Fermi liquids. In the equation above θ[..] is
the Heaviside step-function and in the original paper an additional factor 2
accounts for spin multiplicity. Here we will ignore spin since it’s not essential
to the argument.
The careful reader may find himself confused at this point but there is no
need to worry: we can use G(0, k) or G(µ, k) in the relation above because
they are different (and probably a little misleading) notations for the same
object. Indeed we can think the frequency to be a purely imaginary number
and use the first notation or we can include in the frequency a real part
given by the chemical potential and use the second one.
The Luttinger momentum PL is defined to be the locus whereG(0, p) changes
sign, regardless being continuous or finite at p = PL. For his proof the author
makes use of three kinds of propagators at finite temperature: the retarded
(analytic in the upper half of the complex plane), the advanced (analytic in
the bottom half) and the Matsubara one. The fact that Luttinger theorem
is essentially a consequence of the analytic properties of the propagators
is explicitly stated at the very beginning. The three propagators share an
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Hilbert representation for ℑϵ ̸= 0

Gr,a(ϵ) =
1

π

∫︂ +∞

−∞
dx

ρ(x)

x− ϵ
(125)

where the equation holds whenever ℑϵ ̸= 0. The Matsubara propagator is
given by

M(ζn) = Gr,a(iζn) (126)
according to whether ζn is positive or negative respectively. For the reader’s
convenience allow me to remark that here iζn is the purely imaginary Mat-
subara frequency iπ(2n+ 1)/β . Sadly I also have to say that, because of a
different sign convention, the spectral weight function ρ(x) here is said to be
negative for all the values of x, contrary to the spectral function we defined
earlier. In my opinion the best one could prove is that ρ(x) is never positive
(or never negative according to the convention one chooses). Moreover we
it is well-known that the spectral function is related to the imaginary part
of the propagator that must vanish at least for w = µ.
Nevertheless the proof goes on the following: starting from the expression
for the density in terms of the Matsubara propagator

n(µ, β) =
1

β

∑︂
l

eiζlη
∫︂

d3p

(2π)3
M(ζl, p, β) (127)

(with the usual limit η → 0+ taken at the end of the calculation) under the
hypothesis of no phase transition at zero temperature the sum is switched to
an integral over the continuous variable ζ. In practice on the complex plane
we integrate on a path moving upward on the imaginary axis. In formulae

lim
β→∞

n(µ, β) =

∫︂
dζd3p

(2π)4
eiζηM(ζ, p,+∞) (128)

and from now on M(ζ, p,+∞) will be denoted simply by M(ζ, p). Then
follows a transposition of some steps that appear in the original Luttinger-
Ward proof we started with. I just mention them since there is really no
need to write them down twice. So the integrand is rewritten as

− iM(ζ, p)[∂ζM
−1(ζ, p) + ∂ζΣ(ζ, p)] (129)

where Σ is the self-energy and the second term is immediately dropped,
referring back to the construction and effective argument given by Luttinger.
My personal comment here is that again we see that this exact cancellation
is cardinal for the validity of Luttinger-Ward theorem. We can literally
rephrase the theorem (using modern notations) like
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Figure 10: Contour deformation in the complex energy plane. Dzyaloshinskii
[22]

The integral
∫︁
dζ d3pΣ(p, ζ)∂ζG(p, ζ) vanishes identically

and i remark this result is linked with the dressed expansion of the grand po-
tential as we have seen. The author is then left with the following expression
for the density in the limit of zero temperature

n =
i

(2π)4

∫︂
dζd3p eiζη∂ζ logM(ζ, p) (130)

We encountered this expression already but from here the proof separates
from that already seen. Indeed the author makes use of (126) to rewrite
(130) as

n =
i

(2π)4

∫︂
d3p {

∫︂
C+

...+

∫︂
C−

...} (131)

where C+ and C− are the top and bottom halves of the imaginary axis and
the dots stand for

dϵ eϵη∂ϵ logGr,a(ϵ, p) (132)

respectively. The path of integration is then closed to the left, encircling
the negative part of the real axis as shown in fig. 10 . This can be done
thanks the exponential factor and the hypothesis that both G′s never vanish
on each logarithm is analytic. Then the expression turns into

n =
i

(2π)4

∫︂
d3p

∫︂ 0

−∞
dϵ ∂ϵ log[Gr(ϵ)/Gr

∗(ϵ)] (133)
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with ∗ denoting the complex conjugate. (133) is then rewritten as

n = − 1

π(2π)3

∫︂
d3p

∫︂ 0

−∞
dϵ ∂ϵφr(ϵ) (134)

where φr(ϵ) is the phase of the retarded propagator, so we reached the
conclusion that

n =
1

(2π)3

∫︂
d3p

1

π
[φr(−∞)− φr(0)] (135)

Since Gr(−∞) is real and negative φr(−∞) = π, Thus the only values of
p that contribute to the integral are those for which G(0, p) is positive.
For them the integrand has the constant value 1 so we ended up with the
Luttinger-Ward theorem. The proof is valid regardless the system being a
Fermi liquid, a non-Fermi liquid or a Mott Insulator either and the only
way left to question the proof is then to assume the zero-temperature limit
is discontinuous, thus involving a zero-temperature phase transition.

5.1.4 Extension to crystalline states

In the same paper, after the completion of the proof we have just seen,
Dzyaloshinskii points out a fact that the some reader could have expected
already and that will be further generalized in last chapter: Luttinger-Ward
theorem holds also when a static crystal lattice of nuclei is present in the
background, giving an external potential for the electrons. This is important
because it tells us the theorem applies in describing many of the common
materials we deal with everyday.
The question whether or not the theorem holds if we allow crystal vibra-
tions is not addressed instead. It’s quite clear, at least on the experimental
ground, that the attractive interaction given by phonon exchange does not
break the validity of the theorem for many possible states of most physical
system. Nevertheless when it causes the system to fall into superfluid states
the theorem certainly cannot hold. A mathematical analysis of this issue
goes beyond the scope of the present thesis and we left it an for a possible
intriguing future work.
When a crystal background is present the good quantum numbers are the
band index n (not to be confused with the density) and the crystal mo-
mentum k, taking values in the Brillouin zone B. So these are the entries
on which the propagators depend, since we can add and destroy particles
carrying such quantum numbers. Of course to get an expression for the full
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density we must sum over all these states. We thus write

n = i
∑︂
n

∫︂
B

d3k

(2π)3

∫︂ +∞

−∞
dζeiζηMn,n(ζ, k) (136)

where again M is the Matsubara propagator. Repeating the step we did
before brings to

n =
i

(2π)4

∫︂ 0

−∞
dϵ

∫︂
B
d3k ∂ϵ log[detM(ϵ, k)] (137)

Again we can substitute Gr,a in place of M , so the expression above turns
into

n =
i

(2π)4

∫︂ 0

−∞
dϵ

∫︂
B
d3k ∂ϵ log[

detGr

detGa
] (138)

The matrices Gr,a may be put in diagonal form and their spectra Gl(0, k)
are real at zero energy since there they are Hermitian. So we end up with
the natural generalization of the Luttinger-Ward formula for the electrons
in a crystalline solid

n =
1

(2π)3

∑︂
l

∫︂
B
d3k θ[Gl(0, k)] (139)

5.2 A different argument from Giuliani and Vignale

A quite different approach to some step in the theorem’s proof has been given
by Vignale and Giuliani in their book [17]. It is noteworthy to report their
way to reach Luttinger-Ward statement since it may help having some more
insight and because this in one of the few (if not the only) proof existing that
does not start at finite temperature. Nonetheless we have seen a couple of
proofs already and we have explored in detail many properties of electronic
systems so it would be meaningless to start again from Adam and Eve. The
in-medias-res beginning is surely the most appropriate so we start with the
expression we already encountered before

n =

∫︂
d3k

(2π)3

∫︂ µ

−∞
dsA(k, s) (140)

with A(k, s) the spectral function introduced in the quasiparticle chapter,
the very same definition of which implies

A(k, s) = − 1

2πi
[G(k, s+ iη)−G(k, s− iη)] (141)
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Using the fact the propagator at the chemical potential is real allows to cast
the expression for the total density as

n =

∫︂
d3k

(2π)3

∫︂
C

dz

2πi
G(k, z) (142)

where C is a path encircling counterclockwise the portion of the real axis
extending from −∞ to µ on the complex plane. Here comes the main dif-
ference: the authors suggest to perform the following k-dependent change
of integration variable

z → G(k, z) (143)
where for the reader’s convenience I remark

G(k, z) =
1

z − ϵ(k)− Σ(k, z)
(144)

so we have
dz = −dG

G2
+ dΣ (145)

Now we have to note that as z runs along the path C the variable G performs
a closed path in the complex plane based at G = 0−. It is evident that for
arbitrary interactions this path will be arbitrarily complicated. Nevertheless
the property we need to exploit can be deduced almost without calculations.
The line of argument proceeds the following: since ℑG(k, z) vanishes only if
z → −∞ or z = µ there are only two points in which our path intersects the
real axis. So it encloses the origin, for fixed k, according to whether G(k, µ)
is positive or negative. Moreover looking at the relation between G and z
it’s not difficult to convince oneself that the path described by G is winding
counterclockwise when it encloses the origin and vice versa. In both cases
we call the path Γ. Plugging (145) into (142) yields

n = − 1

2πi

∫︂
d3k

(2π)3

∫︂
Γ
{dG
G

−GdΣ} (146)

As we argued many times the second term is dropped and the argument
bringing to this conclusion is again the original one by Luttinger and Ward
themselves; namely that we need a functional, say Φ[G], with the property

δΦ

δG(k,w)
= Σ(k,w) (147)

So the final expression for the total density is left in the first term in (146)

n = − 1

2πi

∫︂
d3k

(2π)3

∫︂
Γ

dG

G
(148)
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Figure 11: Schematic representation of the different contours in the z and
G planes. Giuliani-Vignale [17]

The contour integral
− 1

2πi

∫︂
Γ

dG

G
(149)

gives back the values 0 or 1 according to the two possibilities devised before,
that is the sign of G evaluated at the chemical potential. So we end up again
with the utter expression

n =

∫︂
d3k

(2π)3
θ[G(k, µ) ] (150)

that is exactly the content of the Luttinger-Ward theorem.

5.3 What about the existence of the Φ-functional?

As we’ve seen in many ways, the theorem revolves around a special func-
tional Φ with the property that its functional derivative with respect to the
interacting (or dressed) Green function gives back the proper self-energy of
the electron or fermion we inject in the bulk and watch propagate.
Since there is a proof of the existence of such functional which differs from
the original constructive one given by the authors whose theorem this thesis
is named after I think appropriate to report it. In a recent work [26] Guraire
infers that we can find a Φ[G] such that the equality

δΦ

δG(k,w)
= Σ(k,w) (151)

holds if we can prove that

δΣ(k,w)

δG(k′, w′)
=
δΣ(k′, w′)

δG(k,w)
(152)
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Why it should be so? Actually the condition above can be interpreted
thinking the self-energy as some kind of infinite-dimensional vector field: if
the equation holds such vector field is irrotational. Alternatively one could
think that we’re asking for the (again infinite-dimensional) differential form∫︂

d3k dw

(2π)4
Σ(k,w)[G]dG(k,w) (153)

to be exact; i.e.

d {
∫︂
d3k dw

(2π)4
Σ(k,w)[G]dG(k,w) } = 0 (154)

where the exterior derivative actually is a functional exterior derivative act-
ing on the G dependence only so maybe it should be denoted by δ instead of
d. I ought to say I feel a little uncomfortable about this reasoning because
there isn’t almost any well-developed mathematical theory of PDEs at the
functional level. Nevertheless the author concludes that the relation (152)
holds by means of the following argument.
First one notes that by definition Σ(k,w) is given by all the possible OPI
diagrams. Taking a functional derivative with respect to G(k′, w′) has the
graphical interpretation of removing one dressed G-line from every one of
those diagram in every possible way. All such diagrams taken together give
rise to a vertex function for a process involving particles with energies and
momenta given by k,w and k′, w′.
Since the process should be symmetric under particle exchange we can switch
the labels and reach the deserved conclusion that our functional differential
form is in fact exact as we wanted to prove.
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6 My two cents
For the sake of concreteness I will work under few assumptions that may
not be the minimal ones. They are the following:

• particles live on some finite lattice covering a compact manifold with
no boundary

• the Hamiltonian does not depend on time

• the number of particles is conserved

Moreover the thermodynamic limit is always taken at the very end of cal-
culations. (The latter being rather a principle than some hypothesis)

First of all I wish to discuss the celebrated Källén–Lehmann representation
for the propagator. This exact representation seems crucial. From it the
proof of the theorem for the free fermions is promptly given. Such proof
will then be useful finding out when and why the theorem holds if fermions
interact.

6.1 The Källén–Lehmann representation

In a time-independent fermionic system the propagator is defined as:

iGαβ(t) = θ(t)⟨aα(t)aβ(0)†⟩ − θ(−t)⟨aβ(0)†aα(t)⟩ (155)

where ⟨..⟩ is short for the expectation value on the N-particle ground state
|E0

N ⟩. Simply plugging in between the field-operators of G(t) a resolution
of the identity in terms of simultaneous eigenstates of the Hamiltonian and
Number of particles operator gives:

iGαβ(t) =
∑︂
s

θ(t)e−it(EN+1(s)−E0
N )⟨E0

N |aα|EN+1(s)⟩⟨EN+1(s)|aβ†|E0
N ⟩+

−
∑︂
r

θ(−t)eit(EN−1(r)−E0
N )⟨E0

N |aβ†|EN−1(r)⟩⟨EN−1(r)|aα|E0
N ⟩

(156)

and Fourier-transforming with respect to time yields

Gαβ(w) =
∑︂
s

⟨E0
N |aα|EN+1(s)⟩⟨EN+1(s)|aβ†|E0

N ⟩
w − (EN+1(s)− Egs

N ) + iη
+

+
∑︂
r

⟨E0
N |aβ†|EN−1(r)⟩⟨EN−1(r)|aα|E0

N ⟩
w + (EN−1(r)− Egs

N )− iη

(157)
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It is convenient to define the coefficients

C+
αβ(s) = ⟨E0

N |aα|EN+1(s)⟩⟨EN+1(s)|aβ†|E0
N ⟩ (158)

C−
αβ(r) = ⟨E0

N |aβ†|EN−1(r)⟩⟨EN−1(r)|aα|E0
N ⟩ (159)

leaving the N -dependence implicit and to manipulate the denominators as
following:

EN+1(s)−Egs
N = (EN+1(s)−Egs

N+1)+(Egs
N+1−Egs

N ) = µN+ϵN+1(s)
(160)

and similarly

− EN−1(r) + Egs
N = ... = µN−1 − ϵN−1(r) (161)

to get

Gαβ(w) =
∑︂
s

C+
αβ(s)

w − [µN + ϵN+1(s)] + iη
+
∑︂
r

C−
αβ(r)

w − [µN−1 − ϵN−1(r)]− iη

(162)
that is, the Källén–Lehmann representation. It is important to note that
reasonably all the ϵN±1(s/r) are non-negative. From this representation the
exact analytic structure of G(w) for every w ∈ C becomes evident. The
transformation properties of G(w) make sure it is diagonalized by some
possibly w-dependent operator U(w) but this is not sufficient to say there
exists an orthonormal single-particle basis such that C+

αβ(s) = δαβC
+(s;α)

and similarly for C−
αβ(r). This possibility comes from the very fact that

symmetries in the Hamiltonian bring to conserved charges. (This is actually
what happens when particles live in the usual square box with periodic
boundary condition and still hold anytime we have enough simmetry, so we
focus on these cases). Using some convenient set of field operators it’s then
true that

Gαβ(w) = δαβG(α,w) (163)

G(α,w) = {
∑︂
s

C+(s;α)

w − [µN + ϵN+1(s)] + iη
+
∑︂
r

C−(r;α)

w − [µN−1 − ϵN−1(r)]− iη
}

(164)
the numerators being real non-negative coefficients that since {aα, a†β} = δαβ
satisfy ∑︂

r

C−(r;α) +
∑︂
s

C+(s;α) = 1 (165)
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Here setting
G(w) = G+(w) +G−(w) (166)

seems quite natural and there is apparently no mean to be concerned with
the viable presence of zeros of G(w) at the moment. Looking at the ex-
pression obtained may be used to conclude the following with w on the real
axis:

ℑ[G−(w)] ≥ 0 (167)

ℑ[G+(w)] ≤ 0 (168)

Since all the ϵN±1(s/r) are non-negative G+(w) is real and negative for
w < µN and G−(w) is real and positive for w > µN−1. So the whole
contribution to the imaginary part of G(w) is separately given by G+(w)
and G−(w) for real w. Of course all the properties stated refer to the
spectral values of the propagator and hence still hold for every possible
state’s expectation value.

6.2 Free fermions

For the Hamiltonian we consider it may be reasonable to assume µN >
µN−1. I will give a comment about this at the end of the section. The
strong inequality seems necessary for the validity of the theorem and it
ought to be noted it is equivalent to Egs

N being a strictly convex function
of N . Under such hypothesis in the vertical stripe µN > ℜ(w) > µN−1 the
eigenvalues of G(w) are never singular so it is possible to set η = 0. This
makes simultaneously G(w) real, G+(w) ≤ 0 and G−(w) ≥ 0 in such stripe
for w ∈ R. Having said that we can focus on the expression for the number
of particles:

N =
∑︂
α

lim
η→0+

−iGαα(−η) =
∑︂
α

lim
η→0+

−i
∫︂
dw

2π
eiwηGαα(w) = (169)

= Tr [ lim
η→0+

−i
∫︂
dw

2π
eiwηG(w)] (170)

A subscript N should appear in G(t) before taking limits, indeed ⟨..⟩ denotes
the N-particle ground-state expectation value. Also note the trace is not any
abuse of notation, G(w) being a linear operator on the single-particle Hilbert
space. A simple comparison with the previous section shows:

N =
∑︂
α

Nα =
∑︂
α

{
∑︂
r

C−(r;α)} (171)
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It turns out Nα = 1 if and only if the corresponding single-particle state
enters as a pure factor in the many-particles one. So for factorized states
either C+(s, α) is zero for every s or C−(r, α) is for every r. This fact
combined with the properties of G(w) just stated shows that for w ∈ R the
spectrum of G(w) in the region µN−1 < w < µN is strictly positive for all
those α that are occupied and viceversa for all those that are not. This
is exactly the Luttinger-Ward theorem for free fermions, the construction
achieved looking solid to me.
About the assumption on the chemical potential we can say the following,
that does not depend on the finite lattice hypothesis to any extent: since
here particles live on a compact manifold with a certain extent of symmetry
the kinetic Hamiltonian is almost always quite degenerate, so the strong
inequality in practice never holds.
Nevertheless the weak one is always satisfied. This is good since we expect
µ(N,V ) to become a function of the intensive variable N/V , that is the
number density n, in the thermodynamic limit. Actually this is more that
an hypothesis since there are exact results about this fact - see for example
[27]. This function µ(n) has to mimic the behaviour of µ(N,V ) but since
we don’t expect an infinite sequence of first order phase transitions rising
n it has to be quite smooth almost everywhere. So the only possibilities
are either µ(n) = constant or ∂nµ(n) > 0 with at most some isolated zeros.
Obviously only the latter is physical. This completes the theorem’s proof
for the free theory in the thermodynamic limit.

6.3 Interacting fermions

A separation of G(w) into free and interacting contribution will serve the
argument. I discuss here briefly such separation on a general footing.

6.3.1 Another approach to the self-energy

Consider the many-body Hamiltonian describing the system. It can always
be written as quadratic (say kinetic) plus non-quadratic terms in the field
operators. The kinetic term alone yields the “free” theory, the remainder
being external sources and interactions. We have suppressed sources anyway
asking [N,H] = 0. The propagator for the free theory is denoted G0(w).
The self-energy Σ(w) here is defined by:

Σ(w) = −[G−1(w)−G0
−1(w)] (172)

53



where those above are matrix inverses.
G0(w) has always a virtually very simple form:

G0 αβ(w) =
δαβ

w − ϵα + iη sgn(ϵα − eF )
(173)

with the convention sgn(0) = −1.
Here I must point out a subtlety: the above expression for G0(w) is ex-
act only if the single-particle Hamiltonian is non-degenerate. Otherwise the
Fermi energy-level could be partially filled and for those empty states at the
Fermi-level the signum times iη is simply wrong. Indeed it has to be −iη
for all the states that are occupied and the opposite for the states that are
not so.
If one thinks for example about the usual free electrons in the cubic box this
issue becomes evident: the energy levels are in practice given by the sum of
three integers squared and of course there are many ways to choose three
different squares to sum up to the same value.
Anyway a frequency-independent function f(α) with values in {−1, 1} mul-
tiplying iη sgn(ϵα − eF ) could fix this issue. Moreover it’s not necessary
to work at the algebraic level: since the Hamiltonian considered does not
break the symmetries of the manifold or lattice particles live onto, G(w) and
G0(w) are simultaneously diagonal and we can focus on their spectral values,
denoted like Gα(w) from now on. This allows the use of a simple criterion
to state whether the perturbative expansion is valid: rewriting (172) as

Gα(w) = G0 α(w){
1

1−G0 α(w)Σα(w)
} (174)

makes evident that the aforementioned expansion is convergent if and only
if

|G0 α(w)Σα(w)| < 1 (175)

6.3.2 Retracing the proof footsteps

With the definition and notations presented above the propagator may be
rewritten as:

Gα(w) = −∂w log Gα(w) +Gα(w)∂wΣα(w) (176)

and using them in the integral for the number of particles (here we switch
back to matrices to suppress the index α and lighten notation) gives:

N = −i Tr { lim
γ→0+

lim
η→0+

∫︂
dw

2π
eiwγ [−∂w log G(w) +G(w)∂wΣ(w)]} = (177)
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= Tr { lim
γ→0+

lim
η→0+

+i

∫︂
dw

2π
eiwγ [∂w log G(w) + Σ(w)∂wG(w)]} (178)

Some comments about vanishing contributions are necessary.
The boundary term is dropped thanks the asymptotic behaviour of G(w)
making out

lim
w→∞

Σ(w)/w → 0 (179)

and to convince myself that

lim
γ→0+

lim
η→0+

γ

∫︂
dw

2π
eiwγG(w)Σ(w) (180)

vanishes I used the following argument, which turns out a little longer and
makes use of the finite lattice hypothesis: if particles live on a finite lattice
both free and interacting Green functions are meromorphic in w. This en-
sures Σ(w) also is. Thus it has a Laurent expansion out some sufficiently
large disk centered at the origin, that is the only region to be considered
to prove the convergence of the integral (remember that the limit η → 0+

comes after the integration).
Combining this with Σ(w)/w → 0 in the same region makes the regular part
of Σ(w) being at most a constant. The residue theorem can then be used
showing the integral is finite and the limit itself zero. I find interesting that
we need to make heavily use of the analytic properties in order to prove this,
properties that may be broken by the intake of the thermodynamic limit.
Anyway the desired result is close. What comes into play now is the Φ[G]-
functional of chapter 2. Nevertheless to our purpose it may be thought to
be defined by the following equation:

Σ(w) =
δ

δG(w)
Φ[G] (181)

still its existence being proved only by means of a diagrammatic technique.
As we have seen Φ[G] is related to the so-called dressed expansion of the
partition function, which in turn has to do with the normalization of the
adiabatic state at zero temperature given by Gell-Mann & Low theorem.
Using this functional to compute N we get

Tr{ lim
γ→0+

lim
η→0+

i

∫︂
dw

2π
eiwγ(∂wG(w))

δ

δG(w)
Φ[G]} (182)

from the latter addend. The annoying eiwγ still there. If the limit can
jump inside the integral such factor disappears and the remainder becomes
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the overall variation of Φ[G] when G(w) is subject to a frequency shift.
Many authors chorally say this variation is then zero since, thanks to Galilei
invariance, a global shift in the energy leaves the whole theory unchanged.
All the contribution to the total number of particles is then left in the
logarithmic term, that is we can write:

N = Tr { lim
γ→0+

lim
η→0+

i

∫︂
dw

2π
eiwγ [∂w log G(w)]} (183)

From this equation we have already seen that there some possibilities to go
on. One is to go back to finite temperature and repeat the steps of Luttinger
and Ward (starting from eq. (34)). Another one is to follow the approach
of Dzyaloshinskii (seen in chapter 5) and the last one we have seen is that
of Giuliani and Vignale (presented also in chapter 5, section 5.2). I asked
myself if it is possible to proceed differently.
The only way I found to do it but not without the help of a very dear friend
of mine, that allowed me to get out some troubles I incurred in and that I
must really thank for his everlasting supportive attitude, is the following.
First of all note that the exponential factor is tricky: it is often thought to
be there just to tell us where we must close the contour when one wish to
invoke contour integration techniques. But we are aware that the half-circle
has to give no contribution at all, otherwise we don’t end up with the value
of the integral we started with. Further inspection reveals that - since the
γ → 0+ limit has to be performed - such factor can only affect what happens
in the asymptotic region of the integral. No definite integral can be changed
by it.
As a matter of fact at the end of the day it turns out that such exponen-
tial factor is responsible for the non-exact cancellation of the asymptotic
contributions to the integral only. This will become clear in the following
computation whenever it’s not yet so.
The expression inside the curly brackets is broken into three pieces thanks
the introduction of the fictitious parameter a, taken to be large enough to be
way greater than any eigenvalue of the interacting Hamiltonian and made
run to infinity eventually. In formulae

lim
γ→0+

lim
η→0+

lim
a→+∞

i

2π
(

∫︂ −a

−∞
+

∫︂ a

−a
+

∫︂ +∞

a
) dweiwγ [∂w log G(w)] (184)

We start focusing on the middle term. Since it is a definite integral the
exponential factor can’t affect the result, as we pointed out earlier, so it
can be simply suppressed. The result is then determined by the difference
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between logG(w) at the extremes of integration.

i

2π
lim
η→0

lim
a→+∞

log[G(a)G−1(−a)]} (185)

Here it’s convenient to reintroduce the index α. We can make use of the
analytic properties of Gα(w) (something we are granted of only because we
set up the problem on a finite lattice) to extract its asymptotic behaviour
in the following way: since it is a meromorphic function and all its poles are
finite it has a Laurent expansion out some sufficiently large disk - here of
radius a - centered at the origin. Moreover we know that the coefficient c0
vanishes thanks the asymptotic behaviour of G(w), so we can write

Gα(w) =
+∞∑︂
j=1

cj(α)
1

wj
(186)

Of course for the same reason we know c1 = 1 for every α. We need to
work out the expression for c2(α). In order to do it recall that we defined
G(w) = G+(w)+G−(w). Looking for example at the expression for G+(w),
namely

G+
α(w) =

∑︂
s

C+(s;α)

w − [µN + ϵN+1(s)] + iη
(187)

suggest we can do the following manipulations for w → ∞

C+(s;α)

w − [µN + ϵN+1(s)] + iη
=

1

w
{ C+(s;α)

1− [(µN + ϵN+1(s)− iη)/w]
} = (188)

=
1

w
{C+(s;α)[1 +

(µN + ϵN+1(s)− iη)

w
+ ...]} = (189)

C+(s;α){ 1
w

+
(µN + ϵN+1(s)− iη)

w2
+ ...} (190)

where the dots represent highest order terms in 1/w. So repeating the same
steps for G−

α(w) gives in the same large w limit, using the “normalization
condition” (165)

Gα(w) =
1

w
+

1

w2
{
∑︂
s

C+(s;α)[µN + ϵN+1(s)− iη]+

+
∑︂
r

C−(r;α)[µN−1 − ϵN−1(r) + iη]}+ ...
(191)

57



giving us for the coefficient c2(α) the expression

c2(α) = (µN − iη)(1−Nα) +Nα(µN−1 + iη)+

+
∑︂
s

C+(s;α)ϵN+1(s)−
∑︂
r

C−(r;α)ϵN−1(r)
(192)

where we have made use of (165) and (171) to perform the summations to get
Nα in the formula. Please note that accordingly we have for the imaginary
part of Gα(w) for large and real w

ℑGα(w) ≈ 2η(Nα − 1

2
)/w2 (193)

This equation by its own show a problem: we know that the sign of ℑGα(w)
should be the same of w−µ and this fact can’t be taken into account simply
going to higher orders in the power expansion. Nevertheless this is a very
delicate issue and it’s better to keep concentrated on our argument, that is
certainly a working one since there are no mistakes until now. If one goes
on the following is what happens. It is a matter of really just two lines to
convince oneself that any meromorphic function of the form (186) satisfies

lim
w→∞

1

Gα(w)
→ w{1− c2(α)

w
+ ...} (194)

where again we used c1 = 1. So in the attempt to evaluate the expression
(185), plugging our results back in the logarithm yields

lim
a→∞

log{(−a)[1− c2(α)

(−a)
+ ..]

1

a
[1 +

c2(α)

a
+ ..]} = (195)

= log[−1− 2
c2(α)

a
+ ...] (196)

here we see that the iη plays a role, indeed according to (193) it makes
the argument of the logarithm approach the value −1 on the real axis from
below or from above according ℑc2(α), so the result turns out to be

− iπ sgn[ℑc2(α)] = −iπ sgn[Nα − 1

2
] (197)

that plugged into the expression (185) gives

i

2π
(−iπ) sgn(Nα − 1

2
) =

1

2
sgn(Nα − 1

2
) (198)
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To this equation we must add the contribution given by the aforementioned
asymptotic region, that is the first and last terms of (184) and then sum over
the index α to take the trace and get our expression for the total number of
particles.
Such contribution is computed the following: because we are far away from
any possible zero in the denominator ( thanks the condition on a ) we can
immediately throw away the η → 0+ limit and the iη as well in our compu-
tation, then being left with

lim
γ→0+

lim
a→+∞

− i

2π
(

∫︂ −a

−∞
+

∫︂ +∞

a
) dweiwγ [∂w log G−1(w)] (199)

where we have multiplied by −1 twice to cast the expression in such form. It
comes by itself also that the exponential factor now comes into play. Making
use of the asymptotic behaviour of G(w) we can perform the derivative and
get

lim
γ→0+

lim
a→+∞

− i

2π
(

∫︂ −a

−∞
+

∫︂ +∞

a
) dweiwγ 1

w
=

1

2
(200)

The last effort is to show why the equation above returns the value 1/2. We
have a simple way to do it. It’s well known that

lim
t→0+

lim
η→0+

∫︂ +∞

−∞
dweiwt 1

w − iη
= 2πi (201)

We can take a to be any fixed positive number and rewrite it as

lim
t→0+

lim
η→0+

(

∫︂ −a

−∞
+

∫︂ a

−a
+

∫︂ +∞

a
) dweiwt 1

w − iη
= 2πi (202)

In the middle term we can bring the t → 0+ limit inside the integral and
compute it explicitly. Of course the result is

lim
η→0+

log[−(a− iη)

(a+ iη)
] = (203)

= lim
η→0+

log(−1 + iη/a) = iπ (204)

A comparison with (202) then allows to conclude the remainder must be
equal to iπ. Since this is true for any positive a and still true when we make a
approach infinity we have proven (200). Putting the pieces together, namely
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equation (198) with the latter result, we arrived to our final expression for
the total number of particles

N =
∑︂
α

1

2
{sgn(Nα − 1

2
) + 1} (205)

This result is really interesting. It is exact and holds whenever we setup the
theory on a finite lattice, no matter how huge the number of lattice sites
is. One can take it to be “just” 101000000 in a cubic box of 1m3 and still
the result is true with no caveat. In my opinion this is important because
we know that at those unreal resolutions (and way lower ones anyway) the
theory we use surely gets broken by several effects, starting from the special
relativity ones but involving GR ones all the same.
For example think that, regardless being fantasy according to the present
knowledge, the Schwarzschild radius of a black hole with the mass of a
single electron would be something like 10−57 meters. So it is quite simple to
believe that whatever may be described with the many-body theory is taken
into account by our model. This tells us, comparing with the previous proofs
we have seen, that the “volume” where G(k, µ) > 0 equals expression (205),
giving us a new key to interpreter the Luttinger-Ward theorem: whenever
the interactions, lowering the occupation inside the Fermi Surface and raising
it outside, do not change its value more than 1/2, we can use G(k, µ) > 0 to
specify the total number of particles. This fact by its own seems to suggest
that the diagrammatic theory we discussed so long is valid whenever such
“1
2 -bound” holds, and this is seemingly a pretty nice result.

6.4 A wye way for future investigations

In trying to put together the pieces that make up the Luttinger-Ward theo-
rem, I ran into the fact that the adiabatic evolution of chapter 4 invoked to
justify, to mention one, the emergence of Landau effective Hamiltonian can
be used twofold:

• take the non-interacting ground state in a very remote past t′, evolve
it adiabatically to the present time and stick in it a bare excitation
carrying momentum k

1

R
ak

† Uη(0, t
′) |E0

gs⟩

• take the non-interacting ground state in a very remote past t′, stick
in it a bare excitation carrying momentum k and only then evolve it
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adiabatically to the present time

1

R
Uη(0, t

′) ak
† |E0

gs⟩

where 1
R is the appropriate necessary normalization factor, different in the

two cases. This possibility is interesting since it tells us, thanks the Gell-
Mann & Low theorem, that if we can prove that the limit η → 0 exists in
practice we can assure it is possible to map the set of bare excitations made
of exact eigenstates of the free Hamiltonian into another set of what should
reasonably called the “dressed” ones, again made up of exact eigenstates
and this time of the interacting theory. This suggests that all these states
will be the analogue of their non-interacting counterpart, so it wouldn’t
be mysterious that they make out a ball in k-space with exactly the same
volume that the Fermi Surface encloses in the free theory.
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Conclusions

In this thesis we have seen a considerable amount of interesting and of-
ten apparently disparate ingredients of the many-body theory. To them we
have devoted lengthy - but hopefully meaningful and not overly boring -
discussions, in order to elucidate why they have to be put together in the
same cauldron to point out the importance, as well as to widen the compre-
hension, of the Luttinger-Ward theorem. We did it with the convincement
to give a very little but non-vanishing contribution to all that has been said
and written in the latter half century about this challenging theorem and
its proof. The time is come to draw our conclusions.

To this end it comes natural to summarize for the last time the steps
we performed developing this thesis, with the matured comprehension of
the connections between the many arguments involved and the questions -
emerged in very same development - that still have to be addressed.

The thesis begun with the historical proof given by Luttinger and Ward
where we have clarified that the presence of a discontinuity in n(k) is just
accessory and that the essence of it lays on the conservation of the volume
where the propagator at the chemical potential is positive, opening our eyes
on the proper definition of the Fermi Surface for a system of interacting
electrons.
Then we spent a whole chapter to relate the validity of the theorem to the
diagrammatic of log(Z), making evident how the validity of one interlinks
with the other. The expansion involved and its relation with Gell-Mann &
Low theorem made us focus on quasi-particles and Fermi-liquids since both
emerge as effects of the adiabatic continuity that ranging in very different
regimes allows to connect the free and interacting theories: we deepened
these macro-areas of condensed matter physics in the chapter three and
four.
Then we went back to focus again on Luttinger-Ward theorem in a novel
fashion, presenting in chapter five a couple of recent proofs and some in-
triguing arguments that shed a renewed light on it without sparing the
emergence of new questions, also showing that the range of applicability of
this uttermost theorem is yet poorly understood and will certainly reserve
many surprises in the years to come.
The trail ends then arriving to chapter six where, apart devising a possible
future investigation motivated by the same very same purpose of the whole
thesis, I give my two cents to the piggy bank of the literature concerning
the subject of it, with the belief that, at least a very little, they will matter
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too the day someone will finally find out the right approach to break it and
offer the world its treasure.

In the end I wish to report my personal opinion saying that my feeling
is Luttinger-Ward theorem truly grounds on something we don’t really un-
derstand yet, and if it will be dealt with having patience and humbleness
by those who will encounter it along their road, as many did from its very
birth until today, it will throw us to a whole new approach to a lot of areas
of mathematics and physics.
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