NOTES ON RANDOM MATRICES

LUCA GUIDO MOLINARI

The large- N limit of the free energy of a multi-matrix model provides the counting of multi-matrix planar graphs, and this counting may correspond to the summation of configurations of a statistical model on random planar graphs. The thermodynamic limit of the statistical model is realised by $g \rightarrow g_{\mathrm{cr}}$, and may show phase transitions, that are influenced by the fluctuations of the surface that supports it. The critical exponents differ from those of the statistical model on a regular lattice in a way predicted by KPZ [13]. Here are some models:

- Ising model (Kazakov, 1986 [8]);
- Ising model with magnetic field (Boulatov \& Kazakov, 1987 [3]);
- q-state Potts model (Kazakov, 1988 [9]);
- O(n) model (Duplantier \& Kostov, 1988 [7]);
- Percolation on a fractal (Kazakov, 1989 [10]);
- Three colour problem (Cicuta \& al., 1993 [5]);
- 8-vertex model (a case) (Kazakov \& P. Zinn-Justin, 1999; [12]);
- Baxter colouring problem (Kostov, 2002 [15])

1. ISING MODEL ON RANDOM PLANAR GRAPHS

In the Ising model on a connected graph, a spin $\sigma= \pm 1$ is allocated at each vertex, and adjacent spins (i.e. connected by an edge) have interaction energy $J \sigma_{i} \sigma_{j}$ with ferromagnetic coupling $J=-1$ (i.e. parallel spins have lower energy). The partition function for the Ising model on a graph ${ }^{1}$ in a uniform magnetic field is:

$$
\begin{equation*}
Z_{\text {Ising }}(G, \beta, H)=\sum_{\sigma_{i}= \pm 1} \exp \left[-\beta J \sum_{i j} \sigma_{i} G_{i j} \sigma_{j}+H \sum_{i} \sigma_{i}\right] \tag{1}
\end{equation*}
$$

If V is the number of vertices of the graph, there are 2^{V} spin configurations.
Given a graph with a spin configuration on it, (G, σ), let E_{p} and E_{a} be the numbers of edges connecting parallel and antiparallel spins, and $V_{\uparrow}, V_{\downarrow}$ be the numbers of vertices with spin +1 or -1 . The magnetisation is $\sum \sigma_{i}=V_{\uparrow}-V_{\downarrow}$. The statistical weight of (G, σ) is

$$
\begin{equation*}
\exp \left[\beta\left(E_{p}-E_{a}\right)+H\left(V_{\uparrow}-V_{\downarrow}\right)\right] \tag{2}
\end{equation*}
$$

If all vertices have coordination 4 then $4 V=2 E$, where $V=V_{\uparrow}+V_{\downarrow}, E=E_{p}+E_{a}$.
The Ising model on the regular square lattice with $H=0$ was solved in the infinite V limit by Lars Onsager (1944) and for $H \neq 0$ near T_{c}, by Chen Ning Yang

[^0](1952) who found spontaneous magnetisation for $T<T_{c}$. Since the square lattice is self-dual, the critical temperature was obtained, $\beta_{c} \approx 2.269$.

Amazingly, the analytic solution of the Ising model on a connected planar graph becomes feasible if, besides summing on spin configurations on the graph, one also sums on the planar graphs themselves, with V vertices:

$$
Z_{\mathrm{Ising}}(V, \beta, H)=\sum_{G_{p l}} Z_{\mathrm{Ising}}\left(G_{p l}, \beta, H\right)
$$

The Ising model on random planar graphs with coordination 4 and $H=0$ was solved in 1986 by Kazakov [8] by mapping it to a 2-matrix model. Soon after Boulatov and Kazakov [3] modified the 2-matrix model in order to include a magnetic field:

$$
\begin{equation*}
\mathbb{Z}_{N}(c, g, H)=\int d A d B e^{\left[-N \operatorname{tr}\left(A^{2}+B^{2}-2 c A B+4 g e^{H} A^{4}+4 g e^{-H} B^{4}\right)\right]} \tag{3}
\end{equation*}
$$

A, B are Hermitian $N \times N$ matrices, $0<c<1$.
The power expansion in g corresponds to a sum of Feynman graphs with quartic vertices of type A or B, that correspond to spin orientations \uparrow or \downarrow. In a graph the vertices are connected by propagators (edges) of two types:

$$
\frac{1}{N}\langle\operatorname{tr} A A\rangle=\frac{1}{N}\langle\operatorname{tr} B B\rangle=\frac{1}{1-c^{2}}, \quad \frac{1}{N}\langle\operatorname{tr} A B\rangle=\frac{c}{1-c^{2}}
$$

Since $0<c<1$, edges connecting parallel spins are enhanced. A connected graph has weight in the parameters

$$
N^{\chi}\left(g e^{H}\right)^{V_{A}}\left(g e^{-H}\right)^{V_{B}}\langle A A\rangle^{E_{p}}\langle A B\rangle^{E_{a}}=N^{\chi}\left[\frac{g c}{\left(1-c^{2}\right)^{2}}\right]^{V} c^{-\frac{1}{2}\left(E_{p}-E_{a}\right)} e^{H\left(V_{\uparrow}-V_{\downarrow}\right)}
$$

where $\chi=V+F-E$ is the Euler number of the closed surface that hosts the graph. Planar graphs $(\chi=2)$ dominate the large- N limit of the model. The generator of connected planar graphs is the planar free energy:

$$
\begin{equation*}
F_{\mathrm{pl}}(c, g, H)=-\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \log \frac{\mathbb{Z}(c, g, H)}{\mathbb{Z}(c, 0,0)}=\sum_{k=1}^{\infty}\left[\frac{g c}{\left(1-c^{2}\right)^{2}}\right]^{V} F_{V}(c, H) \tag{4}
\end{equation*}
$$

The coefficients $F_{V}(c, H)$ of the power expansion in g take record of all the planar connected Feynman graphs with V vertices. Each one corresponds to a configuration (G, σ) of the Ising model (the Feynman graph is G, with the further information that its vertices are A and B). Comparison among the weight of a graph and of an Ising configuration (2) gives the correspondence:

$$
\begin{equation*}
F_{V}(c, H)=Z_{\text {Ising }}(V, \beta, H), \quad c=e^{-2 \beta} \tag{5}
\end{equation*}
$$

The expansion (4) in powers of g of the planar free energy F_{pl} has a finite radius of convergence $g_{\text {cr }}(c, H)$. Hadamard's formula gives the leading behaviour of the coefficients, i.e. of the free energy $F_{V}(c, H)$ for large V :

$$
F_{V}(c, H) \approx\left[\frac{c\left|g_{c r}(c, H)\right|}{\left(1-c^{2}\right)^{2}}\right]^{-V} \times \text { sub-leading factors }
$$

Accordingly, the free energy per site of the Ising model is evaluated by the formula

$$
F_{\text {Ising }}=-\frac{1}{V} \log Z_{\text {Ising }}(V, \beta, H) \approx \log \left[\frac{c\left|g_{c r}(c, H)\right|}{\left(1-c^{2}\right)^{2}}\right]
$$

Bi-orthogonal polynomials. For any N, the two-matrix integral (3) is amenable to the eigenvalues x_{i} and y_{i} of A and B by means of the HarishChandra-ItzyksonZuber integral, in the form by Mehta [17] that is here used.
If $A=U X U^{\dagger}$ and $B=V Y V^{\dagger}$, where U, V are unitary and X, Y are diagonal, it is:

$$
\begin{aligned}
\mathbb{Z}_{N} & =\int d X d Y \Delta^{2}(x) \Delta^{2}(y) e^{-N \sum_{i}\left(x_{i}^{2}+y_{i}^{2}+4 g e^{H} x_{i}^{4}+4 g e^{-H} y_{i}^{4}\right)} \int d W e^{2 N c \operatorname{tr}\left(W X W^{\dagger} Y\right)} \\
& \approx \int d X d Y \Delta(x) \Delta(y) e^{-N \sum_{i} v\left(x_{i}, y_{i}\right)}
\end{aligned}
$$

with potential $v(x, y)=x^{2}+y^{2}-2 c x y+4 g e^{H} x^{4}+4 g e^{-H} y^{4}$.
By writing $\Delta(x)=\operatorname{det}\left[P_{m}\left(x_{k}\right)\right]_{k=1 \ldots N}^{m=0 \ldots N-1}$ and $\Delta(y)=\operatorname{det}\left[Q_{m}\left(y_{k}\right)\right]_{k=1 \ldots N}^{m=0 \ldots N-1}$, with monic polynomials $P_{m}(x)$ and $Q_{m}\left(y_{k}\right)$, and by choosing them bi-orthogonal,

$$
\int d x d y e^{-N v(x, y)} P_{k}(x) Q_{j}(y)=h_{k} \delta_{k j}
$$

the partition function is $\mathbb{Z}_{N}=N!h_{0} \ldots h_{N-1}$.
The polynomials are fully determined by the condition. Since $v(-x,-y)=v(x, y)$ the polynomials may be chosen with definite parity.

Proposition 1.1.

$$
\begin{align*}
& x P_{k}(x)=P_{k+1}(x)+R_{k} P_{k-1}(x)+S_{k} P_{k-3}(x) \tag{6}\\
& y Q_{k}(x)=Q_{k+1}(x)+R_{k}^{\prime} Q_{k-1}(x)+S_{k}^{\prime} Q_{k-3}(x) \tag{7}
\end{align*}
$$

Proof. Suppose that the expansion of $x P_{k}(x)$ contains a term $T_{k} P_{k-5}(x)$. Multiply (6) by $Q_{k-5}(y)$ and integrate with the measure. It is $\int d x d y \exp (-N v) x P_{k}(x) Q_{k-5}(y)=$ $T_{k} h_{k-5}$. The first integral is dealt with the second of the identities:

$$
\begin{align*}
\frac{1}{2 N} \frac{\partial}{\partial x} e^{-N v(x, y)}+e^{-N v(x, y)}\left(x+8 g e^{H} x^{3}\right) & =c y e^{-N v(x, y)} \tag{8}\\
\frac{1}{2 N} \frac{\partial}{\partial y} e^{-N v(x, y)}+e^{-N v(x, y)}\left(y+8 g e^{-H} y^{3}\right) & =c x e^{-N v(x, y)} \tag{9}
\end{align*}
$$

Then $c T_{k} h_{k-5}=\int d x d y e^{-N v}\left(y+8 g e^{-H} y^{3}\right) P_{k}(x) Q_{k-5}(y)=0$.
Similarly, $c T_{k}^{\prime} h_{k-5}=\int d x d y e^{-N v}\left(x+8 g e^{H} x^{3}\right) P_{k-5}(x) Q_{k}(y)=0$.
Proposition 1.2. Define $f_{k}=h_{k} / h_{k-1}$, then:

$$
\begin{align*}
c S_{k} & =8 g e^{-H} f_{k} f_{k-1} f_{k-2} \tag{10}\\
c S_{k}^{\prime} & =8 g e^{H} f_{k} f_{k-1} f_{k-2} \tag{11}\\
c R_{k} & =\left[1+8 g e^{-H}\left(R_{k+1}^{\prime}+R_{k}^{\prime}+R_{k-1}^{\prime}\right)\right] f_{k} \tag{12}\\
c R_{k}^{\prime} & =\left[1+8 g e^{H}\left(R_{k+1}+R_{k}+R_{k-1}\right)\right] f_{k} \tag{13}\\
\frac{k}{2 N} & =-c f_{k}+8 g e^{-H}\left[R_{k}^{\prime}\left(R_{k+1}^{\prime}+R_{k}^{\prime}+R_{k-1}^{\prime}\right)+S_{k+2}^{\prime}+S_{k+1}^{\prime}+S_{k}^{\prime}\right]+R_{k}^{\prime} \tag{14}\\
\frac{k}{2 N} & =-c f_{k}+8 g e^{H}\left[R_{k}\left(R_{k+1}+R_{k}+R_{k-1}\right)+S_{k+2}+S_{k+1}+S_{k}\right]+R_{k} \tag{15}
\end{align*}
$$

Proof. Eq.(10). Multiply (6) by $c Q_{k-3}$ and integrate with the weight, then use (9)

$$
c S_{k} h_{k-3}=8 g e^{-H} \int d x d y e^{-N v(x, y)} y^{3} Q_{k-3} P_{k}(x)=8 g e^{-H} h_{k}
$$

Eq.(12). Multiply (6) by $c Q_{k-1}(y)$ and integrate with the weight, and use (9):

$$
\begin{aligned}
c R_{k} h_{k-1} & =\int d x d y e^{-N v(x, y)}\left(y+8 g e^{-H} y^{3}\right) Q_{k-1}(y) P_{k}(x) \\
& =h_{k}\left[1+8 g e^{-H}\left(R_{k+1}^{\prime}+R_{k}^{\prime}+R_{k-1}^{\prime}\right)\right]
\end{aligned}
$$

Eq.(14). Multiply (6) by $c Q_{k+1}(y)$ and integrate with the weight, and use (9):

$$
\begin{aligned}
c h_{k+1}= & \int d x d y e^{-N v(x, y)}\left(y+8 g e^{-H} y^{3}\right) Q_{k+1}(y) P_{k}(x)-\frac{k+1}{2 N} h_{k} \\
= & 8 g e^{-H} h_{k}\left[R_{k+1}^{\prime}\left(R_{k+2}^{\prime}+R_{k}^{\prime}+R_{k-2}^{\prime}\right)+S_{k+3}^{\prime}+S_{k+2}^{\prime}+S_{k+1}^{\prime}\right] \\
& +R_{k+1}^{\prime} h_{k}-\frac{k+1}{2 N} h_{k}
\end{aligned}
$$

The other equations are similarly obtained.
The partition function is now expressed in terms of f_{k} :

$$
\begin{equation*}
\log \mathbb{Z}_{N}(c, g, H)=\log N!+N \log h_{0}+\sum_{k=1}^{N-1}(N-k) \log f_{k} \tag{16}
\end{equation*}
$$

The large N limit selects planar graphs. The coefficients $f_{k}, R_{k}, S_{k}, \ldots$ are interpolated by functions, and the recursive equations become algebraic. With $c<1$ the boundary conditions $f_{0}, R_{0}, \ldots, f_{1}, R_{1}, \ldots$ allow for interpolation of coefficients by single functions, as $f_{k}=f(k / N)=f(x), 0 \leq x \leq 1$. One can do more by expanding in $1 / N, f_{k+1} \approx f(x)+(1 / N) f^{\prime}(x)+\ldots$ and approach $g_{c r}$ and $N \rightarrow \infty$ to account for all topologies (double scaling) [16].
The case $c>1$ and $H=0$, has boundary conditions that require different functions to interpolate even or odd coefficients $[18,4]$.
The recursive equations become:

$$
\begin{aligned}
& c S(x)=8 g e^{-H} f^{3}(x) \\
& c S^{\prime}(x)=8 g e^{H} f^{3}(x) \\
& c R(x)=\left[1+24 g e^{-H} R^{\prime}(x)\right] f(x) \\
& c R^{\prime}(x)=\left[1+24 g e^{H} R(x)\right] f(x) \\
& c x+2 c^{2} f(x)-24(4 g)^{2} f^{3}(x)=2 c R^{\prime}(x)\left[1+24 g e^{-H} R^{\prime}(x)\right] \\
& c x+2 c^{2} f(x)-24(4 g)^{2} f^{3}(x)=2 c R(x)\left[1+24 g e^{H} R(x)\right]
\end{aligned}
$$

The free energy. Since $\lim _{N \rightarrow \infty} N^{-2} \log h_{0}=0$, the planar free energy of the 2-matrix model is the integral

$$
F_{\mathrm{pl}}(c, g, H)=-\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{N-1}\left(1-\frac{k}{N}\right) \log \frac{f_{k}}{f_{k}^{0}}=-\int_{0}^{1} d x(1-x) \log \frac{f(x)}{f^{0}(x)}
$$

The equation for $f(x)$ is obtained from the system:

$$
\frac{x}{2}=-c f(x)+\frac{12(4 g)^{2}}{c} f^{3}(x)+c \frac{f(x)}{[c-24 g f(x)]^{2}}+48 g c^{2} f^{2}(x) \frac{(\cosh H-1)}{\left[c^{2}-(24 g)^{2} f^{2}(x)\right]^{2}}
$$

and gives for $g, H=0: f_{0}(x)=\frac{1}{2} c x /\left(1-c^{2}\right)$. The perturbative expansion is

$$
F_{\mathrm{pl}}=\frac{2 g e^{H}+2 g e^{-H}}{\left(1-c^{2}\right)^{2}}-\frac{g^{2}}{\left(1-c^{2}\right)^{4}}\left[4 c^{4}+32 c^{2}+18\left(e^{2 H}+e^{-2 H}\right)\right]+\ldots
$$

By setting $z(x)=(24 g / c) f(x)$:

$$
\begin{equation*}
4 g x=-\frac{1}{3} c^{2} z+\frac{1}{9} c^{2} z^{3}+\frac{1}{3} \frac{z}{(1-z)^{2}}+\frac{2}{3} \frac{z^{2}}{\left(1-z^{2}\right)^{2}}(\cosh H-1) \equiv w(z) \tag{17}
\end{equation*}
$$

Figure 1. The function $w\left(z, \frac{1}{2}, H\right)$ versus z, for $H=0$ (left) and $H=0.1$ (right).

By assuming that $f(x)$ is one-to-one, integration by parts gives the planar free energy in terms of $\zeta=z(1)$, solution of the equation $4 g=w(\zeta, c, H)$:

$$
\begin{aligned}
F_{\mathrm{pl}} & =-\frac{1}{2} \log \frac{f(1)}{f^{0}(1)}+\int_{0}^{1} d x \frac{f^{\prime}(x)}{f(x)}\left(x-\frac{1}{2} x^{2}\right)-\frac{3}{4} \\
& =-\frac{1}{2} \log \frac{\zeta\left(1-c^{2}\right)}{12 g}+\frac{1}{4 g} \int_{0}^{\zeta} \frac{d z}{z} w(z)-\frac{1}{32 g^{2}} \int_{0}^{\zeta} \frac{d z}{z} w^{2}(z)-\frac{3}{4}
\end{aligned}
$$

The "thermodynamic limit" (when the average number of vertices is divergent) is obtained at the critical values $g_{c r}$. They result from the equation $w^{\prime}(z)=0$:

$$
\begin{equation*}
\cosh H-1=-\frac{(1+z)^{4}\left[1-c^{2}(1-z)^{4}\right]}{4 z\left(1+z^{2}\right)} \tag{18}
\end{equation*}
$$

The solutions $z_{\text {cr }}(c, H)$ are entered in $w(z, c, H)$ to give $4 g_{c r}(c, H)=w_{\mathrm{cr}}(c, H)$.
Case $H=0$. According to the discussion of the 2-matrix model, the singular behaviour of F is determined by the points: $z_{c}=-1$ for $c<1 / 4$ and $z_{-}=1-\frac{1}{\sqrt{c}}$ for $c>1 / 4$ with corresponding values $w\left(z_{c}, c, 0\right)=\frac{2}{9} c^{2}-\frac{1}{12}$ and $w\left(z_{-}, c, 0\right)=$ $-\frac{2}{9} c^{2}+\frac{2}{3} c-\frac{4}{9} \sqrt{c}$. As the parameter z is varied from 0 to $1-1 / \sqrt{c}$, the first singularity that is encountered is $z=-1$ for $0<c<1 / 4$ and $z=1-1 / \sqrt{c}$ for $1 / 4<c<1$. The value $c=1 / 4$ marks a phase transition.

$$
4 g \leq 4 g_{c r}(c, 0)= \begin{cases}\frac{2}{9} c^{2}-\frac{1}{12} & 0<c \leq \frac{1}{4}(\text { low T) } \tag{19}\\ -\frac{2}{9} c^{2}+\frac{2}{3} c-\frac{4}{9} \sqrt{c} & \frac{1}{4}<c<1(\text { high T) }\end{cases}
$$

Case $H \neq 0$. For small H the zeros of $w^{\prime}(z)=0$ are :

$$
\begin{aligned}
& z_{1}(c, H)=-1+\frac{\sqrt{2 H}}{\left(1-16 c^{2}\right)^{1 / 4}}-\frac{H}{\left(1-16 c^{2}\right)^{3 / 2}}+\ldots \\
& z_{2}(c, H)=\left(1-\frac{1}{\sqrt{c}}\right)\left[1-\frac{c}{2} \frac{2 c-2 \sqrt{c}+1}{(2 \sqrt{c}-1)^{4}} H^{2}+\ldots\right]
\end{aligned}
$$

and correspond to two phases:

$$
4 g_{c r}(c, H)= \begin{cases}w\left(z_{1}\right)=\frac{2}{9} c^{2}-\frac{1}{12}+\frac{\sqrt{1-16 c^{2}}}{12} H+\ldots & 0<c \leq \frac{1}{4} \tag{20}\\ w\left(z_{2}\right)=-\frac{2}{9} c^{2}+\frac{2}{3} c-\frac{4}{9} \sqrt{c}+\kappa H^{2}+\ldots & \frac{1}{4} \leq c<1\end{cases}
$$

1.1. Magnetization. The average magnetisation per vertex in the thermodynamic limit is

$$
\begin{aligned}
M(c, H) & =\lim _{V \rightarrow \infty} \frac{1}{V} \frac{\partial}{\partial H} F_{V}(c, H) \\
& =\frac{\partial}{\partial H} \log g_{c r}(c, H)=\frac{\partial}{\partial H} \log w_{c r}(\zeta(H, c), H)=\frac{1}{w_{c r}} \frac{\partial w_{c r}}{\partial H}
\end{aligned}
$$

because $w^{\prime}(\zeta)=0$. The equations for M and $w^{\prime}=0$ provide M and H parametrically in ζ :

$$
\begin{align*}
& M=3 \frac{\sqrt{\left[1-c^{2}(1-\zeta)^{4}\right]\left[1-c^{2}(1+\zeta)^{4}\right]}}{4 c^{2}\left(1-\zeta^{2}\right)^{2}+3-8 c^{2}} \tag{21}\\
& \cosh H=1-\frac{(1+\zeta)^{4}\left[1-c^{2}(1-\zeta)^{4}\right]}{4 \zeta\left(1+\zeta^{2}\right)} \tag{22}
\end{align*}
$$

- for $\zeta \rightarrow 0$ it is $H \rightarrow \infty$ and $M \rightarrow 1$ i.e. all spins are aligned with H.
- for $\zeta=-1$ it is $H=0$ and $M=3 \sqrt{1-16 c^{2}} /\left(3-8 c^{2}\right)$ (spontaneous magnetiz.).
- for $\zeta=1-1 / \sqrt{c}$ it is $H=0$ and $M=0$.

Figure 2. The magnetisation M per vertex as a function of H for $c=1 / 7$ (dashed, low temperature phase), $c=1 / 4$ (thick, critical temperature) and $c=1 / \sqrt{2}$ (line, high temperature phase). Note the spontaneous magnetisation for $c=1 / 7$ and the different slopes in the origin. $M=1$ is the saturation value.

The critical exponents. (See the book by Stanley for definitions [21]) We study the free energy and the magnetisation near the phase transition temperature $c=$ $1 / 4, H \rightarrow 0$.

- Specific heat at constant $H, \alpha=-1$.

Definition: $C_{H} \approx \epsilon^{-\alpha}$, where $\epsilon=\left(T-T_{c}\right) / T_{c}$ is the reduced temperature. The free energy near $c_{\text {cr }}=1 / 4$ has continuous first and second derivatives in c, and finite discontinuity of the third derivative (derivative of specific heat). This means $\alpha=-1$.

- Spontaneous magnetization, $\beta=\frac{1}{2}$.

Definition: $M(c, 0)=(-\epsilon)^{\beta}$. The average magnetization for $H \rightarrow 0$ is:

$$
M(c, 0)= \begin{cases}0 & \text { high T } \\ \frac{3 \sqrt{1-16 c^{2}}}{8 c^{2}-3} & \text { low T }\end{cases}
$$

Near $c_{\text {cr }}=\frac{1}{4}, M(c, 0)=-\frac{12 \sqrt{2}}{5} \sqrt{c_{c r}-c}$ i.e. $M \approx\left(T-T_{c}\right)^{1 / 2}$.

- Magnetic susceptibility, $\gamma=2$.

Definition: $\chi=\left.\frac{\partial M}{\partial H}\right|_{H=0}=\frac{1}{5}(2 \sqrt{c}-1)^{-2} \propto\left(T_{c}-T\right)^{-\gamma}$.

- Exponent $\delta=5$.

Definition: $\left|M\left(c_{c r}, H\right)\right|=|H|^{1 / \delta}$.
At $c_{\text {cr }}=1 / 4$ and small H, the equation $w^{\prime}(z)=0$ is solved by $z_{1}=$ $-1+(2 H)^{2 / 5}$. Correspondingly, $M\left(\frac{1}{4}, H\right) \propto H^{1 / 5}$.
The exponents satisfy the scaling identities of critical phenomena:

$$
\begin{array}{ll}
\alpha+2 \beta+\gamma=2 & \text { (Rushbrooke) } \\
\delta-1=\frac{\gamma}{\beta} & \text { (Widom) } \\
2-\alpha=\nu d & \text { (Josephson) }
\end{array}
$$

critical \exp	α	β	γ	δ	νd	$\gamma_{s t r}$
regular	0	$1 / 8$	$7 / 4$	15	2	-
random	-1	$1 / 2$	2	5	3	$-1 / 3$

Table: the critical exponents of the Ising model on regular 2d lattices and on random planar graphs. The latter fit the predictions of the theory by KPZ [13]. To test universality Boulatov and Kazakov also solved the Ising model on cubic graphs and obtained the same exponents.

References

[1] G. Akemann, J. Baik and Ph. Di Francesco, The Oxford handbook of random matrix theory, Oxford University Press (2011).
[2] R. J. Baxter, Colorings of a hexagonal lattice, J. Math. Phys. 11 n. 3 (1970) 784-789.
[3] D. V. Boulatov and V. A. Kazakov, The Ising model on a random planar lattice: the structure of the phase transition and the exact critical exponents, Phys. Lett. B 186 n.3-4 (1987) 379384.
[4] G. M. Cicuta, L. Molinari and E. Montaldi, Ising model on Feynman graphs, Nucl. Phys. B 300 [FS22] (1988) 197-206.
[5] G. M. Cicuta, L. Molinari and E. Montaldi, Matrix models and graph colouring, Phys. Lett. B 306 n.3-4 (1993) 245-251.
[6] G. M. Cicuta, L. Molinari, E Montaldi and S. Stramaglia, A matrix model for random surfaces with dynamical holes, J. Phys. A: Math. Gen. 29 (1996) 3769-3785.
[7] B. Duplantier and I. Kostov, Conformal spectra of polymers on a random surface, Phys. Rev. Lett. 61 n. 13 (1988) 1433-1437.
[8] V. A. Kazakov, Ising model on a dynamical planar random lattice: exact solution, Phys. Lett. A 119 n. 3 (1986) 140-144.
[9] V. A. Kazakov, Exactly solvable Potts models, bond- and tree-like percolation on dynamical (random) lattice, Nucl. Phys. B (Proc. Suppl.) 4 (1988) 93-97.
[10] V. A. Kazakov, Percolation on a fractal with the statistics of planar Feynman diagrams: exact solution, Mod. Phys. Lett. A 4 n. 17 (1989) 1691-1704.
[11] V. A. Kazakov, A simple solvable model of quantum field theory of open strings, Phys. Lett. B 237 (1990) 212-215.
[12] V. A. Kazakov and P. Zinn-Justin, Two-matrix model with ABAB interaction, Nucl. Phys. B 546 [FS] (1999) 647-668.
[13] V. G. Knizhnik, A. M. Polyakov and A. B. Zamolodchikov, Fractal structure of 2D quantum gravity, Mod. Phys. Lett. A 3 n. 8 (1988) 819-826.
[14] I. K. Kostov, $O(n)$ vector model on a planar lattice: spectrum of anomalous dimensions, Mod. Phys. Lett. A 4 n. 3 (1989) 217-226.
[15] I. K. Kostov, Exact solution of the three-color problem on a random lattice, Phys. Lett. B 549 (2002) 245-252.
[16] Ising model: D. J. Gross and A. Migdal, Non-perturbative solution of the Ising model on a random surface, Phys. Rev. Lett. 64 n. 7 (1990) 717-720; E. Brézin, M. R. Douglas, V. Kazakov, and S. Shenker, The Ising model coupled to $2 D$ gravity: a nonperturbative analysis, Phys. Lett. B 327 (1990) 43; C. Crnkovic, P. Ginsparg and G. Moore, The Ising model, the Yang-Lee edge singularity, and the 2D quantum gravity, Phys. Lett. B 237 (1990) 196-201;
 327-331; M. Staudacher, Combinatorial solution of the two-matrix model, Phys. Lett. B 305 (1993) 332-338;
[17] M. L. Mehta, A method of integration over matrix variables, Comm. Math. Phys. 79 (1981) 327-340.
[18] L. Molinari, Phase structure of matrix models through orthogonal polynomials, J. Phys. A: Math. Gen. 21 (1988) 1-6.
[19] B. Nienhuis, Exact critical point and critical exponents of the $O(n)$ models in two dimensions, Phys. Rev. Lett. 49 (1982) 1062.
[20] O(n) Nienhuis model: M. Gaudin and I. Kostov, $O(n)$ model on a fluctuating planar lattice. Some exact results, Phys. Lett. B 220 n.1-2 (1989) 200-206; B. Duplantier and I. K. Kostov, Geometrical critical phenomena on a random surface of arbitrary genus, Nucl. Phys. B 340 (1990) 491- ?; I. K. Kostov and M. Staudacher, Multicritical phases of the O(n) model coupled to 2D gravity, Nucl. Phys. B 384 (1992) 459-483; B. Eynard and J. Zinn-Justin, The $O(n)$ model on a random surface: critical points and large-order behaviour, Nucl. Phys.

Figure 3. Vladimir Kazakov (Gorki 1954) obtained the PhD in 1981 at the Landau Inst. Since 1989 he is at l'École Normal Supérieure (Paris-6). His main interests are QFT, string theory, matrix models, statitical mechanics, integrability. Right: Ivan Kostov (Moscow State Univ., then Saclay).

B 386 (1992) 558-591; B. Eynard and C. Kristjansen, Exact solution of the $O(n)$ model on a random lattice, Nucl. Phys. B 455 [FS] (1995) 577-618; B. Durhuus and C. Kristjansen, Phase structure of the $O(n)$ model on a random lattice for $n>2$, Nucl. Phys. B [FS] 483 (1997) 535.
[21] H. Eugene Stanley, Introduction to phase transitions and critical phenomena, Oxford University Press (1977).

[^0]: Date: 25 may 2018.
 ${ }^{1}$ A graph with V vertices labelled $1 \ldots V$ is described by the $V \times V$ adjacency matrix $G_{i j}=1$ if vertices $i j$ are connected by an edge, 0 otherwise. $\sum_{i} G_{i j}$ is the number of edges with extremum j (coordination of vertex j).

