
NOTES ON RANDOM MATRICES

LESSON 1: BEAUTIFUL THEOREMS
AND SPECIAL MATRICES

LUCA GUIDO MOLINARI

1. Beautiful theorems: Cauchy, Bendixson and Hirsch, Perron and Frobenius,
Schur, Cayley and Hamilton, Jordan, Polya Littlewood and Hardy, Fan, Gersh-
gorin, Weyl, Bauer and Fike.
2. Special matrices: Vandermonde, Cauchy, Hilbert, Pascal, Discrete Fourier, Kac.
3. Eigenvalues of random matrices: the semicircle, the circle, and the elliptic laws.

Determinants appeared much earlier than matrix algebra: Cramer’s formula for
solving systems of linear equations dates 1750. Laplace’s expansion was devised in
1772, and Gaussian elimination appeared in 1801, to solve least squares problems in
celestial mechanics. In 1812 Cauchy obtained new results about minors and adjoints
in the context of quadratic forms and, with Binet, the multiplication theorem for
determinants.

The term ‘matrix’ was introduced in 1848 by Sylvester, to name an array of num-
bers, and matrix algebra was formalized by Arthur Cayley in 1855. He showed that
compositions of linear transformations provide the rule of matrix multiplication,
and obtained the inverse of a matrix. The Cayley-Hamilton theorem was reported
in his Memoir on the Theory of Matrices (1858), for small matrices.

Camille Jordan introduced the important canonical form of a matrix in his
Treatise on substitutions and algebraic equations (1870). His student André-Louis
Cholesky, in solving least squares problems in geodesy, devised an algorithm to
factor a positive definite matrix as LL†, where L is lower triangular (1910). The
method was generalized in 1938 by Tadeusz Banachiewicz who introduced LUP
factorization of any square matrix, into a lower and an upper triangular matrices,
where L has units in the diagonal, and a permutation P [27].
John Francis (1961 [12]) introduced the QR decomposition, where Q is a rotation
and R is a square upper triangular matrix with positive diagonal entries.
At the dawn of digital computers, John von Neumann and Herman Goldstine in-
troduced condition numbers to analyze round-off errors (1947). A famous reference
text is G. Golub and C. Van Loan, Matrix Computations (1966).

1. Beautiful theorems

In the study of quadratic forms, Cauchy proved that the eigenvalues of a real
symmetric matrix are real, and the following:
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Theorem 1.1 (Interlacing theorem, Cauchy, 1829).
Let H be a Hermitian n×n matrix with eigenvalues λ1 ≥ · · · ≥ λn, and A a principal
submatrix of size n − 1 with eigenvalues µ1 ≥ · · · ≥ µn−1, then the eigenvalues of
A and H interlace:

λ1 ≥ µ1 ≥ λ2 ≥ . . . ≥ λn−1 ≥ µn−1 ≥ λn(1)

Proof. The exchange of one row and column brings the matrix H to the form:

H =

[
A b
b† c

]
Let H = UΛU† where Λ = diag(λ1, . . . , λn), then, for t /∈ Sp(H):

[(tIn −H)−1]nn =
det[tIn−1 −A]

det[tIn −H]
=

n∑
k=1

|Unk|2

t− λk

As a function of t it diverges at the points λi and it decreases on each interval
(λi+1, λi). Then it has a zero in each interval: µi ∈ [λi+1, λi]. These zeros are the
eigenvalues of A. �

A simple proof by Fisk [11] is based on the following theorem by Hermite: The
roots of polynomials pn, qn−1 interlace if and only if all roots of pn + tqn−1 are real
for all real t. Then, note that:

det

[
A− zIn−1 b

b† c− z + t

]
= det

[
A− zIn−1 b

b† c− z

]
+det

[
A− zIn−1 b

0 t

]
The left hand side polynomial always has real roots, and equals det[H − zIn] +
tdet[A− zIn−1]. Then the roots of H and A interlace.

The theorem can be generalised to the eigenvalues µ1 ≥ · · · ≥ µm of a principal
sub-matrix of size m×m: λk+n−m ≤ µk ≤ λk (k = 1, . . . ,m).

The numerical range ρ(X) of a matrix X is the set of values {u†Xu, u ∈
Cn, ‖u‖ = 1}. The set is convex (Toeplitz-Hausdorff).

Theorem 1.2 (Bendixson, 1902; Hirsch, 1902, [7]).
If x+iy is an eigenvalue of a complex matrix X, then x ∈ ρ(ReX) and y ∈ ρ(ImX).

Proof. If Xu = (x+ iy)u and ‖u‖ = 1, then x+ iy = u†(ReX + iImX)u. �

The inclusion can be strengthened in various ways.

Theorem 1.3 (Oskar Perron, 1907, [19]).
Let a square matrix X have strictly positive matrix elements (Xij > 0). Then the
eigenvalue r with largest modulus is real, positive and simple and the eigenvector is
real with positive components.

The theorem was extended by Ferdinand Frobenius (1912) to Xij ≥ 0.

Theorem 1.4 (Issai Schur, 1909, [15]).
If X is any real (complex) matrix, there are a orthogonal (unitary) matrix and a
upper triangular matrix T such that X = OTOT (X = UTU†).
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Proof. By induction, assume that the statement is true for dimension n− 1. Con-
sider an eigenvector Xu = zu, u ∈ Cn with unit norm, and a unitary matrix W
whose first column is the eigenvector. Then XW = [zu, · · · ] and

W †XW =

[
z b†

0 X ′

]
b is some vector. The sub matrix X ′ can be written as V T ′V †. Then:

X = W

[
1 0
0 V

] [
z b†V
0 T ′

] [
1 0
0 V †

]
W †

The diagonal elements of the triangular matrix are the eigenvalues of X. �

The fundamental Cayley-Hamilton theorem was proven for any size n by Ferdi-
nand Frobenius, in 1878. The proof is simple with Schur’s representation.

Theorem 1.5 (Cayley-Hamilton theorem). Every square complex matrix X
satisfies its own characteristic equation p(X) = 0, p(z) = det(z −X).

Figure 1. James Joseph Sylvester (London 1814 - London 1897)
contributed to matrix theory, invariant theory, number theory, par-
tition theory, and combinatorics. He played a leadership role in
American mathematics in the later half of the 19th century as pro-
fessor at Johns Hopkins University and as founder of the American
Journal of Mathematics. At his death, he was professor at Oxford.

Figure 2. Arthur Cayley (Richmond UK 1821 - Cambridge 1895)
was student at Trinity College at age 17. After a period as a lawyer
(as De Morgan, while Sylvester was an actuary for some time) in
1863 he earned the Sadleirian chair of mathematics at Cambridge
University. In addition to algebra, Cayley made fundamental con-
tributions to algebraic geometry (study of manifolds of zeros of
multivariate polynomials), in particular cubic surfaces.
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Proof. Let X = UTU† with T triangular and Tii = zi. Then p(X) = U
∏
k(T −

zk)U†. The triangular matrix T − zk has a diagonal zero at site k; their product is
zero. �

An extension is Phillip’s theorem (1919): Given matrices A1, ..., Aq and B1, ..., Bq
such [Bi, Bj ] = 0 and A1B1 + ...+AqBq = 0, define the polynomial p(x1, ..., xn) =
det(x1A1 + ...+ xnAn). Then p(B1, ..., Bn) = 0.

Theorem 1.6 (Jordan’s normal form, 1870). Any complex square matrix A is
similar to the block diagonal matrix

A = P

 J1
. . .

Jm

P−1, Jk =


zk 1

. . .
. . .

. . . 1
zk


where Jk is a Jordan block of A, zk is an eigenvalue of A. The same eigenvalue
may appear in more blocks. The decomposition is unique, up to permutations of the
blocks.

If J is a Jordan matrix of size n and parameter z then Jk is upper triangular
with constant diagonals {zk,

(
k
1

)
zk−1,

(
k
2

)
zk−2, ...,

(
k

n−1
)
zk−n+1} (the diagonals are

null for k − n+ 1 < 0).

The following material is taken from the beautiful book [20].
A real matrix P is doubly stochastic if Pij ≥ 0 and the sum of the elements in every
column as well as every row is unity. The last conditions mean that if e is the vector
with all ei = 1, then Pe = e and eTP = eT . Permutation matrices are of this sort.
It is simple to see that the product and the convex combination of doubly stochastic
matrices is doubly stochastic. The following theorem by Birkhoff (1946) states: any
doubly-stochastic matrix is the convex combination of permutation matrices1.
For every n× n matrix A with positive entries there exist diagonal matrices D,D′

such that DAD′ is doubly stochastic (Sinkhorn 1964).

Definition 1.7. For real x1 ≥ ... ≥ xn and y1 ≥ ... ≥ yn, then x is majorized by y
(x ≺ y) if: x1 ≤ y1, x1 + x2 ≤ y1 + y2, . . . ,

x1 + · · ·+ xn−1 ≤ y1 + · · ·+ yn−1,

x1 + · · ·+ xn = y1 + · · ·+ yn

If, in the last line, x1 + · · ·+ xn ≤ y1 + · · ·+ yn, then x ≺w y.

Theorem 1.8 (Polya, Littlewood and Hardy, 1929). x ≺ y iff x = Py where
P is a n× n doubly stochastic matrix.

A real function φ on D ⊂ Rn is Schur-convex on D if x ≺ y ⇒ φ(xi) ≤ φ(yi) for
all i, x, y ∈ D . Example: φ(x) =

∑n
k=1 g(xi) is Schur-convex on In if g : I → R

is convex on the interval I (Schur, Hardy & Littlewood, Polya). A notable case is
g(x) = x log x on I = [0, 1]. Since (1/n, . . . , 1/n) ≺ (p1 ≥ · · · ≥ pn) ≺ (1, 0, . . . , 0),
it implies that 0 ≤ −

∑n
k=1 pj log pj ≤ log n (Shannon entropy).

1a similar theorem holds for unitary matrices with row and column sums equal to one; see
arXiv:1812.08833
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Theorem 1.9 (Issai Schur, 1923).
If H is complex Hermitian with diagonal elements h1 ≥ h2 ≥ · · · ≥ hn and eigen-
values λ1 ≥ λ2 ≥ · · · ≥ λn then h ≺ λ.

Proof. H = UΛU†, then Hii =
∑
k |Uik|2λk. The matrix pik = |Uik|2 is doubly

stochastic. �

Schur’s statement is equivalent to the following theorem by Ky Fan [4]:
If λ1 ≥ · · · ≥ λn are the eigenvalues of a Hermitian matrix, then

k∑
j=1

λj = max
{uj}

k∑
j=1

(uj |Xuj)

where max is taken on all othonormal bases {u1 . . . uk} in Cn. A nice corollary,
valid for Hermitian matrices, is λ(A+B) ≺ λ(A) + λ(B).
Several majorizations of eigenvalues and singular values of matrices have been ob-
tained by Hermann Weyl, Ky Fan, Lidskii (see the great book by Bhatia, [4]). An
example is:

Theorem 1.10 (Ky Fan, 1950, [4]). For any matrix X: Reλ(X) ≺ λ(ReX)

Now comes an amazingly simple and general theorem, that inspired much re-
search on localisation of eigenvalues [31]:

Theorem 1.11 (Gershgorin circles, 1931, [31]).
If z is an eigenvalue of a complex matrix X, then it belongs to a Gershgorin circle
|z −Xkk| ≤

∑′
j |Xkj |.

Proof. In the eigenvalue equation
∑
m 6=j Xjmum = (z − Xjj)uj , j = 1, ..., n, let

uk be the component with highest modulus, and choose the phase factor such that
uk > 0. Then: (z −Xkk)uk =

∑
m6=kXkmum. Divide by uk and result follows. �

Since Sp(X), the spectrum of X, coincides with Sp(XT ), the result holds also if
column, instead of row, elements are summed.
X di strictly (row) diagonal-dominant if |Xkk| ≥

∑′
m |Xkm|, ∀k. In this case no

Gershgorin circle contains the origin, and the matrix X is invertible.
The following fixes a unique circle for all eigenvalues zj ∈ Sp(X) (see [4] 1.6.16):∣∣∣zj − 1

n trX
∣∣∣2 ≤ n−1

n

[
tr(X†X)− 1

n |trX|
2
]

For Hermitian matrices, singular values σi and eigenvalues are related by σi =
|λi|. For the general matrix the following holds:

Theorem 1.12 (Hermann Weyl, 1949).
For any n×n complex matrix with eigenvalues |λ1| ≥ · · · ≥ |λn| and singular values
σ1 ≥ · · · ≥ σn:

k∏
j=1

|λj | ≤
k∏
j=1

σj (k = 1 . . . n− 1);

n∏
j=1

|λj | ≤
n∏
j=1

σj(2)

If no eigenvalue is zero, it means that log |λ| ≺ log σ.



6 L. G. MOLINARI

Related results are: for any non-singular complex matrix: |λ| ≺w σ, |λ2| ≺w σ2.
In particular (Schur, 1909):

∑n
k=1 |λk|2 ≤

∑n
k=1 σ

2
k = trX†X.

As a particular case we can obtain the arithmetic-geometric mean inequality ([20]):

1

n

n∑
k=1

xk ≥ (x1 · · ·xn)1/n

by applying Schur’s inequality to the following matrix, whose eigenvalues solve
λn =

√
x1 . . . xn 

0
√
x1 0 . . . 0

0 0
√
x2 . . . 0

...
...

...
...

0 0 0 . . .
√
xn−1√

xn 0 0 . . . 0


Theorem 1.13 (Brauer, 1952, [5]). If A is a n × n matrix with eigenvalues
λ, λ2, ..., λn with Au = λu, then the eigenvalues of A+ uv† are λ+ u†v, λ2, ..., λn
(a simple proof in arXiv:2110.01376).

If A ∈ Cn×n is invertible, and ‖A‖ is the sup-norm, the condition number of A
is:

Cond(A) = ‖A‖ · ‖A−1‖ (1947, von Neumann and Goldstine)

Since 1 = ‖A−1A‖ ≤ ‖A‖‖A−1‖, it is Cond(A) ≤ 1. It is a useful quantity in the
study of perturbation of eigenvalues: how much do the eigenvalues of A+B deviate
from those of A? A general bound is (see also [2]):

Theorem 1.14 (Bauer and Fike, 1960, [3]). If A = V AV −1, for any eigenvalue
µ of A+B:

min
1≤j≤n

|µ(A+B)− λj(A)| ≤ Cond(V ) ‖B‖(3)

Proof. The proof is simple: if µ ∈ Sp(A+ B) then 0 = det(A+ B − µ) = det(Λ +
V −1BV − µ) = det(Λ − µ) det[1 + (Λ − µ)−1V −1BV ]. Then −1 is an eigenvalue
of (Λ − µ)−1V −1BV . It is 1 ≤ ‖(Λ − µ)−1V −1BV ‖ ≤ ‖(Λ − µ)−1‖ ‖V −1BV ‖ ≤
maxk

1
|λk−µ|‖V ‖‖V

−1‖‖B‖ ≤ (min |λk − µ|)−1‖B‖Cond(V ). �

2. Some special matrices

2.1. (Alexandre Théophile) Vandermonde matrix (∼1770). It is a basic
matrix in linear algebra and matrix theory. Given complex numbers z1, ..., zn it is:

[zk−1j ] =


1 z1 . . . zn−11

1 z2 zn−12
...

...
...

1 zn . . . zn−1n

(4)

∆(z1 . . . zn) ≡ det[zk−1j ] =
∏
j>k

(zj − zk)(5)

Example 1: given X ∈ Cn×n with distinct eigenvalues, compute the matrix exp[tX].
By Cayley-Hamilton theorem, X solves 0 =

∏
k(X − zk). Then all powers Xp,
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p ≥ n are linear combinations of powers n− 1, ..., 0, and exp[tX] =
∑n−1
j=0 cj(t)X

j .

Since eigenvectors are linearly independent: exp[tzk] =
∑n−1
j=0 [zjk]cj(t). Inversion of

the Vandermonde matrix (see Knuth, The art of computer programming) gives the
coefficients cj .
Example 2: given (x1, y1), ..., (xn, yn) find the polynomial p(x) = a0+...+an−1x

n−1

such that p(xk) = yk, i.e.
∑n−1
j=0 ajx

j
k = yk. The problem can be solved by inverting

the Vandermonde matrix [xjk]. However, it is more practical to obtain it as a
combination of Lagrange interpolating polynomials:

p(x) = y1L1(x) + ...+ ynLn(x), Lk(x) =
∏
j 6=k

x− xk
xj − xk

(6)

2.2. Cauchy matrices (1841). Given numbers x1, . . . , xn and y1, . . . , yn, the n×n
Cauchy matrices are [17]

Cij =
1

xi + yj
, detC =

∆(x1, . . . , xn)∆(y1, . . . , yn)∏
i≤j(xj + yi)

(7)

C ′ij =
1

1 + xiyj
, detC ′ =

∆(x1, . . . , xn)∆(y1, . . . , yn)∏
i≤j(1 + xiyj)

(8)

Figure 3. Issai Schur (Russia 1895 - Tel-Aviv 1941) graduated in
Berlin under the supervision of Frobenius and Fuchs, and taught
at Berlin’s university. In despite of the racial laws (1933) his fame
and the intervention of Erhard Schmidt enabled him to lecture for
two more years. Then Polya invited him to Zurich for lecturing on
group representation theory. He migrated to Palestine.

Figure 4. Terence Tao (Adelaide Australia, 1975) won the gold
medal of the Int. Math. Olympiad at age 13. Admitted to Prince-
ton with a letter by Erdös, he got his PhD, supervised by Elias
Stein. Professor at UCLA, he won of a Fields medal (2006, for
his contributions to partial differential equations, combinatorics,
harmonic analysis and additive number theory) and many other
awards.
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The inverse matrix is C−1ij = (xj + yi)Lj(yi)Li(xj), with the Lagrange polynomials

evaluated with parameters {xi} and {yi} [26].

2.3. Hilbert matrix (1894).

Hij =

(
1

i+ j − 1

)
, detHn =

(1!2! . . . (n− 1)!)4

1!2! . . . (2n− 1)!
(9)

It is a Hankel matrix (i.e. matrix elements depend on i + j). For finite size, the
entries of the inverse matrix are integers. H is a positive matrix:

uTHu =

n∑
i,j=1

∫ 1

0

dxxi+j−2uiuj =

∫ 1

0

dx(

n∑
k=1

ukx
k−1)2 ≥ 0

The matrix n =∞ is the matrix representation of the operator (Hf)(z) =
∫ 1

0
dtf(t)(1−

zt)−1 on holomorphic functions L2(D) in the basis zk. Magnus (1950) proved the
continuous spectrum [0, π] (see [9]).

2.4. Discrete Fourier transform. It is the n× n symmetric unitary matrix

Fjk =
1√
n

exp[i
2π

n
jk](10)

Since F4 = 1 the eigenvalues of F are ±1, ±i. The trace is a Gauss sum:
1√
n

∑n
k=1 exp[i 2πn k

2] = 1
2 (1 + i)[1 + i2n]. (See [22])

2.5. Pascal matrices. There are various forms of Pascal matrices, and a vast
literature [18, 6]. The lower triangular Pascal matrix Pn has size n + 1, and each
row contains the binomial coefficients of the Pascal triangle. For example:

P4 =


(
0
0

)(
1
0

) (
1
1

)(
2
0

) (
2
1

) (
2
2

)(
3
0

) (
3
1

) (
3
2

) (
3
3

)(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)

 =


1
1 1
1 2 1
1 3 3 1
1 4 6 4 1

 = exp


0
1 0

2 0
3 0

4 0


The inverse of Pn has binomial elements with alternating signs. For example:

P−14 =


1
−1 1
1 −2 1
−1 3 −3 1
1 −4 6 −4 1


This property is connected to a nice inversion theorem:

an =

n∑
k=0

(
n

k

)
bk ⇒ bn =

n∑
k=0

(−1)k
(
n

k

)
ak(11)

(a = Pnb, then b = P−1n a). The product Qn = PnP
T
n is the symmetric Pascal

matrix:

Q4 =


1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70
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It is a positive definite matrix, with unit determinant and matrix elements (Qn)ij =(
i+j
j

)
i, j = 0, ..., n. Its positive eigenvalues come in pairs (q, 1/q). If the size is odd

(n even), an eigenvalue is 1. The coefficients of the polynomial det(z + Qn) are
positive and are the sequence A045912 in OEIS (the on-line encyclopedia of integer
sequences). The polynomial with z = 1 was evaluated by Andrews [1]:

det(1 +Qn−1) = 2

n−1∏
k=1

(3k + 2)(2k + 2)k
(3k + 1)(k + 1)k

(12)

where ak = a(a+ 1) · · · (a+ k− 1). The polynomials with z = −1, eiπ/3, eiπ/6 were
evaluated by Ciucu et al. [10] to count lozenge coverings of an hexagon.
The Carlitz matrix An mirrors the matrix Pn. For example:

A4 =


1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

 , A−14 =


1 −4 6 −4 1
−1 3 −3 1
1 −2 1
−1 1
1


It is det(z −An) =

∏n
j=0(z − ϕjϕ′n−j), where ϕ = 1

2 (1 +
√

5) and ϕ′ = 1
2 (1−

√
5)

[8, 25], and AnA
T
n = Qn.

2.6. Mark Kac Matrix. The following matrix has a long history [30] beginning
with Sylvester, who found the eigenvalues. Marc Kac obtained the left and right
eigenvectors, in a study of a discrete random walk in an interval, with position-
dependent probability for left or right unit displacement [16]. An example of Kac
matrix is

S4 =


0 1
4 0 2

3 0 3
2 0 4

1 0


The eigenvalues are integers. For example: det(S4 − z) = z(z2 − 22)(z2 − 42),
det(S5− z) = (z2− 12)(z2− 32)(z2− 52). Kac showed that if Snu = zu then, with
u1 = 1, the generating function for the components is:

1 + tu2 + ...+ tn−1un + tn = (1− t)(n−z)/2(1 + t)(n+z)/2

In the example S4U4 = U4Z4, Z4 = diag(4, 2, 0,−2,−4) and

U4 =


1 1 1 1 1
4 2 0 −2 −4
6 0 −2 0 6
4 −2 0 2 −4
1 −1 1 −1 1


3. Distributions of eigenvalues of large random matrices

Random Matrix models are, in general, specified by a set of matrices with a
probability measure. Several systems in physics, biology, economy, finance, ... show
behaviours that can be described through properties of eigenvalues or eigenvectors
of random matrices, or products, or truncations of random matrices, whose ran-
domness and symmetries are suggested by the features of the system being studied.
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We review some important distribution laws for the eigenvalues of large random
matrices.

3.1. The Semicircle law. The semicircle law was obtained by Eugene Wigner in
1955 for symmetric banded matrices with elements ±v with random sign (bordered
matrices). He then extended it to full symmetric matrices with independent random
elements with zero mean, equal variance, and finite higher moments [32].

Theorem 3.1 (Wigner, 1955). Let X ∈ Cn×n be Hermitian, with random matrix
elements {Xjk}j<k that are i.i.d. with zero mean and finite variance σ, while
diagonal elements Xkk are i.i.d. random variables with bounded mean and variance.
Then the eigenvalues of 1√

n
Xij tend in distribution to the semicircle law:

ρsc =
1

2πσ2

√
4σ2 − x2

For real symmetric matrices with i.i.d. matrix elements with variance σ, it is
〈λ2〉 = n〈X2

ij〉. The second moment of the semicircle of radius R is R2/4, then:

R = 2σ
√
n. For complex Hermitian matrices with variance σ of i.i.d. real and

imaginary parts of matrix elements it is n〈λ2〉 = (2n2 − 1)σ2. Then the radius is

R = 4σ
√

2n.
The semicircle law holds also for large Hermitian Band Random matrices with

same hypothesis on matrix elements Hij in a band |i− j| < W/2, W = cNν where
0 < c < 1 and 0 < ν < 1 (Bogachev, Molchanov, Pastur, 1991; Anderson and
Zeitouni, 2004).

3.2. The circle law. The circle law for complex eigenvalues was obtained by Jean
Ginibre in 1965, for real, complex and quaternionic matrices with Gaussian distri-
bution [13]. Vyacheslav Girko (1984) generalised to i.i.d. matrix elements of mean
0 and variance 1/n.
For a real matrix the number of real eigenvalues is ∼

√
n (Edelman). For compar-

ison, the number of real roots of a random polynomial with normally distributed
real coefficients, scales as ∼ log n (Kac).

Theorem 3.2 (Terence Tao and Van Vu, 2010, [29]). Let X ∈ Cn×n have matrix
elements Xjk that are i.i.d. random variables with zero mean and unit variance.

-40 -20 0 20 40

10

20

30

40

Figure 5. Semicircle Law: histogram of the eigenvalues of two
random Hermitian matrices n = 1000 with Re and Im of matrix
elements i < j uniformly distributed in [−1, 1] and real diagonal
elements with same distribution.
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Then the eigenvalue density converges to

ρc(z) =
1

π
θ(1− |z|)

The real (and imaginary) part of the eigenvalues has the semicircle distribution:

ρ(x) =
∫
dy 1

π θ(1− x
2 − y2) = 2

π

√
1− x2.

-0.6 -0.4 -0.2 0.2 0.4 0.6

-0.4

-0.2

0.2

0.4

Figure 6. The circle distribution of the eigenvalues of 2 random
real matrices n = 1000 with matrix elements uniformly distributed
in [− 1√

n
, 1√

n
].

3.3. The elliptic law.

Theorem 3.3 (Hoi Nguyen and Sean O’Rourke, 2015 [24], see also [28]). Let
X ∈ Rn×n with random pairs {Xjk, Xkj} that are i.i.d. in R2, with X12 and X21

with zero mean and unit variance, E(X12X21) = τ , τ < 1. Then the eigenvalue
density converges to uniform on an ellipse:

ρx,y =
1

π(1− τ2)
,

x2

(1 + τ)2
+

y2

(1− τ)2
≤ 1
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