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1. The Laplace-Beltrami operator

In a (pseudo)-Riemannian space, with metric gij and Christoffel connection Γk
ij ,

the Laplace operator of a scalar field is the scalar field (indices are summed)

∇2φ = ∇jg
jk∇kφ = ∇jg

jk∂kφ = ∇jg
jk∂kφ+ Γj

jlg
lk∂kφ

Now we use the property of Christoffel symbols with two indices summed: Γj
jl =

∂l log
√
g, where g = det[gij ]. The result is the Laplace-Beltrami expression:

∇2φ =
1
√
g

∂

∂xk
gkj

√
g
∂

∂xj
φ(1)

2. The Laplacian in the space of Hermitian matrices

A Hermitian matrix n×n is specified by the n2 real coordinates Hii, ReHij and
ImHij , i < j. The squared distance of two matrices d(H,H ′)2 = tr(H − H ′)2 is
invariant for unitary transformations H → UHU†. For H ′ = H + dH:

ds2 = tr(dHdH) =
∑
i

(dHii)
2 + 2

∑
i<j

d(ReHij)
2 + d(ImHij)

2

Thus the metric tensor is diagonal, with gii,ii = 1 for the n coordinates Hii, and

gij,ij = 2 for the other n2 − n coordinates. The determinant is g = 2n(n−1).
The invariant Laplacian (1) contains the inverse of the metric matrix. This gives

∇2
H =

∑
i=1..n

∂2

∂H2
ii

+
1

2

∑
i<j

∂2

∂(ReHij)2
+

∂2

∂(ImHij)2
(2)

The change of coordinates H = UXU† represents a matrix by its n eigenvalues
and n(n− 1) parameters ξa for the unitary matrix U ∈ U(n)/U(1)n (for example,
the Euler angles). The invariant distance was obtained in terms of the Hermitian
matrix dT = iU†dU :

ds2 =
∑

i=1..n

(dxi)2 +
∑
ij

(xi − xj)
2dTijdTji

If we specify the parameters: ds2 = gijdx
idxj + gabdξ

a dξb with

gab(x, ξ) =
∑
i,j

(xi − xj)
2(∂aTij)(∂bT

∗
ij) = 2

∑
i<j

(xi − xj)
2Re(∂aTij)(∂bT

∗
ij).(3)

Date: 18 april 2019.

1



2 L. G. MOLINARI

The new metric tensor is block-diagonal, with unit matrix in the eigenvalue sec-
tor and matrix gab in the unitary sector. The latter is a matrix product: gab =
(V DV †)ab with Va,ij = ∂aTij and D the diagonal matrix with diagonal elements
Dij = (xi − xj)

2. Then:
√
g = ∆2| detV |, where ∆ =

∏
i>j(xi − xj) is the Vander-

monde determinant of the eigenvalues.
The inverse of the metric tensor is block-diagonal, with a unit block in the eigen-
value sector, and (V DV †)−1 in the unitary sector. The Laplace-Beltrami operator
is:

∇2
H = ∇2

X +
∑
i<j

1

(xi − xj)2
Lij(ξ, ∂ξ)(4)

Lij =
1

|detV |
∑
a

∂

∂ξa
(V −1)∗a,ij | detV |

∑
b

(V −1)ij,b
∂

∂ξb
(5)

where ∇2
X is the Laplace-Beltrami operator in the eigenvalue sector:

∇2
Xφ(X) =

1

∆2

∑
k=1..n

∂

∂xk
∆2 ∂

∂xk
φ(6)

=
1

∆

∑
k=1..n

(
∂

∂xk

)2

(∆φ)(X)(7)

The last equality follows from the special property ∇2
X∆ = 0.

Example 2.1. Hermitian matrices 2 × 2 have 4 real parameters: two eigenvalues
x1, x2 and two parameters for U(2) matrices whose elements of the first row are
real positive:

U =

[
1 0
0 eiα

] [
cos θ sin θ
− sin θ cos θ

]
, 0 ≤ θ ≤ π

2 , 0 ≤ α < 2π.

One evaluates: (dT )12 = i(U†dU)12 = sin θ cos θdα+idθ. Then: ∂αT12 = sin θ cos θ,
∂θT12 = i. The off diagonal terms of the metric tensor in the unitary tensor V DV †

vanish, and it is:

ds2 = dx21 + dx22 + 2(x1 − x2)
2[sin2 θ cos2 θ(dα)2 + (dθ)2].

Then:
√
g = ∆2 sin(2θ), ∆ = x2 − x1, and d4H = ∆2dx1dx2 sin(2θ)dαdθ. The

volume of U(2)/U(1)2 is
∫ π/2

0
dθ sin(2θ)

∫ 2π

0
dα = 2π.

The Laplace-Beltrami operator is:

∇2 = ∇2
X +

1

∆2

[
1

2 sin2 θ cos2 θ

∂2

∂α2
+

1

2 sin(2θ)

∂

∂θ
sin(2θ)

∂

∂θ

]
3. Harish-Chandra formula for the unitary group (1957)

The Harish-Chandra1 formula is a useful integral on the Haar measure of the
unitary group [10]. It was rediscovered by Itzykson and Zuber [9] for the 2-matrix
model.

1Harish-Chandra (India 1923, Princeton 1983) after the Master degree in physics and research

with Bhabha, moved to Cambridge as research student of Dirac. He became interested in repre-
sentation theory, harmonic analysis, and received several awards.
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Theorem 3.1. Let A, B be Hermitian matrices with eigenvalues xi and yi, then:∫
U(n)

dU exp[
1

t
tr(AUBU†)] = t

1
2n(n−1) det[exp 1

t (xiyj)]

∆(x)∆(y)

n−1∏
j=0

j!(8)

In the integral the matrices A and B can be taken real diagonal.

Proof. This simple proof was later provided by Edouard Brézin [2]. Consider the
Laplacian operator ∇2

A in the space of Hermitian matrices. Its eigenfunctions are
plane waves:

∇2
A exp[itr(BA)] = −tr(B2) exp[itr(BA)]

The eigenvalue is unchanged if the Hermitian matrix B is replaced by U†BU , or in
the continuous superposition:

ΨB(X) =

∫
dU exp[itr(BUAU†)]

ΨB(A) only depends on the eigenvalues xi of A, and is a symmetric function of
them. It solves the eigenvalue equation with ∇2

A being replaced by ∇2
X :

1

∆(X)

∑
k=1..n

∂2

∂x2k
∆(X)ΨB(X) = −tr(B2)ΨB(X)

The function ∆(X)ΨB(X) is totally antisymmetric in the eigenvalues xi and totally
symmetric in the eigenvalues yj of B. It can be obtained as the Slater determinant
of the elementary eigenfunctions ψ′′

j (x) = −y2jψj(x), where
∑

j y
2
j = tr(B2), i.e.

∆(X)∆(Y )ΨB(X) = C det[exp(iyjxk)], where the factor ∆(Y ) has been included
for symmetry in the exchange of Y with X, and C is a constant. □

A weaker statement, that is useful for the solution of the 2-matrix model, is the
following one. The proof is interesting:

Proposition 3.2 (Mehta, [13]).
For symmetric functions ξ0(Y ) of the eigenvalues, such that integrals exist, it is:

0 =

∫
dY ξ0(Y )

[∫
dU exp[1t tr(XU

†Y U)]− (2πt)
1
2n(n−1) exp[

1
t

∑
i xiyi]

∆(x)∆(y)

]
(9)

Proof. The Heat Equation with diffusion constant D,(
∂

∂t
−D

n∑
k=1

∂2

∂x2k

)
u(x, t) = 0

and initial condition u(x, 0) = u0(x), is solved for t > 0 with the aid of the Heat
kernel Kt(x):

u(x, t) = (Kt ⋆ u0)(x) =
1

(4πDt)n/2

∫
Rn

dy e−
1

4Dt

∑
k(xk−yk)

2

u0(y)

The Heat kernel is a special solution that, for t→ 0 is a delta function.

Now, consider the Heat equation in the space of Hermitian matrices Rn2

, for a
scalar function ξ(A, t), where A denotes the set of n2 variables:

(
∂

∂t
− 1

2
∇2

A)ξ(A, t) = 0(10)
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The solution, with initial condition ξ(A, 0) = ξ0(A) is provided by the Heat kernel:

ξ(A, t) =

∫
dB

1

(2πt)n2/2
exp[− 1

2t tr(A−B)2]ξ0(B)(11)

Suppose that the initial condition only depends on the eigenvalues Y of B. We
change variables B =WYW †, dB = dWdY∆2(Y ):

ξ(A, t) =
1

(2πt)n2/2

∫
dY∆(Y )2 ξ0(Y )

∫
dW exp[− 1

2t tr(V
†XV −W †YW )2]

Now, tr(V †XV −W †YW )2 = tr[X − (WV †)†Y (WV †)]2. We put WV † = U and
use the property of the Haar measure dW = dU . Then the solution only depends
on eigenvalues:

ξ(X, t) =
e−

1
2t trX

2

(2πt)n2/2

∫
dY∆(Y )2 ξ0(Y )e−

1
2t trY

2
∫
dU exp[ 1t tr(XU

†Y U)](12)

The function ξ(X, t) is also solution of the Heat equation (∂t − 1
2∇

2
X)ξ(X, t). Then

∆(X)ξ(X, t) solves the equation with the Laplace-Beltrami operator (6):

∂ξ

∂t
− 1

2∆

n∑
i=1

∂2

∂x2i
∆ξ(X, t) = 0(13)

with initial condition ∆ξ0. The solution is provided by the Heat kernel in Rn:

∆(X)ξ(X, t) =
1

(2πt)n/2

∫
dY∆(Y )ξ0(Y ) exp[− 1

2t

n∑
i=1

(xi − yi)
2]

By equating this expression for ξ(X, t) with the expression (12), and absorbing
the factors ∆(Y )2 exp[− 1

2t trY
2] in the arbitrary function ξ0(Y ), we obtain Mehta’s

result. □

4. The two-matrix model (Hermitian)

After the solution of 1-matrix models with orthogonal polynomials, the 2-matrix
model was attacked by Claude Iztykson and Jean-Bernard Zuber (1980). They
reduced the integral of two non-commuting matrices in 2n2 variables to an integral
in 2n eigenvalues by their rediscovery of the Harish-Chandra integral [9]. The
saddle point approximation was then used. Madan Lal Mehta formally solved the
model by introducing the bi-orthogonal polynomials, and gave an expression for
the planar free energy [13]. The model is:

Zn(c, g) =

∫
dAdB e−ntr(A2+B2−2cAB+4gA4+4gB4)(14)

A,B are Hermitian n× n matrices, 0 < c < 1.
In 1986 Kazakov showed that it corresponds to the Ising model on random planar
graphs with magnetic field H = 0 [11]. Soon after, with Boulatov, they generalized
and solved the model with couplings geH and ge−H for A and B to describe the
Ising model with constant H [5].
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For all n, the integral (14) is amenable to the eigenvalues xi and yi of A and B
by means of the integral (9). If A = UXU † and B = V Y V †, it is:

Zn =

∫
dXdY∆2(X)∆2(Y )e−n

∑
i(x

2
i+y2

i+4gx4
i+4gy4

i )

∫
dWe2nc tr(WXW †Y )

≈
∫
dXdY∆2(X)∆2(Y )e−n

∑
i(x

2
i+y2

i+4gx4
i+4gy4

i )
e2nc

∑
i xiyi

∆(X)∆(Y )

Omitting irrelevant factors that cancel with normalization (g = 0), and introducing
the potential v(x, y) = x2 + y2 − 2c xy + 4gx4 + 4gy4, we arrive at:

Zn =

∫
dXdY∆(X)∆(Y )e−n

∑
i v(xi,yi)(15)

Bi-orthogonal polynomials. In the integral, the Vandermonde determinant ∆(X)
can be rewritten as det[Pm(xk)]

m=0..n−1
k=1..n , where Pm(x) are arbitrary monic poly-

nomials of degree m = 0...n − 1. The same is done for ∆(Y ), with polynomials
Qm(yk). Then:

Zn =

∫
dXdY det[Pr(xk)] det[Qs(yk)]e

−n
∑

i v(xi,yi)

= ϵr1,...,rnϵs1,...,sn
∏

k=1...n

∫
dxkdyke

−nv(xk,yk)Prk(xk)Qsk(yk).

The partition functionis formally evaluated by choosing bi-orthogonal polynomials:∫
dxdy w(x, y)Pk(x)Qj(y) = hkδkj , w(x, y) = e−nv(x,y)

Zn = n!h0h1...hn−1(16)

The polynomials are fully determined by the conditions of being monic and bi-
orthogonal. Since v(−x, y) = v(x,−y) they have definite parity, and since v(x, y) =
v(y, x), the polynomials Pk and Qk are the same.

Bi-orthogonal polynomials do not have the simple recursive properties of orthog-
onal ones. In this case with polynomial potential, they satisfy:

Proposition 4.1.

xPk(x) = Pk+1(x) +RkPk−1(x) + SkPk−3(x)(17)

Proof. Suppose that the expansion of xPk(x) contains a term TkPk−5(x). Multiply
(17) by Pk−5(y) and integrate with the measure. It is

∫
dxdy w(x, y)xPk(x)Pk−5(y) =

Tkhk−5. The first integral is dealt with the identity:

1

2n

∂w

∂x
+ (x+ 8gx3 − cy)w(x, y) = 0(18)

Then cTkhk−5 =
∫
dxdy w(x, y)(y + 8gy3)Pk(x)Pk−5(y) = 0. □

The following proposition gives conditions for the zeros of bi-orthogonal polyno-
mials to be real and simple (see Mehta, Random Matrices, 3rd ed.):

Proposition 4.2. If w(x, y) > 0, all moments ⟨xjyk⟩ are finite, det⟨xjyk⟩ ̸= 0,
i, j = 0, ..., n for all n, detw(xi, yj) > 0 for x1 < ... < xn, y1 < ... < yn, then the
bi-orthogonal polynomials

∫
dxdy w(x, y) pj(x)qk(x) = hkδjk have real and simple

zeros in the respective supports of w(x, y).
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With fk = hk/hk−1 the partition function (16) becomes Zn = n!hn0f
n−1
1 · · · fn−1.

The normalized free energy is

Fn(c, g) = − 1

n2
log

Zn(c, g)

Zn(c, 0)
= − 1

n2
log

h0(c, g)

h0(c, 0)
− 1

n

n−1∑
k=0

(1− k

n
) log

fk(c, g)

fk(c, 0)
(19)

The coefficients fk, Rk and Sk solve recursive relations that depend on w, with
initial conditions that must be evaluated:

Proposition 4.3.

cSk = 8gfkfk−1fk−2(20)

cRk = [1 + 8g(Rk+1 +Rk +Rk−1)]fk(21)

k

2n
= −c fk +Rk + 8g[Rk(Rk+1 +Rk +Rk−1) + Sk+2 + Sk+1 + Sk](22)

Proof. 20): multiply (17) by c Pk−3(y) and integrate with the weight, then use (18)

cSkhk−3 = 8g

∫
dxdyw(x, y)y3Pk−3Pk(x) = 8ghk

21): multiply (17) by c Pk−1(y) and integrate with the weight, and use (18):

cRkhk−1 =

∫
dxdyw(x, y)(y + 8gy3)Pk−1(y)Pk(x) = hk[1 + 8g(Rk+1 +Rk +Rk−1)]

22): multiply (17) by c Pk+1(y) and integrate with the weight, and use (18):

chk+1 =

∫
dxdyw(x, y)(y + 8gy3)Pk+1(y)Pk(x)− k+1

2n hk

=8ghk[Rk+1(Rk+2 +Rk +Rk−2) + Sk+3 + Sk+2 + Sk+1] +Rk+1hk − k+1
2n hk

The initial conditions are found in the construction of the first polynomials: S0=0,
R0 = 0, h1 = ⟨xy⟩, S1 = 0, R1 = ⟨x2⟩/h0, h2 = ⟨x2y2⟩ − ⟨x2⟩2/h0, ... □

The large n limit. The large n limit is obtained by interpolating the coefficients
fk, Rk and Sk with continuous functions. The interpolation depends on the initial
conditions. In the simplest case, single interpolating functions suffice e.g. fk =
f(k/N) = f(x), 0 ≤ x ≤ 1. For the double-well potential, two interpolating
functions are needed for each coefficient [14].
The equations (20)–(22) become algebraic. For single functions:

cS(x) = 8gf3(x)

cR(x) = [1 + 24gR(x)]f(x)

cx+ 2c2f(x)− 24(4g)2f3(x) = 2cR(x)[1 + 24gR(x)]

They give, for g = 0: f0(x) = 1
2cx/(1− c2) and, for non-zero g:

x

2
= −cf(x) + 12(4g)2

c
f3(x) + c

f(x)

[c− 24gf(x)]2

The planar free energy becomes the integral:

Fpl(c, g) = −
∫ 1

0

dx(1− x) log
f(x)

f0(x)
(23)
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The expansion in g counts the connected vacuum planar diagrams:

Fpl(c, g) =
∑

V=1..∞

gV Fpl,V (c) = g
4

(1− c2)2
− g2

4c4 + 32c2 + 36

(1− c2)4
+ . . .

The diagrams contributing to V = 1, 2 can be identified in fig.1. They are 4 and
72 (in the quartic 1-matrix model they are 2 and 18. Graphs with two vertices A
or B total 4 and 36. The other 36 come from replacing a vertex A with a vertex
B in all ways). The planar series has a finite radius of convergence, that allows to
determine the large V behaviour of Fpl,V (c) (thermodynamic limit). The radius is
obtained from the critical values gcr of Fpl(g, c) nearest to the origin, at given value
c. As c changes, the critical points may collide and exghange, and this manifests as
a phase transition. This analysis of the two-matrix solution was done by Kazakov,
and the phase transition is the magnetic transition of the Ising model.

Figure 1. The first and second order diagrams. Dashed (AB) or
full (AA, BB) lines correspond to factors c/(1− c2) or 1/(1− c2).
Vertices A, B have weight g. Multiplicities are given by combina-
torics of planar edging of vertices.

4.1. The phase transition. With z(x) = (24g/c)f(x) the fifth order equation
becomes:

4gx = − 1
3c

2z + 1
9c

2z3 + 1
3

z

(1− z)2
≡ w(z)(24)

The function w(z) is plotted in fig.2.
An integration by parts of the integral for the planar free energy (23) gives:

Fpl(c, g) =− 1

2
log

f(1)

f0(1)
+

∫ 1

0

dx
f ′(x)

f(x)
(x− 1

2x
2)− 3

4

=− 1

2
log

ζ(1− c2)

12g
+

1

4g

∫ ζ

0

dz

z
w(z)− 1

32g2

∫ ζ

0

dz

z
w2(z)− 3

4

=− 1

2
log

ζ(1− c2)

12g
+

c2

108g
ζ(ζ2 − 9)− 1

12g

ζ

ζ − 1
− 3

4

− c4

32 · 54g2
ζ2(3− ζ2 +

ζ4

9
)− c2

27 · 32g2
ζ2(ζ + 3)

ζ − 1
− 1

54 · 32g2
ζ2(ζ − 3)

(ζ − 1)3
.
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The result is a free energy that depends on ζ = z(1), solution of the fifth order
equation 4g = w(ζ, c). In the change from 0 ≤ x ≤ 1 to 0 ≤ z ≤ ζ the function
z(x) is one-to-one. This breaks down at the critical points w′(z) = 0, listed below:

w′(z) = 0 w(z) c < 1/4 c > 1/4
zc = −1 2

9c
2 − 1

12 min max
z− = 1− 1/

√
c 2

9 (3c− c2 − 2
√
c) max min

z+ = 1 + 1/
√
c 2

9 (3c− c2 + 2
√
c) min min

1± i/
√
c complex

The critical points. For c = 1/4, zc = z− is a triple zero of w(z) and w(zc) = −5/72.

-4 -2 2 4

-0.5

0.5

1.0

1.5

-2.5 -2.0 -1.5 -1.0 -0.5

-0.10

-0.08

-0.06

-0.04

-0.02

Figure 2. The function w(z) for c = 0.01 (thin), c = 1/4 (thick)
and c = 0.5 (dashed). For z → ±∞ w(z) → ±∞. The point
z+ = 1 + 1/

√
c is a local minimum. The other extrema z = −1

and z− = 1− 1/
√
c have a dual behaviour (see Table).

As 4gx varies from 0 to 4g, there is a real intersection 4gx = w(z) moving
continuously from z(0) = 0 to some value ζ solving 4g = w(ζ). For g > 0 it is
4g ≤ w(z+). For g < 0 there are two phases:
c < 1/4: |4g| < |w(zc)| (the local minimum). z(x) moves from 0 to ζ = −1.
c > 1/4: |4g| < |w(z−)| (the local minimum). z(x) moves from 0 to ζ = z−.
The planar free energy and its first two derivatives are continuous functions of g,

while ∂3gFpl(c, g) is divergent where w
′(z) = 0 (note that ∂ζF = 0, when 4g = w(ζ)

is used).
The asymptotic behaviours of the counting numbers of diagrams with V vertices
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(up to factors V p) are:

Fpl,V (c) ≈
(
(1− c2)2

c|gcr(c)|

)V

, 4gcr(c) =

{
2
9c

2 − 1
12 c < 1/4

2
9 (3c− c2 − 2

√
c) c > 1/4

(25)

The discussion of the Ising model, and the modifications needed to allow for the
magnetic field, are the subject of another lesson.

5. The 1-Hermitian matrix model in d=1, large n

The solution of the 1-matrix in d = 1 model appeared in the same paper of the
saddle-point solution of the model in d = 0 (Brézin et al. [3]). Both solutions were
rediscussed for the double-well case (Cicuta et al.[7]).

The partition function of the 1-matrix model in one dimension (time)

Z =

∫
dH(t) exp[−

∫ β

0

tr( 12Ḣ(t)2 + 1
2m

2H(t)2 +
g

n
H4)] = e−n2βE

describes the thermal equilibrium for n2 particles with positions Hii(t), ReHij(t)
and ImHij(t) (i < j), with Hamiltonian H = −1

2∇
2
H + 1

2m
2trH2 + g/ntrH4, where

∇2
H is the Laplacian in matrix space (2). The Hamiltonian is invariant for the

change of coordinates H ′ = UHU†.
The ground state is searched in the singlet sector of symmetric functions ϕ(x1, . . . , xn),
where the eigenvalue equation of H now involves n bosons

−1
2∇

2
Xϕ+

∑n

k=1
( 12m

2x2k +
g

n
x4k)ϕ = E0ϕ(26)

With ϕ = ψ/∆ the Laplacian takes the simpler form (7) and the Schrödinger
equation becomes separable, ψ =

∏
ψi(xi) where ψi are the eigenfunctions of a

1-particle problem: [
−1

2

d2

dx2
+ 1

2m
2x2 +

g

n
x4
]
ψi(x) = ϵiψi(x)

Since ϕ is totally symmetric, then ψ is antisymmetric, and is the Slater determinant
ψ(x1 . . . xn) = det[ψi(xj)], with eigenvalue E0 =

∑
i=1..n ϵi. For a large number n

of particles, the sum is evaluated as an integral involving the density of states:

E0 =

∫
dϵ ρ(ϵ) ϵ θ(ϵF − ϵ), n =

∫
dϵ ρ(ϵ) θ(ϵF − ϵ)

where ϵF is the Fermi energy. The density is related to N (ϵ), the number of states
with energy below ϵ, by N ′(ϵ) = ρ(ϵ). For large energy, it is approximated by the
semiclassical formula2:

N (ϵ) =

∫
dpdx

2π
θ(ϵ− 1

2p
2 − 1

2m
2x2 − g

n
x4) = 2

∫ b

a

dx

2π

√
2ϵ−m2x2 − 2(g/n)x4

where (a, b) is the range for classical motion (positive kinetic energy); for m2 > 0,
a = 0. The Fermi energy ϵF is determined by n = N (ϵF ) and the ground state
energy is:

E0 =

∫ ϵF

ϵ0

dϵ ϵN ′(ϵ) = nϵF −
∫ ϵF

ϵ0

dϵN (ϵ) = nϵF − 2
3

∫ b

a

dx

2π
(2ϵF −m2x2 − 2

g

n
x4)

3
2

2the volume in phase space enclosed by the constant energy surface, in Planck units.
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The integrals are elliptic. The rescaling ϵF = neF , x =
√
ns gives the expected

behaviour E0 proportional to n
2. This ground state energy is the planar free energy

of the matrix model. Its value with n = 1 is confronted with the ’exact’ energy E
of the anharmonic oscillator in d = 1 computed by Bender and Wu.

g E Epl

0.01 0.507 0.505
0.1 0.559 0.547
1 0.804 0.740
50 2.500 2.217
1000 6.694 5.915

Table 5. The ground state energy of the d = 1 anharmonic oscillator (n = 1) [1]
and the planar energy Epl, for various values of g, m = 1 (from [3], [8]).

Marchesini and Onofri studied the excited states of the matrix Hamiltonian in the
singlet and adjoint sectors. For singlets they obtained equally spaced eigenvalues
[12]. The approximate planar propagator in d = 1 was studied by Canali et al. [6],
and its poles were evaluated
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