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Virtual photon contribution to frictional drag
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Abstract

Frictional drag between coupled two-dimensional charge systems is commonly viewed as a second order effect arising
either from screened Coulomb interaction, or phonon exchange. We point out that for single-photon exchange the first order
contribution does not have to vanish even at T = 0, and evaluate this contribution for simple models.
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1. Introduction

The double layer configuration of the fermion gas, especially under the influence of a strong magnetic field,
allows one to study many unusual transport phenomena. Pogrebinskii [1] and Price [2] advanced the idea that
a current driven in an electron gas should manifest itself as a potential difference in a spatially separate system
because of Coulomb scattering with a preferred direction of exchanged momentum. The effect, originally analyzed
for bulk electrons, was quantitatively measured in double well heterostructures at low temperature [3], allowing for
direct comparison with theory.

The measured quantity is transresistance, the ratio of potential difference due to dragged charges and driving
current. It was the main subject of several theoretical works based on transport equations [4] or Kubo formula for
conductivity [5,6]. Transresistance resulting from Coulomb drag depends on temperature as T 2 and decreases as
d−4 (d is the distance between the wells). The theory was refined by including phonon exchange [7,8], which
explained the observed low temperature deviations from the T 2 behaviour. A “current drag” effect was also
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proposed [9], and originates from the Van der Waals attraction between relative current flows. With strong magnetic
field, the bilayer geometry allows the observation of new QHE phenomena, for a review see [10].

In the Kubo formalism transconductivity is given by the retarded correlator of currents in different layers. As
a consequence of charge conservation, it is a second order quantity in the electrostatic and phonon interlayer
interaction. In this Letter we discuss the effect of photon exchange, in the absence of external magnetic field, by
considering the coupling of the photon field to currents, in the Coulomb gauge. Photon exchange is potentially
important, given that photon drag arises as a first order effect. Although e.m. corrections are usually quite small, it
is not obvious at the outset how they compare with second order effects.

The effective e.m. interaction was evaluated in RPA by Holstein et al. [11] with the significant feature of being
unscreened at zero frequency. Reizer [12] investigated its influence on the Fermi surface, the low temperature
specific heat, and homogeneous transport, and found small but interesting effects. Gauge-invariant response
functions were studied by Kim et al. [13], and confirmed the Fermi liquid behaviour.

In this Letter the photon polarization is evaluated in RPA for the interlayer e.m. interaction, in the limit of thin
layers. Single layer properties and disorder are accounted for in the diffusive regime.

We model the system as two infinite parallel layers of electron gas, confined in narrow potential wells centered
in z= 0 and z= d , with negligible tunnelling because of low temperature and sufficiently large layer-separation.

The Hamiltonian is

(1)H =H1 +H2 +Hph +UCou +Uem,

where Hℓ is the kinetic energy of the electrons in layer (ℓ= 1,2), Hph is the energy of free e.m. field, UCou is the
Coulomb interaction. The e.m. minimal coupling with the vector potential in the Coulomb gauge is

(2)Hem =
1

c

∫
d3x j( x ) ·A(x )−

e

2mc2

∫
d3x ρ( x )A2( x ),

where ρ is the electron charge density and j is the paramagnetic part of the charge current

(3)J = j −
e

mc
ρA

that enters in the equation for charge conservation.
To derive the Kubo formula for conductivity [8,15], one perturbes the Hamiltonian with a term δH =

1
c

∫
d3x δAext( x, t) · J( x ), which couples the total current to a weak external electric field. Linear response in

δAext gives the conductivity tensor. For a time independent Hamiltonian (1) the response is a function of the time
difference only, and its Fourier transform is

(4)σij ( x, x
′,ω)=

i

h̄ω
πRet
ij ( x, x

′,ω)−
ie

mω

〈
ρ( x )

〉
δij δ3( x − x ′),

where i, j are space directions, and πRet
ij (ω) is the connected retarded current–current correlator. Evaluation of

πRet is our main task.
It is convenient to use imaginary time (it = τ ) and consider τ -ordered correlators

(5)πC
µν( x, x

′, τ − τ ′)= −
〈
TτJµ( x, τ )Jν( x

′, τ ′)
〉

using a four-dimensional notation Jµ = (cρ, J ), µ= 0,1,2,3 (since we use the Matsubara formalism, the metric
is Euclidean). Brackets indicate equilibrium thermal-average. The Fourier transform of πC

µν( x, x
′, τ ) is a sum over

discrete Matsubara frequencies

(6)πC
µν( x, x

′, τ )=
1

h̄β

∑

n

e−iωnτπC
µν( x, x

′,ωn).

The correlator of interest πRet(ω) can be written in terms of πC(ωn) by analytic continuation.
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A delicate issue is the presence of disorder. In the present Letter we assume that the impurities are uncorrelated
in the two subsystems (for correlated impurities see, for example, [14]) and hence consider independently averaged
correlation functions, which are translationally invariant in the plane r = (x, y). The static and homogeneous limit
of the transconductivity is:

(7)σij (z, z
′)= lim

ω→0
lim
q→0

i

h̄ω
πRet
ij (q, z, z

′,ω),

where z and z′ belong to different layers, and q is FT of r. Since there is no flow of charge in the z-direction, we
require σ3j = σj3 = 0.

2. The polarization tensor

The thermal Green functions for the photon field are

(8)Dij ( x, τ, x
′, τ ′)= −

1

h̄

〈
TτAi( x, τ )Aj ( x

′, τ ′)
〉
,

where i, j = 1,2,3. The propagators for free photons and the bare Coulomb interaction are [15]

(9)D
(0)
ij ( k,ωn)= −

(
δij −

kikj

k2

)
4πc2

ω2
n + c2k2

, D
(0)
00 ( k,ωn)=

4π

k2
,

(10)D
(0)
0i ( k,ωn)=D

(0)
i0 ( k,ωn)= 0.

When the interaction with matter is included, the dressed photon propagator and the effective Coulomb interaction
are components of a tensor Dµν which differs from the bare one by polarization insertions:

(11)Dµν( x, x
′,ωn)=D

(0)
µν ( x, x

′,ωn)+D
(0)
µρ ( x, x1,ωn)Pρσ ( x1, x2,ωn)D

(0)
σν ( x2, x

′,ωn).

Summation and integration of repeated variables are understood hereafter. The polarization insertion and the
density–density correlator are related via [15]:

(12)P00( x, x
′,ωn)=

1

h̄c2π
C
00( x, x

′,ωn).

A perturbative analysis to all orders shows the further exact relations among the polarization insertion and the
current–current correlator:

(13)Pij ( x, x
′,ωn)= −

e

mc2

〈
ρ( x )

〉
δij δ3( x − x′)+

1

h̄c2
πC
ij ( x, x

′,ωn),

(14)P0i =
1

h̄c2π
C
0i, Pi0 =

1

h̄c2π
C
i0.

Thus, the conductivity tensor is proportional to the retarded photon polarization:

(15)σij ( x, x
′,ω)= i

c2

ω
P

Ret
ij ( x, x

′,ω).

3. The Dyson equation

To evaluate approximately the polarization, we start by writing an exact Dyson equation in coordinate space.
Due to the geometry of the problem, we find it convenient to rearrange the terms according to the two layer
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configuration:

(16)Pµν( x, x
′,ωn)=P

⋆
µν( x, x

′,ωn)+P
⋆
µρ( x, x

′′,ωn)D
(0)
ρσ ( x

′′ − x ′′′,ωn)Pσν( x
′′′, x′,ωn),

where D
(0)
ρσ is an interlayer bare propagator (x ′′ and x ′′′ in different layers) and P⋆ is the irreducible polarization

tensor, given as the sum of e.m. polarization insertions that cannot be disconnected by cutting a single interlayer
photon or Coulomb line.

Next, we take the average over disorder, and assume the same Dyson equation for averaged correlators, and find

(17)Pµν(q, z, z′,ωn)= P
⋆
µν(q, z, z

′,ωn)+P
⋆
µρ(q, z, z

′′,ωn)D
(0)
ρσ (q, z

′′ − z′′′,ωn)Pσν(q, z′′′, z′,ωn).

Here,

(18)D
(0)
µν (q, z− z′,ωn)=

∞∫

−∞

dk3

2π
D
(0)
µν ( k,ωn)e

ik3(z−z′).

With the definition of the auxiliary function

(19)D̃(q, z− z′,ωn)= 2πc
e−

1
c
|z−z′|

√
ω2
n+q2c2

√
ω2
n + q2c2

we find

D
(0)
00 = 2π

e−q|z−z
′|

q
, D

(0)
ab = −δabD̃ −

qaqbc
2

ω2
n

(
D̃ −D

(0)
00

)
,

D
(0)
33 =

q2c2

ω2
n

(
D̃ −D

(0)
00

)
, D

(0)
0j = 0,

D
(0)
3a =D

(0)
a3 = 2πi sign(z− z′)

qac
2

ω2
n

(
e−

1
c |z−z

′|
√
ω2
n+c2q2 − e−q|z−z

′|),

where the last equation is imposed by the gauge fixing condition ∂jAj = 0. To proceed further, we consider the
limit of thin layers. We consider single particle states of the form uℓ(r, z)= φℓ(z)Ψℓ(r), and in the thin layer limit
|φℓ(z)|2 → δ(z− zℓ). Introducing the fermionic field operators ψℓσ (r) in each layer, we have

ρ( x )=
∑

ℓ

ρℓ(r)δ(z− zℓ), ρℓ(r)= −e
∑

σ

ψ
†
ℓσ (r)ψℓσ (r),

Ja( x )=
∑

ℓ

Jaℓ(r)δ(z− zℓ), Jaℓ(r)= jaℓ(r)−
e

mc
ρℓ(r)Aa(r, zℓ),

(20)jaℓ(r)= i
h̄e

2m

∑

σ

ψ
†
ℓσ (r)∂aψℓσ (r)−

(
∂aψ

†
ℓσ (r)

)
ψℓσ (r).

The index a will hereafter denote transverse space components (x, y). The absence of tunnelling ensures the
conservation of charge in each layer, which reads:

(21)
1

ih̄

[
H,ρℓ(r)

]
= divxy Jℓ(r).

In the thin layer limit the Dyson equations (11) become algebraic:

(22)Pµν(ℓℓ
′)−P

⋆
µν(ℓℓ

′)=P
⋆
µρ(ℓℓ1)D

(0)
ρσ (ℓ1ℓ2)Pσν(ℓ2ℓ

′).
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The variables q and ωn are omitted for brevity. Recall that the Dyson equation was constructed with the requirement
that D(0) connects different layers, thus ℓ1 6= ℓ2. Here we put

(23)D
(0)
µν (ℓℓ

′)=D
(0)
µν (q, zℓ − zℓ′,ωn), Pµν(ℓ, ℓ

′)=Pµν(q,ωn, zℓ, zℓ′).

They are respectively the entries of two 4 × 4 matrices D(0)(ℓℓ′) and P(ℓℓ′). Therefore, the Dyson equations
correspond to 4 matrix equations (ℓ, ℓ′ = 1,2):

(24)P(ℓℓ′)= P⋆(ℓℓ′)+ P⋆(ℓ1)D(0)(12)P(2ℓ′)+ P⋆(ℓ2)D(0)(21)P(1ℓ′).

The structure of the polarization tensor is greatly constrained by symmetry and charge conservation. The latter
implies the following exact relations:

(25)i
ωn

c
P0ν(q,ωn, ℓ, ℓ′)= qaPaν(q,ωn, ℓ, ℓ′), ν = 0,1,2,3.

The same relation holds when the indices are exchanged. These relations correspond to the Ward identity relating
the vertex functions for Coulomb and e.m. coupling to the electron field. In absence of external magnetic field,
rotational symmetry requires the tensor structure

(26)Pab(q,ωn, ℓ, ℓ′)= δabA(q,ωn, ℓ, ℓ′)+
qaqb

q2
B(q,ωn, ℓ, ℓ′).

From charge conservation we find:

(27)P0a =Pa0 = i
ωn

cq2
qaP00, A+B = −

ω2
n

c2q2
P00.

4. The interlayer polarization in RPA

We solve Dyson’s equation in RPA and for identical layers. In this approximation P⋆ is independent of all
interlayer interaction lines and therefore

(28)P⋆(ℓℓ′)= δℓℓ′P
(0)
ℓ ,

where P(0)ℓ is the exact polarization matrix of the layer ℓ with its internal dynamics. The index ℓ keeps track
of the charge of the carriers. However, in the present approximation scheme (no charged impurities and no
interlayer interaction) the charge appears always with even powers. Thus the index ℓ can be neglected. The various
components of P(0) fulfill the relations of rotational symmetry and charge conservation, such as (index ℓ is here
suppressed)

P
(0)
ab =A(0)δab +B(0)

qaqb

q2 , P
(0)
0a = P

(0)
a0 = iqa

ωn

q2c
P
(0)
00 ,

(29)A(0) +B(0) =
qaqb

q2
P
(0)
ab = −

ω2
n

c2q2
P
(0)
00 .

P
(0)
ab is directly linked to the conductivity tensor σ (0)ab of the isolated layer

(30)σ
(0)
ab = i

c2

ω
P
(0)
ab .

The coupled Dyson equations (24) provide a matrix equation for the interlayer polarization:

(31)P(12)= P(1)(12)+ P(1)(12)D(0)(21)P(12),
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where P(1)(12)= P(0)D(0)(12)P(0). By using charge conservation for the polarization we obtain after some algebra

(32)P(1)(12)ab = −D̃

[
A(0)2

(
δab −

qaqb

q2

)
+
qaqb

q2

(
P
(0)
00

)2 ω2
n

c2q4

(
ω2
n + c2q2)

]
,

where D̃ = D̃(d) is the function in Eq. (19) with |z − z′| = d . From (32), taking the DC limits q → 0 and than
ω→ 0 respectively we obtain transconductance to first order (Fig. 1) in interlayer interaction:

(33)σ(12)= (2π/c)σ (0)2.

The experiments are carried under the condition that no current flows in the driven layer. The measured quantities
are the driving current J (1) and the electric field E(2) that builds up in layer two to balance the drag field.
Transresistance is the ratio

(34)ρ(12)=
E(2)

J (1)
= −

σ(12)

σ (11)σ (22)− σ(12)σ (21)
.

Under the condition σ(12) ≪ σ (0), we approximate the intralayer conductance σ(ℓℓ) by the value σ (0) of the
isolated layer.

We then find ρ(12)≈ σ(12)/σ (0)2 and obtain a universal result for transresistivity:

(35)ρ(12)=
2π

c
= αRH ,

where RH = h/e2 is the Hall resistance and α is the fine structure constant corrected for the interlayer medium.
While P(1)(12) represents the inter-layer polarization with a single one-photon exchange, the solution of (31) is

the polarization with an effective interlayer interaction, in RPA. P(0) corresponds to disorder averaged single layer
polarization where the second layer is absent. If we consider also the second layer, then our approximation neglects
those contributions to the disorder average that correlate various P(0) insertions. One finds:

(36)P(12)00(q,ωn)=
P
(0)
00

2
(q,ωn) 2π

cq2

√
ω2
n + c2q2 e−

d
c

√
ω2
n+c2q2

1 − P
(0)
00

2 4π2

c2q4 (ω
2
n + c2q2)e−2 d

c

√
ω2
n+c2q2

.

Fig. 1. The first order contribution to the current–current correlator: coupling mediated by (a) screened Coulomb interaction, (b) four-di-
mensional electromagnetic propagator. ρ is the electron density, j the paramagnetic current density and J = j − (−e)

mc ρA. The number inside the
bubbles indicates the subsystem. The intralayer interaction is included within RPA in each bubble. (a) Vanishes in the DC limit and corresponds
to the µ= ν = 0 component of (b). The space-like components of (b) are non-vanishingin this limit.
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In the diffusive regime, we use

(37)P
(0)
00 (q,ω)=

σ (0)q2

Dq2 − iω
,

where D is the diffusion constant. In this approximation, the limits q → 0, ω → 0 of transconductivity yield a
small correction to (35) for transresistance:

(38)ρ(12)=
2π

c

1

1 − σ (0)2(2π/c)2
.

5. Discussion

In the present Letter we have considered the virtual photon contribution to the frictional drag in two parallel
layers. In contrast to the Coulomb drag the contribution of the single virtual photon survives in the limit of q → 0
and ω→ 0. The RPA approximation allows to get the result in terms of the full single layer polarization even in
presence of disorder. The result is valid also at finite temperature, which enters in the single layer conductivity.
Eq. (35) gives the contribution of one single-photon-exchange and Eq. (38) yields the sum over all possible single-
photon-exchanges. We emphasize that the results (35) and (38) are obtained within a simple model, and therefore
the numerical value of the obtained transresistance should not be viewed quantitatively (in fact, (35) and (38) lead to
a resistance which is larger than the measured values). Work is in progress to include finite-size corrections which
may lead to significant numerical changes. Nevertheless, the main conclusions remain: (i) first order contribution
is non-zero and (ii) it remains finite at T = 0.
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