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Abstract

An identity is proven that evaluates the determinant of a block tridiagonalmatrix with (or without) corners

as the determinant of the associated transfer matrix (or a submatrix of it).
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1. Introduction

A tridiagonal matrix with entries given by square matrices is a block tridiagonal matrix; the

matrix is banded if off-diagonal blocks are upper or lower triangular. Such matrices are of great

importance in numerical analysis and physics, and to obtain general properties is of great utility.

The blocks of the inverse matrix of a block tridiagonal matrix can be factored in terms of two

sets of matrices [10], and decay rates of their matrix elements have been investigated [14]. While

the spectral properties of tridiagonal matrices have been under study for a long time, those of

tridiagonal block matrices are at a very initial stage [1,2].

What about determinants? A paper by El-Mikkawy [4] on determinants of tridiagonal matrices

triggered two interesting generalizations for the evaluation of determinants of block-tridiagonal

and general complex blockmatrices, respectively by Salkuyeh [15] and Sogabe [17]. These results

encouraged me to re-examine a nice identity that I derived in the context of transport [11], and

extend it as a mathematical result for general block-tridiagonal complex matrices.
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For ordinary tridiagonal matrices, determinants can be evaluated via multiplication of 2× 2

matrices
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Do these procedures generalize to block-tridiagonal matrices? The answer is affirmative. If the

matrix has corner blocks, the determinant is proportional to that of an associated transfermatrix, in

general of much smaller size. The proof is simple and is given in Section 2. A simple modification

yields a formula for the determinant when corner blocks are absent, and is given in Section 3. The

relation with Salkuyeh’s recursion formula is then shown.

2. The duality relation

Consider the following block-tridiagonal matrix M(z) with blocks Ai , Bi and Ci−1 (i =

1, . . . , n) that are complexm×mmatrices. It is very useful to introduce also a complex parameter

z in the corner blocks
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It is required that off-diagonal blocks are nonsingular: detBi /= 0 and detCi−1 /= 0 for all i. As

it will be explained, the matrix is naturally associated with a transfer matrix, built as the product

of n matrices of size 2m× 2m

T =

[

−B−1n An −B−1n Cn−1
Im 0

]

· · ·

[

−B−11 A1 −B−11 C0
Im 0

]

, (4)

where Im is the m×m unit matrix. The transfer matrix is nonsingular, since

det T =

n
∏

i=1

det[B−1i Ci−1]. (5)
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The main result, the duality relation, relies on the following lemma. The lemma, with z = 1,

evaluates the determinant of a general block tridiagonal matrix with corners.

Lemma 1. detM(z) =
(−1)nm

(−z)m
det[T − zI2m] det[B1 · · ·Bn].

Proof. The equationM(z)W = 0 has a nontrivial solution provided that detM(z) = 0, and cor-

responds to the following linear system in terms of the blocks of the matrix and the components

ψk ∈ C
m of the null vector W

A1ψ1 + B1ψ2 + z
−1C0ψn = 0, (6)

Bkψk+1 + Akψk + Ck−1ψk−1 = 0 (k = 2, . . . , n− 1), (7)

zBnψ1 + Anψn + Cn−1ψn−1 = 0. (8)

Eq. (7) is recursive and can be put in the form
[

ψk+1
ψk

]

=

[

−B−1k Ak −B−1k Ck−1
Im 0

] [

ψk
ψk−1

]

and iterated. Inclusion of the boundary equations (6) and (8) produces an eigenvalue equation for

the full transfer matrix (4) that involves only the end vector-components

T

[

ψ1
1
z
ψn

]

= z

[

ψ1
1
z
ψn

]

. (9)

Eq. (9) has a nontrivial solution if and only if det[T − zI2m] = 0, which is dual to the condi-

tion det M(z) = 0. Both zm detM(z) and det[T − zI2m] are polynomials in z of degree 2m and

share the same roots, which cannot be zero by (5). Therefore, the polynomials coincide up to a

constant of proportionality, which is found by considering the limit case of large z : detM(z) ≈

(−1)nm(−z)m det[B1 · · ·Bn]. �

Before proceeding, let us show that in the special case of tridiagonal matrices with corners

(m = 1), Lemma 1 with z = 1 yields (1).

The factorization
(
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is introduced for all factors in the transfer matrix T and produces intermediate factors 1
bk
I2 that

commute, and allow us to simplify the determinant of the lemma
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=
z1z2

b21 · · · b
2
n

− (−1)n
z1 + z2

b1 · · · bn
+ 1

= −
(−1)n

b1 · · · bn
[(z1 + z2)− (−1)

n(b1 · · · bn + c0 · · · cn−1)],

z1 and z2 are the eigenvalues of the transfer matrix in (1), whose trace is z1 + z2 and whose

determinant is z1z2 = (b1 · · · bn)(c0 · · · cn−1).

Multiplication of Lemma 1 by det T −1 gives a variant of it

detM(z) = (−1)nm(−z)m det

(

T −1 −
1

z

)

det[C0 · · ·Cn−1].

Multiplication of Lemma 1 by the previous equation, with parameter 1/z, gives another variant

detM(z) detM(1/z) = det

[

T + T −1 −

(

z+
1

z

)]

det[B1C0 · · ·BnCn−1].

Instead of M(z), consider the matrix M(z)− λInm and the corresponding transfer matrix T (λ)

obtained by replacing the entriesAi withAi − λIm. Then Lemma 1 has a symmetric form, where

the roles of eigenvalue and parameter exchange between the matrices. For this reason it is called

a duality relation.

Theorem 1 (The duality relation)

det[λInm −M(z)] = (−z)
−m det[T (λ)− zI2m] det[B1 · · ·Bn].

It shows that the parameter z, which enters inM(z) as a boundary term, is related to eigenvalues

of the matrix T (λ) that connects the eigenvector of M(z) at the boundaries.

The duality relation was initially obtained and discussed for Hermitian block matrices [11,12,

13]. For n = 2 it is due to Lee and Ioannopoulos [9]. Here I have shown that it holds for generic

block-tridiagonal matrices, and the proof given is even simpler. The introduction of corner values

z and 1/z in Hermitian tridiagonal matrices (ck = b
∗
k ) was proposed by Hatano and Nelson [7]

in a model for vortex depinning in superconductors, as a tool to link the decay of eigenvectors to

the permanence of corresponding eigenvalues on the real axis. It has been a subject of intensive

research [16,5,6,18]. The generalization to block matrices is interesting for the study of transport

in discrete structures such as nanotubes or molecules [8,3,19].

3. Block tridiagonal matrix with no corners

By a modification of the proof of the lemma, one obtains an identity for the determinant of

block-tridiagonal matricesM(0) with no corners (Bn = C0 = 0 in the matrix (3)).

Theorem 2

detM(0)
= (−1)nm det[T

(0)
11 ] det[B1 · · ·Bn−1],

where T
(0)
11 is the upper left block of size m×m of the transfer matrix

T (0) =

[

−An −Cn−1
Im 0

] [

−B−1n−1An−1 −B−1n−1Cn−2
Im 0

]

· · ·

[

−B−11 A1 −B−11
Im 0

]

.
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Proof. The linear systemM(0)
W = 0 can be translated into the following equation, via the transfer

matrix technique:
[

ψn

−C−1n−1Anψn

]

=

[

−B−1n−1An−1 −B−1n−1Cn−2
Im 0

]

× · · · ×

[

−B−12 A2 −B−12 C1
Im 0

] [

−B−11 A1ψ1
ψ1

]

. (11)

Right multiplication by the nonsingular matrix
[

−An −Cn−1
Im 0

]

and rewriting the right-hand vector as the product
[

−B−11 A1 −B−11
Im 0

] [

ψ1
0

]

transform (11) into an equation for the transfermatrixT (0), that connects the boundary components

with ψn+1 = 0 and ψ0 = 0
[

0

ψn

]

= T (0)
[

ψ1
0

]

. (12)

Eq. (12) implies that det T
(0)
11 = 0, which is dual to detM

(0) = 0. The implication translates into

an identity by introducing the parameter λ and comparing the polynomials det[λInm −M
(0)] and

det T (0)(λ) (obtained by replacing blocks Ai with Ai − λIm). Since both are polynomials in λ of

degree nm and with the same roots, they must be proportional. Their behaviour for large λ fixes

the constant. �

For tridiagonal matrices (m = 1) blocks are just scalars and, by means of (10), one shows

Theorem 2 simplifies to (2).

The formula for the evaluation of detM(0) requires n− 1 inversions B−1k , multiplication of n

matrices of size 2m× 2m, and the final evaluation of a determinant. Salkuyeh [15] proposed a

different procedure for the evaluation of the same determinant

detM(0)
=

n
∏

k=1

detKk,

Kk = Ak − Ck−1K
−1
k−1Bk−1, K1 = A1.

It requires n− 1 inversions of matrices of size m×m, and the evaluation of their determinants.

I show that the two procedures are related.

The transfer matrix T (0) = T (n) is the product of n matrices. Let T (k) be the partial product

of k matrices. Then

T (k) =

[

−B−1k Ak −B−1k Ck−1
Im 0

]

T (k − 1).

This produces a two-term recurrence relation for blocks

T (k)11 = −B
−1
k AkT (k − 1)11 − B

−1
k Ck−1T (k − 2)11
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withT (1)11 = −B
−1
1 A1 andT (0)11 = Im. The equations bySalkuyeh result forKk = −BkT (k)11

[T (k − 1)11]
−1.
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