EFFECTIVE INTERACTION
 AND POLARIZATION

NOTES BY L. G. MOLINARI

1. The effective interaction

In a many body system the "bare" interaction of two particles in empty space U_{0} is "dressed" by polarization insertions.

The one-particle Green function $i G(x, y)=\left\langle E_{0}\right| T S \psi(x) \psi^{\dagger}(y)\left|E_{0}\right\rangle_{\star}$ is the sum of all diagrams with a particle being created at y and destroyed at x that do not contain vacuum factors (spin is included in the variable). Its first-order rainbow diagram is

$$
\frac{i}{\hbar} \int d x_{1} d x_{2} G^{0}\left(x, x_{1}\right) G^{0}\left(x_{1}, x_{2}\right) G^{0}\left(x_{2}, y\right) U^{0}\left(x_{1}, x_{2}\right)
$$

Among the diagrams at higher order we select and sum only the ones that dress the interaction, keeping fixed the configuration of three bare propagators. The sum of such diagrams defines the effective interaction $U(x, y)$:

$$
\frac{i}{\hbar} \int d x_{1} d x_{2} G^{0}\left(x, x_{1}\right) G^{0}\left(x_{1}, x_{2}\right) G^{0}\left(x_{2}, y\right) U\left(x_{1}, x_{2}\right)
$$

The first term of $U(x, y)$ is $U^{0}(x, y)$. The next ones arise as all possible contractions in the T-expansion of S in the propagator. Here, only $V\left(t_{1}\right)$ and $V\left(t_{N}\right)$ are written in second quantization $)^{1}$:
$\frac{1}{i} \sum_{N=2}^{\infty} \frac{1}{(i \hbar)^{N}} \int d x_{1} d y_{1} d x_{N} d y_{N} U^{0}\left(x_{1}, y_{1}\right) U^{0}\left(x_{N}, y_{N}\right) \int_{-\infty}^{+\infty} d t_{2} \ldots \int_{-\infty}^{+\infty} d t_{N-1}$
$\times\left\langle T \psi^{\dagger}\left(x_{1}\right) \psi^{\dagger}\left(y_{1}\right) \psi\left(y_{1}\right) \psi\left(x_{1}\right) V(2) \ldots V(N-1) \psi^{\dagger}\left(x_{N}\right) \psi^{\dagger}\left(y_{N}\right) \psi\left(y_{N}\right) \psi\left(x_{N}\right) \psi(x) \psi^{\dagger}(y)\right\rangle_{\star C}$
with the following fixed contractions: $x-x_{1}, x_{1}-x_{N}$ and $x_{N}-y$.
The star means that we avoid diagrams with vacuum factors, the C means that we avoid contractions that do not link 1 to N (we want an effective potential among points $1, N)$.

[^0]The fixed contractions are done with proper signs and factors:

$$
\begin{aligned}
& \frac{1}{i} \frac{i^{3}}{(i \hbar)^{2}} \int d x_{1} d x_{N} G^{0}\left(x, x_{1}\right) G^{0}\left(x_{1}, x_{N}\right) G^{0}\left(x_{N}, y\right) \int d y_{1} d y_{N} U^{0}\left(x_{1}, y_{1}\right) U^{0}\left(x_{N}, y_{N}\right) \\
& \quad \times \sum_{k=0}^{\infty} \frac{1}{(i \hbar)^{k}} \int d t_{1} \ldots d t_{k}\left\langle T \psi^{\dagger}\left(y_{1}\right) \psi\left(y_{1}\right) V\left(t_{1}\right) \ldots V\left(t_{k}\right) \psi^{\dagger}\left(y_{N}\right) \psi\left(y_{N}\right)\right\rangle_{\star C} \\
& =\frac{i}{\hbar} \int d x_{1} d x_{N} G^{0}\left(x, x_{1}\right) G^{0}\left(x_{1}, x_{N}\right) G^{0}\left(x_{N}, y\right) \frac{1}{i \hbar} \int d y_{1} d y_{N} U^{0}\left(x_{1}, y_{1}\right) U^{0}\left(x_{N}, y_{N}\right) \\
& \quad \times\left\langle E_{0}\right| T S \psi^{\dagger}\left(y_{1}\right) \psi\left(y_{1}\right) \psi^{\dagger}\left(y_{N}\right) \psi\left(y_{N}\right)\left|E_{0}\right\rangle_{\star C}
\end{aligned}
$$

We leave the interaction picture:

$$
\left\langle E_{0}\right| T S \psi^{\dagger}\left(y_{1}\right) \psi\left(y_{1}\right) \psi^{\dagger}\left(y_{N}\right) \psi\left(y_{N}\right)\left|E_{0}\right\rangle_{\star C}=\langle E| T \psi^{\dagger}\left(y_{1}\right) \psi\left(y_{1}\right) \psi^{\dagger}\left(y_{N}\right) \psi\left(y_{N}\right)|E\rangle_{C}
$$

The unwanted contractions are those that factor (disconnect) into a function of y_{1} and a function of y_{N}. They are dealt with as follows.
A 2-point correlator can be decomposed into connected and disconnected parts:

$$
\langle E| T A(x) B(y)|E\rangle=\langle E| T A(x) B(y)|E\rangle_{C}+\langle E| A(x)|E\rangle\langle E| B(y)|E\rangle
$$

By defining $\delta A(x) \equiv A(x)-\langle E| A(x)|E\rangle$, the connected correlator is

$$
\langle E| T A(x) B(y)|E\rangle_{C}=\langle E| T \delta A(x) \delta B(y)|E\rangle_{C}
$$

In our specific case it is:
(1) $\langle E| T \psi_{\mu}^{\dagger}(x) \psi_{\mu^{\prime}}(x) \psi_{\nu}^{\dagger}(y) \psi_{\nu^{\prime}}(y)|E\rangle_{C}=\langle E| T \delta\left[\psi_{\mu}^{\dagger}(x) \psi_{\mu^{\prime}}(x)\right] \delta\left[\psi_{\nu}^{\dagger}(y) \psi_{\nu^{\prime}}(y)\right]|E\rangle$

We now write the expression of the effective potential in full detail:

$$
\begin{array}{r}
U_{\mu \mu^{\prime}, \nu \nu^{\prime}}\left(x_{1}, x_{2}\right)=U_{\mu \mu^{\prime}, \nu \nu^{\prime}}^{0}\left(x_{1}, x_{2}\right)+\frac{1}{i \hbar} \sum_{\text {spin }} \int d x_{3} d x_{4} U_{\mu \mu^{\prime}, \rho \rho^{\prime}}^{0}\left(x_{1}, x_{3}\right) \tag{2}\\
\times\langle E| T \psi_{\rho}^{\dagger}\left(x_{3}^{+}\right) \psi_{\rho^{\prime}}\left(x_{3}\right) \psi_{\sigma}^{\dagger}\left(x_{4}^{+}\right) \psi_{\sigma^{\prime}}\left(x_{4}\right)|E\rangle_{C} U_{\sigma \sigma^{\prime}, \nu \nu^{\prime}}^{0}\left(x_{4}, x_{2}\right)
\end{array}
$$

The connected correlator defines the Polarization:

$$
\begin{gather*}
U(1,2)=U^{0}(1,2)+\int d 3 d 4 U^{0}(1,3) \Pi(3,4) U^{0}(4,2) \tag{3}\\
\Pi_{\rho \rho^{\prime}, \sigma \sigma^{\prime}}(x, y)=\frac{1}{i \hbar}\langle E| T \psi_{\rho}^{\dagger}\left(x^{+}\right) \psi_{\rho^{\prime}}(x) \psi_{\sigma}^{\dagger}\left(y^{+}\right) \psi_{\sigma^{\prime}}(y)|E\rangle_{C} \tag{4}
\end{gather*}
$$

The polarization $\Pi_{\rho \rho^{\prime}, \sigma \sigma^{\prime}}(x, y)$ is the sum of all topologically distinct connected diagrams where a particle is being created with spin ρ and one destroyed with spin ρ^{\prime} at the space-time point x and another pair of similar events occurs at y.

The polarization is symmetric: $\Pi_{\rho \rho^{\prime}, \sigma \sigma^{\prime}}(x, y)=\Pi_{\sigma \sigma^{\prime} \rho \rho^{\prime}}(y, x)$. The symmetry implies that the exchange symmetry of the bare interaction U^{0} is inherited by the effective potential:

$$
\begin{equation*}
U_{\mu \mu^{\prime}, \nu \nu^{\prime}}(x, y)=U_{\nu \nu^{\prime}, \mu \mu^{\prime}}(y, x) \tag{5}
\end{equation*}
$$

If the bare interaction does not modify the spin of the particles, i.e. $U_{\mu \mu^{\prime} \nu \nu^{\prime}}^{0}(x, y)=\delta_{\mu \mu^{\prime}} \delta_{\nu \nu^{\prime}} U^{0}(x, y)$, then the same form holds for the effective interaction: $U_{\mu \mu^{\prime} \nu \nu^{\prime}}(x, y)=\delta_{\mu \mu^{\prime}} \delta_{\nu \nu^{\prime}} U(x, y)$.

Equation (2) now is:

$$
\begin{gather*}
U\left(x_{1}, x_{2}\right)=U^{0}\left(x_{1}, x_{2}\right)+\sum_{\rho \sigma} \int d x_{3} d x_{4} U^{0}\left(x_{1}, x_{3}\right) \Pi\left(x_{3}, x_{4}\right) U^{0}\left(x_{4}, x_{2}\right) \tag{6}\\
\Pi(x, y)=\sum_{\mu \nu} \Pi_{\mu \mu, \nu \nu}(x, y)=\frac{1}{i \hbar}\langle E| T \delta n(x) \delta n(y)|E\rangle
\end{gather*}
$$

$\Pi(x, y)$ is the scalar polarization.

2. Proper polarization

The polarization diagrams may be reordered as

$$
\Pi=\Pi^{\star}+\Pi^{1}+\Pi^{2} \ldots
$$

where Π^{\star} is the sum of proper or irreducible polarization diagrams, i.e. diagrams that cannot be disconnected into two polarisation diagrams by removal of a single U^{0} line. Π^{1} is the sum of polarization diagrams that may be disconnected (into polarization diagrams) in a unique way, i.e. there is just one line U^{0} whose removal disconnects the diagram into two proper ones ($\Pi^{1}=\Pi^{\star} U^{0} \Pi^{\star}$), and so on. Therefore:

$$
\begin{aligned}
\Pi & =\Pi^{\star}+\Pi^{\star} U^{0} \Pi^{\star}+\Pi^{\star} U^{0} \Pi^{\star} U^{0} \Pi^{\star}+\ldots \\
& =\Pi^{\star}+\Pi^{\star} U^{0}\left(\Pi^{\star}+\Pi^{\star} U^{0} \Pi^{\star}+\ldots\right) \\
& =\Pi^{\star}+\Pi^{\star} U^{0} \Pi .
\end{aligned}
$$

In the same way one obtains $\Pi=\Pi^{\star}+\Pi U^{0} \Pi^{\star}$. These are the Dyson's equations for the polarization Π, in terms of the proper polarization. One of them is:

$$
\begin{equation*}
\Pi\left(x_{1}, x_{2}\right)=\Pi^{\star}\left(x_{1}, x_{2}\right)+\int d x_{3} x_{4} \Pi^{\star}\left(x_{1}, x_{3}\right) U^{0}\left(x_{3}, x_{4}\right) \Pi\left(x_{4}, x_{2}\right) \tag{8}
\end{equation*}
$$

As a consequence, one obtains a Dyson equation for the effective interaction in terms of the proper polarization:

$$
\begin{equation*}
U\left(x_{1}, x_{2}\right)=U^{0}\left(x_{1}, x_{2}\right)+\int d x_{3} d x_{4} U^{0}\left(x_{1}, x_{3}\right) \Pi^{\star}\left(x_{3}, x_{4}\right) U\left(x_{4}, x_{2}\right) \tag{9}
\end{equation*}
$$

Exercise 2.1. Show that $U(1,2)=U^{0}(1,2)+U(1,3) \Pi^{\star}(3,4) U^{0}(4,2)$ and $\int d 3 U^{0}(1,3) \Pi(3,2)=\int d 3 U(1,3) \Pi^{\star}(3,2)$.

Exercise 2.2. Show that $\int d 1 \Pi(1,2)=0$. Does this imply that $\int d 1 \Pi^{*}(1,2)=0$?

3. Space-time translation invariance

If both U^{0} and Π are space-time translation-invariant functions (i.e. $f(x+$ $\left.y, x^{\prime}+y\right)=f\left(x, x^{\prime}\right)$ for all $\left.y\right)$, then also U and Π^{\star} are invariant. It is convenient to expand the functions in $k=(\mathbf{k}, \omega)$ space: $f\left(x, x^{\prime}\right)=\int \frac{d^{4} k}{(2 \pi)^{4}} e^{i k\left(x-x^{\prime}\right)} f(k)$, with $k x=\mathbf{k} \cdot \mathbf{x}-\omega t$. The Dyson equations become algebraic in $k-$ space:

$$
\begin{aligned}
& U(k)=U^{0}(k)+U^{0}(k) \Pi^{\star}(k) U(k) \\
& \Pi(k)=\Pi^{\star}(k)+\Pi^{\star}(k) U^{0}(k) \Pi(k)
\end{aligned}
$$

They are matrix equations in spin variables. If they are scalar equations, the solutions are:

$$
\begin{equation*}
U(k)=\frac{U^{0}(k)}{1-U^{0}(k) \Pi^{\star}(k)}, \quad \Pi(k)=\frac{\Pi^{\star}(k)}{1-U^{0}(k) \Pi^{\star}(k)} \tag{10}
\end{equation*}
$$

For a static two-particle potential $U^{0}\left(x, x^{\prime}\right)=v\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \delta\left(t-t^{\prime}\right)$, it is $U^{0}(k)=v(\mathbf{k})$. Then:

$$
\begin{equation*}
U(\mathbf{k}, \omega)=\frac{v(\mathbf{k})}{\epsilon(\mathbf{k}, \omega)}, \quad \Pi(\mathbf{k}, \omega)=\frac{\Pi^{*}(\mathbf{k}, \omega)}{\epsilon(\mathbf{k}, \omega)} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\epsilon(\mathbf{k}, \omega)=1-v(\mathbf{k}) \Pi^{\star}(\mathbf{k}, \omega) \tag{12}
\end{equation*}
$$

$\epsilon(k)$ is the (time ordered) generalised dielectric function.
Despite the bare interaction being static, the effective interaction is time-dependent through the dielectric function, which describes the response of the medium. For the Coulomb interaction,

$$
U(\mathbf{k}, \omega)=\frac{4 \pi e^{2}}{|\mathbf{k}|^{2}-4 \pi e^{2} \Pi^{\star}(\mathbf{k}, \omega)}
$$

The long-range Coulomb interaction is modified by the screening produced by the polarized medium.

[^0]: Date: October 2022.
 ${ }^{1}$ Note the absence of factorials and powers of 2 , as we only consider topologically different diagrams.

