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Abstract. In these pedagogical notes, I present a derivation of Hedin’s equa-

tions for the evaluation of the propagator, the proper self-energy, the effective

potential, the proper polarization and the vertex in a many-body theory with
two-body interaction. I then discuss the Ward identities for the vertex. The

solution of Hedin’s equations in d = 0 allows to enumerate Feynman diagrams

in various resummation schemes.

1. Introduction

We consider the many-body problem for interacting fermions with Hamiltonian
H = H0 +U , H0 =

∑
i h(xi,pi), U =

∑
i<j v(xi,xj). h is a one-particle Hamilton-

ian and v is the two-body interaction. For simplicity we assume spin independence
of the Hamiltonian (its inclusion is straightforward but makes notation heavy).

In 1965 Lars Hedin [1] derived the following formally closed set of equations for
the propagator G, the proper self-energy Σ?, the effective potential W , the proper
polarization Π? and the dressed vertex Γ. Four of them are integral equations1:

G(1, 2) = g(1, 2) +

∫
d1′2′ g(1, 1′)Σ?(1′, 2′)G(2′, 2)(1)

W (1, 2) = v(1, 2) +

∫
d1′2′ v(1, 1′)Π?(1′, 2′)W (2′, 2)(2)

Σ?(1, 2) =
i

~

∫
d34 Γ(4; 1, 3)G(3, 2)W (4, 2)(3)

Π?(1, 2) = − 2
i

~

∫
d34 Γ(1; 3, 4)G(2, 3)G(4, 2)(4)

where v(1, 2) = v(x1,x2)δ(t1 − t2) and g(1, 2) is the time-ordered Green function
of the interacting system in the Hartree approximation, with the exact particle
density (Hartree-type insertions -tadpoles- are then already accounted for). The
fifth equation contains a functional derivative:

Γ(1; 2, 3) =δ(1, 2)δ(1, 3) +

∫
d4567 Γ(1; 4, 5)G(6, 4)G(5, 7)

δΣ?(2, 3)

δG(6, 7)
(5)

Eqs. (1) and (2) are the Dyson’s equations that define the self-energy and the
polarization as 1-particle irreducible insertions for the propagator and the effective
potential2. The next two give the skeleton structure of the irreducible self-energy

Date: 18 oct 2017.
1Here, 1 = (x1, t1), 1+ = (x1, t1 + ε), and

∫
d1 =

∫+∞
−∞ dt1

∫
dx1.

2The diagrams for G and W have the structure G(1, 2) = g(1, 2) + g(1, 1′)Σ(1′, 2′)g(2′, 2) and

W (1, 2) = v(1, 2) + v(1, 1′)Π(1′, 2′)v(2′, 2), where Σ and Π are the self-energy and polarisation
insertions, i.e. diagrams with two fermion or two “photon” slots.
The self-energy or polarisation diagrams that may not be disconnected by removal, respectively,
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and polarization. These four equations can be understood and derived by consider-
ing Feynman’s rules and the diagrams’ topology [2, 3]. They only involve integrals.
The vertex equation (5) contains a functional derivative, which constitutes the main
difficulty of the many-body problem [4, 5, 6]. It can be put also in the form [15],

Γ(1; 2, 3) = δ(1, 2)δ(1, 3) +

∫
d45 g(4, 1)g(1, 5)

δΣ?(2, 3)

δg(4, 5)
(6)

which is less suitable for non-perturbative calculations, but it offers a transparent
diagrammatic interpretation: vertex diagrams are self-energy diagrams with one
Hartree propagator g(4, 5) removed and replaced by the product g(4, 1)g(1, 5) that
introduces a new bare vertex at 1. Therefore, each self-energy diagram of order n
produces 2n− 1 vertex diagrams of the same perturbative order by pinching a bare
vertex in any of its 2n− 1 propagator lines.

If all corrections to the bare vertex, Γ(0)(1; 2, 3) = δ(1, 2)δ(1, 3), are ignored,
the four eqs.(1-4) become a closed set of integral equations, which is numerically
tractable [7, 8, 9]. This is the GW approximation (GWA):

Σ?(1, 2) ≈ i

~
G(1, 2)W (1, 2), Π?(1, 2) ≈ −2

i

~
G(1, 2)G(2, 1).

.

2. Preliminaries

To derive Hedin’s equations we add a source term to the Hamiltonian Ĥ, that
couples the particle density operator n̂(x) =

∑
µ ψ
†
µ(x)ψµ(x) to a classical space-

time field:

Ĥ(t) = Ĥ +

∫
dxϕ(x, t) n̂(x)(7)

The field will allow us to compute functional derivatives. At the end, we shall
put ϕ(x, t) = 0. A different functional approach was formulated by Kleinert et al.
[11, 12].

Because of the time-dependence in Ĥ(t), time-ordered correlators in presence of the
source are defined in the interaction picture. The time-ordered propagator and the
full polarization are:

iδµν G(1, 2) =
〈E|TŜψ̂µ(1)ψ̂†ν(2)|E〉

〈E|Ŝ|E〉
(8)

i~Π(1, 2) =
〈E|TŜδ̂n̂(1)δn̂(2)|E〉

〈E|Ŝ|E〉
(9)

where δn̂(1) = n̂(1) − n(1) is the density fluctuation operator, with the average

density n(1) = 〈E|T Ŝn̂(1)|E〉/〈E|Ŝ|E〉 = −2iG(1, 1+). The averages are taken in

of one line g or one line v are named 1-particle irreducible self-energy or polarization diagrams.

Their sum is Σ? or Π?. Reducible diagrams can be obtained by connecting irreducible ones with

g or v lines. Then: Σ(1, 2) = Σ?(1, 2) + Σ?(1, 1′)g(1′, 2′)Σ?(2′, 2) + Σ?gΣ?gΣ? + . . . . A partial
resummation gives Dyson’s equation Σ(1, 2) = Σ?(1, 2) + Σ?(1, 1′)g(1′, 2′)Σ(2′, 2). In the same

way: Π(1, 2) = Π?(1, 2) + Π?(1, 1′)v(1′, 2′)Π(2′, 2).
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the ground state |E〉 of Ĥ, the time-evolution of operators is driven by Ĥ, and the
source term is relegated to the scattering operator

Ŝ = T exp
1

i~

∫
d4xϕ(x)n̂(x)(10)

The Hartree propagator solves the equation of motion with the source and the exact
Hartree potential VH(1) =

∫
d2v(1, 2)n(2):

(i~∂t1 − h(x1)− ϕ(1)− VH(1))g(1, 2) = ~δ(1, 2)(11)

When, in the end, ϕ = 0, Ŝ = 1, the correlators for H or H0 are recovered. In
particular, the average density and the Hartree potential are time-independent.

Proposition 2.1. Let Ω̂ be a product of field operators evolved at different times
with Ĥ, that do not contain the source ϕ. Then:

δ

δϕ(1)

〈E|TŜΩ̂|E〉
〈E|Ŝ|E〉

=
1

i~
〈E|TŜΩ̂δn̂(1)|E〉
〈E|Ŝ|E〉

(12)

Proof. Consider the Dyson expansion for the time-ordered product T[ŜΩ̂]. The
functional derivative of a product has the Leibnitz property: δ[ϕ(1′)...ϕ(k′)]/δϕ(1) =∑
`′ ϕ(1′)...δ(`′ − 1)...ϕ(k′). Since primed variables are integrated, the k terms at

order k are equal:

δT[ŜΩ̂]

δϕ(1)
=

∞∑
k=1

k

(i~)kk!

∫
d1′...k′Tn̂(1′)...n̂(k′)δ(1− 1′)ϕ(2′)...ϕ(k′) =

1

i~
T [ŜΩ̂n̂(1)]

Note that under time-ordering the operator n̂(1) commutes with any operator.

δ

δϕ(1)

〈E|TŜΩ̂|E〉
〈E|Ŝ|E〉

=
1

i~
〈E|T[ŜΩ̂n̂(1)]|E〉
〈E|Ŝ|E〉

− 1

i~
〈E|TŜn̂(1)|E〉〈E|TŜΩ̂|E〉

〈E|Ŝ|E〉2

and the resul follows. �

3. Polarization and effective potential

With the choice Ω = n̂ we get:

δ

δϕ(2)

〈E|TŜn̂(1)|E〉
〈E|Ŝ|E〉

=
1

i~
〈E|TŜn̂(1)δn̂(2)|E〉

〈E|Ŝ|E〉
=

1

i~
〈E|TŜδn̂(1)δn̂(2)|E〉

〈E|Ŝ|E〉
The right-hand side is the full polarization Π(1, 2) in presence of the source, eq.(9).
Note the symmetry Π(1, 2) = Π(2, 1). We obtained:

Π(1, 2) = −2i
δG(1, 1+)

δϕ(2)
(13)

Setting ϕ = 0 (then Ŝ = 1) we recover the familiar formula i~Π(1, 2) = 〈E|Tδn̂(1)δn̂(2)|E〉
(the time-ordered counterpart of the density-density response function).
Let us introduce the local potential

V (1) = ϕ(1) + VH(1) = ϕ(1)− 2i

∫
d2 v(1, 2)G(2, 2+)(14)
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where VH is the Hartree or mean field potential. A functional derivative gives:

δV (1)

δϕ(2)
= δ(1, 2)− 2i

∫
d3 v(1, 3)

δG(3, 3+)

δϕ(2)
= δ(1, 2) +

∫
d3v(1, 3)Π(3, 2)(15)

Integration of (15) with v(2, 3) gives the two-body effective potential

W (1, 3) ≡
∫
d2
δV (1)

δϕ(2)
v(2, 3) = v(1, 3) +

∫
d24 v(1, 4)Π(4, 2)v(2, 3)(16)

It is the bare interaction v(1, 3) dressed by all polarisation insertions. Symmetry
of Π and v in exchange of variables implies W (1, 3) = W (3, 1).

Exercise 3.1. Obtain the following identities:

δ

δϕ(1)
=

δ

δV (1)
+

∫
d23 v(2, 3)Π(3, 1)

δ

δV (2)
(17) ∫

d1v(4, 1)
δ

δϕ(1)
=

∫
d1W (4, 1)

δ

δV (1)
(18)

4. The irreducible polarisation

Use of the chain rule (17) in (13) gives:

Π(1, 2) = −2i
δG(1, 1+)

δV (2)
− 2i

∫
d34

δG(1, 1+)

δV (3)
v(3, 4)Π(4, 2)

We recognize Dyson’s equation for the polarization in terms of the irreducible, or
proper polarization:

Π(1, 2) = Π?(1, 2) +

∫
d34 Π?(1, 3)v(3, 4)Π(4, 2)(19)

Π?(1, 2) = −2i
δG(1, 1+)

δV (2)
(20)

The symmetries of Π and v imply Π?(1, 2) = Π?(2, 1). Eq. (18) implies:∫
d4 v(5, 4)Π(4, 2) =

∫
d4 W (5, 4)Π?(4, 2)(21)

and equation (16) becomes the Dyson equation (2) in Hedin’s set:

W (1, 3) = v(1, 3) +

∫
d24 v(1, 4)Π?(4, 2)W (2, 3)(22)

Exercise 4.1.
δ

δV (1)
=

δ

δϕ(1)
−
∫
d23 v(2, 3)Π?(3, 1)

δ

δϕ(2)
(23) ∫

d1Π?(4, 1)
δ

δϕ(1)
=

∫
d1 Π(4, 1)

δ

δV (1)
(24)

Let us introduce the functional inverse of the propagator:∫
d3G−1(5, 3)G(3, 2) = ~δ(5, 2)

A functional derivative gives:

0 =

∫
d3
δG−1(5, 3)

δV (4)
G(3, 2) +

∫
d3G−1(5, 3)

δG(3, 2)

δV (4)
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Contraction with
∫
d5G(1, 5) gives:

0 =

∫
d35G(1, 5)

δG−1(5, 3)

δV (4)
G(3, 2) + ~

δG(1, 2)

δV (4)
(25)

If 2 = 1+ it becomes ~Π?(1, 4) = 2i
∫
d23G(1, 3) δG

−1(3,2)
δV (4) G(2, 1). This provides the

skeleton structure of the 1P-irriducible polarisation

Π?(1, 2) = −2
i

~

∫
d34 Γ(2; 3, 4)G(1, 3)G(4, 1)(26)

with the identification of the vertex function:

Γ(1; 2, 3) = −δG
−1(2, 3)

δV (1)
(27)

Remark 4.2. Comparison of the expressions (20) and (26) for Π? suggests that
a functional derivative in V introduces a dressed vertex. This can be seen by using
(25) and considering that G is determined by V in a one-to-one correspondence
(Hohenberg-Kohn):

δ

δV (5)
=

∫
d12

δG(1, 2)

δV (5)

δ

δG(1, 2)
= −1

~

∫
d1234G(1, 4)

δG−1(4, 3)

δV (5)
G(3, 2)

δ

δG(1, 2)

δ

δV (5)
=

1

~

∫
d1234G(1, 4)Γ(5; 4, 3)G(3, 2)

δ

δG(1, 2)
(28)

5. The vertex equation

The vertex function (27) is the sum of vertex diagrams, characterised by one
photon line in 1 a fermion entering in 3 and leaving from 2. We now obtain an
equation for it by replacing G−1(2, 3) = g−1(2, 3)− ~Σ?(2, 3).
The functional inverse of the Hartree propagator in presence of the source is

g−1(1, 2) = δ(1, 2)[i~∂t2 − h(x2)− V (2)]

so that δg−1(1, 2)/δV (3) = −δ(1, 2)δ(2, 3). Eq.(27) becomes

Γ(1; 2, 3) = δ(1, 2)δ(1, 3) + ~
δΣ?(2, 3)

δV (1)
(29)

The insertion of a vertex in the self-energy is made explicit by using eq.(28) in the
second term. One obtains the final form of Hedin’s vertex equation:

Γ(5; 6, 7) = δ(5, 6)δ(6, 7) +

∫
d1234G(1, 4)Γ(5; 4, 3)G(3, 2)

δΣ?(6, 7)

δG(1, 2)
(30)

Exercise 5.1. Since V determines g, prove that

δ

δV (5)
=

∫
d12

δg(1, 2)

δV (5)

δ

δg(1, 2)
=

1

~

∫
d12 g(1, 5)g(5, 2)

δ

δg(1, 2)
(31)

Γ(1; 2, 3) = δ(1, 2)δ(1, 3) +

∫
d45 g(4, 1)g(1, 5)

δΣ?(2, 3)

δg(4, 5)
(32)
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1 2

Figure 1. The dressed self-energy and polarization diagrams,
with exact vertex Γ, propagator G and effective potential W .

6. The self-energy

The equation of motion for the propagator

[i~∂t1 − h(x1)− V (1)]G(1, 2) = ~δ(1, 2) +
i

2

∑
µ

∫
d3 v(1, 3)

〈E|T Ŝψ̂µ(1)ψ̂†µ(2)δn̂(3)|E〉
〈E|Ŝ|E〉

contains a four point function that may be expressed as a functional derivative

δG(1, 2)

δϕ(3)
= − 1

2~
∑
µ

〈E|T Ŝψ̂µ(1)ψ̂†µ(2)δn̂(3)|E〉
〈E|Ŝ|E〉

The equation of motion becomes

[i~∂t1 − h(x1)− V (1)]G(1, 2) = ~δ(1, 2) + i~
∫
d3v(1, 3)

δG(1, 2)

δϕ(3)
(33)

The equation has its own interest, as it leads to approximations that were investi-
gated by Reining et al. [13]. If we insert Dyson’s relation G = g+ gΣ?G into it, we
obtain:∫

d3 Σ?(1, 3)G(3, 2) = i

∫
d3 v(1, 3)

δG(1, 2)

δϕ(3)
= i

∫
d3 W (1, 3)

δG(1, 2)

δV (3)

For the last equality we used the property (18). To isolate Σ? we use the functional
inverse of G

~Σ?(1, 2) = i

∫
d34 W (1, 3)

δG(1, 4)

δV (3)
G−1(4, 2)

=− i
∫
d34 W (1, 3)G(1, 4)

δG−1(4, 2)

δV (3)

The last derivative is the full vertex. Then, Hedin’s equation (3) is obtained:

Σ?(1, 2) =
i

~

∫
d34 W (1, 3)Γ(3; 4, 2)G(1, 4)(34)

It gives the skeleton graph of the self-energy.
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7. Identities

Hedin’s equations imply identities. This one may also be checked at the level of
skeleton diagrams:∫

d12 Π?(1, 2)W (1, 2) = −2

∫
d12 Σ?(1, 2)G(2, 1)(35)

Other simple identities are
∫
d1 Π(1, 2) = 0,

∫
d1 Π?(1, 2) = 0.

The vertex equation implies Ward’s identities, as in electrodynamics.

Lemma 7.1. Let g(1, 2) be a propagator for independent particles (Hartree propa-
gators are of this sort), with time-independent Hamiltonian. Then:∫

d3 g(1, 3)g(3, 2) = −i(t1 − t2) g(1, 2)(36)

Proof. If h|a〉 = ea|a〉, the time-ordered Green function is:

ig(xt,x′t′) =
∑
a〈x|a〉〈a|x′〉e−

i
~ ea(t−t

′)[θ(t − t′)θ(ea − eF ) − θ(t′ − t)θ(eF − ea)].

After the integration in x3 one remains with: −
∑
a〈x1|a〉〈a|x2〉e−

i
~ ea(t1−t2)×∫

dt3[θ(t1−t3)θ(t3−t2)θ(ea−eF )+θ(t2−t1)θ(t2−t3)θ(eF −ea)]. The time integral
is (t1 − t2)[θ(t1 − t2)θ(ea − eF )− θ(t2 − t1)θ(eF − ea)]. The result follows. �

The lemma holds true with the replacement

g(1, 2)→ gk(1, 2) = eik·(1−2)g(1, 2)

where k · 1 = k · x1 − iωt1. In a loop the phases cancel, while in an open string it
is gk(1, 2)gk(2, 3) . . . gk(n − 1, n) = eik·(1−n)g(1, 2) . . . g(n − 1, n). Therefore, upon
replacement g → gk, W and Π? remain unchanged, while Σ?(2, 3), G(2, 3) and
Γ(1; 2, 3)− δ(1, 2)δ(1, 3) gain a factor eik(2−3).

Proposition 7.2 (Ward’s identity).∫
d1 Γ(1; 2, 3) = δ(2, 3)− i(t2 − t3) Σ?(2, 3)(37)

Proof. Let us consider Hedin’s equations with g → gk.∫
d5 Γk(5; 3, 4)− δ(3, 4) = −i

∫
d12 (t1 − t2)gk(1, 2)

δΣ?k(3, 4)

δgk(1, 2)

=

∫
d12

∂gk(1, 2)

∂ω

δΣ?k(3, 4)

δgk(1, 2)
=

∂

∂ω
Σ?k(3, 4) = −i(t3 − t4) Σ?k(3, 4)

by the chain rule. The auxiliary parameter k is now set to zero, and we gain a
version of Ward’s identity (it is eq.(7.22) in Strinati’s report [5]). �

If we expand the vertex in frequency space:

Γ(1; 2, 3) =

∫
dω′dω′′

4π2
Γ(x1; x2,x3;ω′, ω′′)e−iω

′(t2−t1)−iω′′(t1−t3)

the integral in dt1 gives a factor 2πδ(ω′ − ω′′):∫
d1 Γ(1; 2, 3) =

∫
dx1

dω

2π
Γ(x1; x2,x3;ω, ω)e−iω(t2−t3)
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Ward’s identity becomes∫
dx Γ(x; x2,x3, ω, ω) = δ(x2 − x3)− ∂

∂ω
Σ?(x1,x2;ω)(38)

If the theory is also invariant for space translations:

Γ(q = 0,p, ω, ω) = 1− ∂

∂ω
Σ?(p, ω)(39)

8. Counting Feynman diagrams

In zero dimension of space-time, Hedin’s equations allow for an easy enumera-
tion of Feynman diagrams [15, 16, 17]. The four Hedin’s equations (1-4) become
algebraic, with parameters g and v, and the functional derivative in the vertex
equation (6) becomes an ordinary one. After removing imaginary factors, ~ = 1
and replacing the factor (−2) with a loop-counting parameter `, Hedin’s equations
are:

G = g + gΣ?G W = v + vΠ?W Σ? = GWΓ Π? = `G2Γ Γ = 1 + g2
∂Σ?

∂g

By searching solutions as series expansions in x = g2v and `, one obtains coefficients
that count the Feynman graphs that contribute to a perturbative order with a given
number of loops. For example:

Σ?/vg = 1 + (2 + `)x+ (10 + 9`+ `2)x2 + (74 + 91`+ 23`2 + `3)x3

+ (706 + 1063`+ 416`2 + 46`3 + `4)x4

+ (8162 + 14193`+ 7344`2 + 1350`3 + 80`4 + `5)x5 + . . .

= 1 + 3x+ 20x2 + 189x3 + 2232x4 + 31130x5 + . . .

The last line corresponds to ` = 1. At order v3 there are 20 self-energy diagrams:
10 with no loops, 9 with a single loop and 1 with two loops. The expansions for
the vertex and the polarization are

Γ = 1 + x+ 3(2 + `)x2 + 5(10 + 9`+ `2)x3 + 7(74 + 91`+ 23`2 + `3)x4

+ 9(706 + 1063`+ 416`2 + 46`3 + `4)x5 + . . .

= 1 + x+ 9x2 + 100x3 + 1323x4 + 20088x5 + . . .

Π?/g2` = 1 + 3x+ (15 + 5`)x2 + (105 + 77`+ 7`2)x3 + (945 + 1044`+ 234`2 + 9`3)x4

+ (10395 + 14784`+ 5390`2 + 550`3 + 11`4)x5 + . . .

= 1 + 3x+ 20x2 + 189x3 + 2232x4 + 31130x5 + . . .

The counting numbers ` = 1 of the expansions of the self-energy and the polarisation
are the same. This occurs also in Q.E.D., though with smaller numbers because
of cancellations of diagrams with odd number of propagators in a fermionic loop
(Furry’s theorem).
While the numbers of Feynman diagrams grow factorially, it turns out that in the
GW approximation (i.e. Γ = 1) they grow algebraically [15]. The enumeration
of skeleton diagrams can be easily carried out from Hedin’s equations, by proper
choice of the expansion parameter [16].
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