A DERIVATION OF HEDIN’S EQUATIONS

LUCA GUIDO MOLINARI

ABSTRACT. In these pedagogical notes, I present a derivation of Hedin’s equa-
tions for the evaluation of the propagator, the proper self-energy, the effective
potential, the proper polarization and the vertex in a many-body theory with
two-body interaction. I then discuss the Ward identities for the vertex. The
solution of Hedin’s equations in d = 0 allows to enumerate Feynman diagrams
in various resummation schemes.

1. INTRODUCTION

We consider the many-body problem for interacting fermions with Hamiltonian
H=Ho+U, Ho =73, h(xi,pi), U=}, ;v(x;,X;). his a one-particle Hamilton-
ian and v is the two-body interaction. For simplicity we assume spin independence
of the Hamiltonian (its inclusion is straightforward but makes notation heavy).

In 1965 Lars Hedin [1] derived the following formally closed set of equations for
the propagator G, the proper self-energy ¥*, the effective potential W, the proper
polarization IT* and the dressed vertex I'. Four of them are integral equations:

(1) G(1,2) =g(1,2) + /dl/Ql g(1, 1/)2*(1’,2/)G(2I,2)
2) W(1,2) =v(1,2) + /d1’2’ (1, 1)1, 2)W (2, 2)
(3) $*(1,2) = % /d34 T(4:1,3)G(3,2)W (4,2)

(4) *(1,2) = — 2%/d34 T(1:3,4)G/(2,3)G(4,2)

where v(1,2) = v(x1,%2)d(t1 — t2) and g(1,2) is the time-ordered Green function
of the interacting system in the Hartree approximation, with the ezact particle
density (Hartree-type insertions -tadpoles- are then already accounted for). The
fifth equation contains a functional derivative:
02*(2,3)
(5)  T(1:2,3) =5(1,2)5(1,3) + /d4567 T(1;4,5)G(6,4)G(5, 7) (2 3)
0G(6,7)
Egs. (1) and (2) are the Dyson’s equations that define the self-energy and the
polarization as 1-particle irreducible insertions for the propagator and the effective
potential?>. The next two give the skeleton structure of the irreducible self-energy

Date: 18 oct 2017.
Here, 1 = (x1,%1), 1T = (x1,t1 + €), and Jdl= fjf: dty [dxi.
2The diagrams for G and W have the structure G(1,2) = g(1,2) + g(1,1)2(1’,2')g(2',2) and
W(1,2) = v(1,2) + v(1, 1)II(1/, 2")v(2’,2), where ¥ and II are the self-energy and polarisation
insertions, i.e. diagrams with two fermion or two “photon” slots.
The self-energy or polarisation diagrams that may not be disconnected by removal, respectively,
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and polarization. These four equations can be understood and derived by consider-
ing Feynman’s rules and the diagrams’ topology [2, 3]. They only involve integrals.
The vertex equation (5) contains a functional derivative, which constitutes the main
difficulty of the many-body problem [4, 5, 6]. It can be put also in the form [15],

53*(2,3)

© P(152.3) = 61,2601, + [ 65 9(4.1901.5) 2

which is less suitable for non-perturbative calculations, but it offers a transparent
diagrammatic interpretation: vertex diagrams are self-energy diagrams with one
Hartree propagator g(4,5) removed and replaced by the product g(4,1)g(1,5) that
introduces a new bare vertex at 1. Therefore, each self-energy diagram of order n
produces 2n — 1 vertex diagrams of the same perturbative order by pinching a bare
vertex in any of its 2n — 1 propagator lines.

If all corrections to the bare vertex, I'®)(1;2,3) = §(1,2)d(1,3), are ignored,
the four eqs.(1-4) become a closed set of integral equations, which is numerically
tractable [7, 8, 9]. This is the GW approximation (GWA):

i

D(L2) ~ FGL2W(L2), (L2~ _2%0(1,2)0(2, 1).

2. PRELIMINARIES

To derive Hedin’s equations we add a source term to the Hamiltonian H, that
couples the particle density operator 7i(x) = > u ¢ZL (x)¥,(x) to a classical space-
time field:

(7) H(t)=H + / dz p(x, t) A(x)

The field will allow us to compute functional derivatives. At the end, we shall
put o(x,t) = 0. A different functional approach was formulated by Kleinert et al.
[11, 12].

Because of the time-dependence in H (t), time-ordered correlators in presence of the
source are defined in the interaction picture. The time-ordered propagator and the
full polarization are:

(EITSY.(1)9)(2)1E)

8) i6,, G(1,2) = -
(BIS|E)

o) L, 2) — (EITS0(1)0(2)|E)
(E|S|E)

where dn(1) = n(1) — n(1) is the density fluctuation operator, with the average
density n(1) = (E|TSA(1)|E)/(E|S|E) = —2iG(1,17). The averages are taken in

of one line g or one line v are named 1-particle irreducible self-energy or polarization diagrams.
Their sum is X* or IT*. Reducible diagrams can be obtained by connecting irreducible ones with
g or v lines. Then: 3(1,2) = ¥*(1,2) + Z*(1,1')g(1/,2")2*(2/,2) + *gZ*gZ* +.... A partial
resummation gives Dyson’s equation X(1,2) = 3*(1,2) + ¥*(1,1")g(1’,2")3(2/,2). In the same
way: I1(1,2) = I1*(1, 2) + II*(1, 1")v(1/, 2/)I1(2’, 2).
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the ground state |E) of H, the time-evolution of operators is driven by H, and the
source term is relegated to the scattering operator

(10) S = Texp%/d‘lx o(z)n(x)

The Hartree propagator solves the equation of motion with the source and the exact
Hartree potential V(1) = [ d2v(1,2)n(2):

(11) (ihdr, — h(x1) — (1) = Vu(1))g(1,2) = hé(1,2)

When, in the end, ¢ = 0, S = 1, the correlators for H or Hy are recovered. In
particular, the average density and the Hartree potential are time-independent.

Proposition 2.1. Let Q be a product of field operators evolved at different times
with H, that do not contain the source p. Then:

§ (EITSQIE) 1 (E[TSQS(1)|E)
sp(1) (E|S|E)  ih  (E|S|E)

(12)

Proof. Consider the Dyson expansion for the time-ordered product T[S’Q] The
functional derivative of a product has the Leibnitz property: §[p(1')...¢(k")]/dp(1) =
Yoo e(1)...0(¢ —1)...0(k'). Since primed variables are integrated, the k terms at
order k are equal:

5T[SQ}700 k / 1T~ (1! ~ 1.0 / / /71 SA
5o 7; ke /dl K TA(L). AR 1)p(2).p() = —T[SQA(D)]

Note that under time-ordering the operator (1) commutes with any operator.
§ (EITSQIE) 1 (ET[SQa(L)E) 1 (E|TSA(1)|E)XE[TSQE)
3p(1) (E|S|E)  ih (B|S|E) ih (E|S|E)?

and the resul follows. O

3. POLARIZATION AND EFFECTIVE POTENTIAL
With the choice 2 = n we get:
§ (E|TSa()|E) 1 (E[TSa(1)0n(2)|E) 1 (E[TS6n(1)60(2)|E)
50(2)  (E|S|E)  ih (E|S|E) ~in (E|S|E)
The right-hand side is the full polarization II(1, 2) in presence of the source, eq.(9).
Note the symmetry II(1,2) = II(2,1). We obtained:

_ ;900,11
(13) I(1,2) = -2 PO

Setting ¢ = 0 (then S = 1) we recover the familiar formula iAII(1,2) = (E|Téa(1)60(2)|E)
(the time-ordered counterpart of the density-density response function).
Let us introduce the local potential

(14) V(1) = (1) + Vi (1) = (1) — 2i/d2v(1, 2)G(2,2")
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where Vp is the Hartree or mean field potential. A functional derivative gives:

i
(15) ((SS::((;)) =6(1,2) — 2i/d3 U(173)5G(5S(,23)) =4(1,2) + /d3v(1, 3)II(3,2)
Integration of (15) with v(2,3) gives the two-body effective potential

= L(l)v =v v v
(16) W(l,3) = /d2 5o V(2:3) = 0(1,3) + /d24 (1,4)I1(4, 2)v(2, 3)

It is the bare interaction v(1,3) dressed by all polarisation insertions. Symmetry
of IT and v in exchange of variables implies W (1,3) = W (3,1).

Exercise 3.1. Obtain the following identities:

(17) (5;(1) = 51/6(1) + /d23v(2,3)n(3, 1)5‘/5(2)
(18) /dlv(4, 1)5:(1) = /dl W(4,1)5V5(1)

4. THE IRREDUCIBLE POLARISATION

Use of the chain rule (17) in (13) gives:
BG(1,17T) ) 3G(1,11)
1I(1,2) = —24————+= — 2 d34 —————v(3,4)I1(4,2
(1.2) = 2% —2i [ s v ani.)
We recognize Dyson’s equation for the polarization in terms of the irreducible, or
proper polarization:

(19) TI(1,2) = IT*(1, 2) + /d34 I (1, 3)v(3, 4)T1(4, 2)
N L 0G(1,17T)

The symmetries of IT and v imply IT*(1, 2) = I1*(2,1). Eq. (18) implies:
(21) /d4 (5, 4)11(4,2) = /d4 W (5, 4)I1* (4, 2)
and equation (16) becomes the Dyson equation (2) in Hedin’s set:
(22) W(1,3) = v(1,3) +/d24v(1,4)H*(4, 2)W(2,3)
Exercise 4.1.
(23) RSN /d23v(2 S)IT(3,1)—2

V(1) dp(l) ’ T 0p(2)

) )

24 diIT*(4,1)—— = [ d11I(4,1)——
29 Jam s = famen i

Let us introduce the functional inverse of the propagator:
/d3 G71(5,3)G(3,2) = 1d(5,2)

A functional derivative gives:

0= /d?’wG(?”g) +/d3 G™1(5,3) (SCSG‘E?(’LS)




Contraction with [ d5G(1,5) gives:

5G=1(5,3)
3V (4)

5G(1,2)
3V (4)

(25) 0= /d35 G(1,5) G(3,2) + h

If 2 = 1* it becomes AII*(L,4) = 2i [ d23 G(1,3)°%- 32 G(2,1). This provides the
skeleton structure of the 1P- 1rr1duc1ble polarisation

(26) I1*(1,2) = —2%/6134 T(2:3,4)G(1,3)G(4,1)
with the identification of the vertex function:

3G1(2,3)
27 2,3)= ————~

Remark 4.2. Comparison of the expressions (20) and (26) for II* suggests that
a functional derivative in V' introduces a dressed vertex. This can be seen by using

(25) and considering that G is determined by V in a one-to-one correspondence
(Hohenberg-Kohn):

5 §G(1,2) & 1 5G1(4,3) 5
sV (5) _/m sV (5) 0G(1,2) _ﬁ/d12340(1’4) oV (5) GG, 2)5G(1 2)
(28) W‘S(S) _ %/d1234 G(1,4)F(5;473)G(372)5G(61 5

5. THE VERTEX EQUATION

The vertex function (27) is the sum of vertex diagrams, characterised by one
photon line in 1 a fermion entering in 3 and leaving from 2. We now obtain an
equation for it by replacing G=1(2,3) = g71(2,3) — hX*(2, 3).

The functional inverse of the Hartree propagator in presence of the source is
“1(1,2) = 6(1,2)[ihd;, — h(x2) — V(2)]
so that 5g71(1,2)/6V(3) = —§(1,2)6(2,3). Eq.(27) becomes
0¥*(2,3)
oV (1)
The insertion of a vertex in the self-energy is made explicit by using eq.(28) in the
second term. One obtains the final form of Hedin’s vertex equation:

(29) I'(1;2,3) = 6(1,2)8(1,3) + A

55*(6,7)

(30)  |T(5:6,7) :5(576)5(6,7)+/d1234G(1,4)F(5;4,3)G(372)m

Exercise 5.1. Since V determines g, prove that

5g 1 2 5 1 J
(31) /d 3g(1,2) ~ ﬁ/d129(1’5)g(5’2)59(172)
— 5% (2,3)
(32) (1:2:8) = 6(01.2)3(0.3) + [ 45000, 100(1,5) 52
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w G

FIGURE 1. The dressed self-energy and polarization diagrams,
with exact vertex I', propagator G and effective potential .

6. THE SELF-ENERGY

The equation of motion for the propagator

E|TS4,(1)$)(2)54(3)| E)

[ihdy, — h(x1) — V(1)]G(1,2) = hs(1,2) + %Z/d?; u(1, 3)< (BIEE)

contains a four point function that may be expressed as a functional derivative

5G(1,2) 1 < (B|TS,(1)d](2)00(3)| E)

6p(3) 24 (E|S|E)

The equation of motion becomes

0G(1,2)
dp(3)
The equation has its own interest, as it leads to approximations that were investi-

gated by Reining et al. [13]. If we insert Dyson’s relation G = g+ ¢¥*G into it, we
obtain:

33)  |[ihoh, — h(x1) — V(D]G(1,2) = ho(1,2) + ih /d?w(l, 3)

/d3 $4(1,3)G(3,2) = z’/d?» v(173)5§§§))2) :i/df” W(173)5?&§§)

For the last equality we used the property (18). To isolate X* we use the functional
inverse of G

5G(1,4)

hY*(1,2) :i/d34 W(1,3) 5 3) G~1(4,2)
:—i/d34 W(173)G(1,4)W

The last derivative is the full vertex. Then, Hedin’s equation (3) is obtained:

(34) S*(1,2) = %/d34 W (1,3)T(3;4,2)G(1,4)

It gives the skeleton graph of the self-energy.



7. IDENTITIES
Hedin’s equations imply identities. This one may also be checked at the level of
skeleton diagrams:

(35) /d12 % (1,2)W(1,2) = 72/d12 $*(1,2)G(2,1)

Other simple identities are [ d11II(1,2) =0, [ d1 II*(1,2) = 0.
The vertex equation implies Ward’s identities, as in electrodynamics.

Lemma 7.1. Let g(1,2) be a propagator for independent particles (Hartree propa-
gators are of this sort), with time-independent Hamiltonian. Then:

(36) / 03 9(1,3)9(3,2) = —i(t, — t2) 9(1,2)

Proof. If hla) = e4la), the time-ordered Green function is:

ig(xt,x't") = 3, (x|a)alx)e” "I [O(t — t)0(ea —er) — O(t' — )b(er — ea)].
After the integration in x3 one remains with: — )" (x1|a){a|xq)e #ealti=t2) x

f dﬁg[e(tl —t3)9(t3 —t2)9(ea —€F) +9(t2 —t1)9(t2 —t3)9(€F —ea)]. The time integral
is (t1 — t2)[0(t1 — t2)0(eq — er) — O(t2 — t1)0(er — €4)]. The result follows. O

The lemma holds true with the replacement
9(17 2) — gk(L 2) = eik-(172)g(17 2)

where k-1 =k -x; —iwty. In a loop the phases cancel, while in an open string it
is gr(1,2)g1(2,3) ... gp(n — 1,n) = e* 1= g(1,2) ... g(n — 1,n). Therefore, upon
replacement ¢ — g, W and II* remain unchanged, while ¥*(2,3), G(2,3) and
I'(1;2,3) — 6(1,2)8(1, 3) gain a factor e?*(2=3),

Proposition 7.2 (Ward’s identity).

(37) /dl I'(1;2,3) = 6(2,3) —i(ts — t3) ©*(2,3)

Proof. Let us consider Hedin’s equations with g — gy.

/d5 Tk(5:3,4) - 6(3,4) = —i/du(tl - tﬁgk(l’z)fm

o agk(172) 622(374) _ i * _ o *
_/d12 o S = g SHE.4) = —ilts — ) Si(6.4)

by the chain rule. The auxiliary parameter k£ is now set to zero, and we gain a
version of Ward’s identity (it is eq.(7.22) in Strinati’s report [5]). O

If we expand the vertex in frequency space:

!/ "
D:2,3) = [ S T aixe w0 t)
7

the integral in dt; gives a factor 2md(w' — w”):

d .
/d1 I'(1;2,3) = /d1‘12*w11(x1;xz,xs;w,w)e*w(tfm
T
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Ward’s identity becomes

0
(38) /dx D(x;x9, X3, w,w) = 0(x2 — X3) — %Z*(xl,){g;w)
If the theory is also invariant for space translations:
(39) I'(¢g=0,p,w w)—l—iZ*( w)
q - ) p7 ) - 6w p7

8. COUNTING FEYNMAN DIAGRAMS

In zero dimension of space-time, Hedin’s equations allow for an easy enumera-
tion of Feynman diagrams [15, 16, 17]. The four Hedin’s equations (1-4) become
algebraic, with parameters g and v, and the functional derivative in the vertex
equation (6) becomes an ordinary one. After removing imaginary factors, h = 1
and replacing the factor (—2) with a loop-counting parameter ¢, Hedin’s equations
are:

o)
dg

By searching solutions as series expansions in & = g%v and ¢, one obtains coefficients
that count the Feynman graphs that contribute to a perturbative order with a given
number of loops. For example:

S jvg =14 (24 Oz + (10 + 90 + *)2* + (74 + 910 + 23¢% + (°)2®
+ (706 + 1063¢ + 416¢% 4 4603 + ¢*)z*
+ (8162 + 14193¢ + 73440 + 13506° + 80¢* + £°)2® + ...
=1+ 3z + 2027 + 1892° + 22322* + 311302° + ...

G=g+gX*G W=0v4+0II'W ¥*=GWT II*=(G’T T =1+g>

The last line corresponds to £ = 1. At order v3 there are 20 self-energy diagrams:
10 with no loops, 9 with a single loop and 1 with two loops. The expansions for
the vertex and the polarization are

D=1+z+3(2+0)z%+ 510+ 9 + ()2 + 7(74 + 914 + 2302 + ¢*)*
+9(706 + 10630 + 41602 + 46¢° + 1)z 4 ...
=1+ 2+ 92% + 1002® + 13232* + 200882° + . ..
IT* /g% =14 3z + (15 + 50)z% + (105 + 770 + 7¢*)2® + (945 + 10444 + 23407 + 9¢3)z*
+ (10395 + 14784¢ + 539042 + 5500 + 114*)2° + . ..
=1+ 3z + 2027 + 1892° + 22322 + 311302° + . ..

The counting numbers £ = 1 of the expansions of the self-energy and the polarisation
are the same. This occurs also in Q.E.D., though with smaller numbers because
of cancellations of diagrams with odd number of propagators in a fermionic loop
(Furry’s theorem).

While the numbers of Feynman diagrams grow factorially, it turns out that in the
GW approximation (i.e. T' = 1) they grow algebraically [15]. The enumeration
of skeleton diagrams can be easily carried out from Hedin’s equations, by proper
choice of the expansion parameter [16].
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