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Introduction

Since the early times of quantum mechanics, the ground state properties of many
interacting particles were studied by variational methods. In the Hartree-Fock ap-
proximation the minimum of the total energy is found in the subset of Slater de-
terminants. In the Thomas-Fermi approximation the total energy is written as a
functional of the unknown particle density, and minimized. The application to the
electron gas is presented. The two approximations are still used and useful. They
found completion in the Density Functional Theory, by which most of the progress
in the study of electronic properties of solids molecules or atoms was made.

1. The Hartree-Fock approximation

The Hartree-Fock equations provide an approximate evaluation of the ground
state of the Hamiltonian for a system of N interacting particles

H =
∑
i=1..N

h(i) + 1
2

∑
i 6=j

v(i, j)(1)

h(i) is a single particle operator, and v(i, j) = v(j, i) is the two-particle interaction.
The Hartree equation was studied first [3]; it is a single-particle equation where the
interaction with other particles enters as mean field (Hartree potential):

(2) (hui)(x, σ) + UH(x)ui(x, σ) = εiui(x, σ), i = 1 . . . N.

The Hartree potential is evaluated with the ground state density, to be calculated
self-consistently:

(3) UH(x) =

∫
dx′ v(x, x′)n(x′), n(x) =

∑
j=1..N

∑
σ

|uj(x, σ)|2.

and has the problem of including a self-interaction of the particle.
A radical improvement was done by Fock, who added the important exchange inter-
action, as a consequence of the antisymmetry of the wave-function of two identical
fermions. The term cancels the self-interaction in the Hartree potential [2].

There are several ways to deduce the HF equations. An elegant one is varia-
tional: instead of minimizing 〈Ψ|H|Ψ〉 among all normalized antisymmetric vectors
for N particles, the viable search is restricted to Slater1 determinants of orthonor-
mal one-particle trial states. As such, the HF ground state energy EHF is the
best (lowest) upper bound to the exact ground state energy EGS , in a description

Date: revised 10 October 2019.
1John Slater, Oak Park (Illinois) 1900 - Sanibel Isl. (Florida) 1976.
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Figure 1. Douglas Hartree (Cambridge 1897 - Cambridge 1958)
obtained his PhD in 1926 with numerical studies of Bohr’s model
of the atom. His advisor was Ernest Rutherford. In the same
year Schrödinger’s equation appeared, and in 1927 Hartree derived
the Hartree equations for multi-electron atoms. He was a pioneer
in mechanical solvers for differential equations (he built one with
his student A. Porter, with Meccano parts) and then in computer
numerical applications to physics (from Wikipedia).
Vladimir A. Fock (St. Petersburg 1898, Leningrad 1974) contribu-
ted to theoretical physics and geophysics. He introduced occupa-
tion number states and the Fock space, and developed the HF
method in 1930. He independently obtained the Klein-Gordon
equation, described the degeneracy of H-atom as a SO(4) symmetry
(1935), studied Dirac’s equation in an external gravitational field
(1929). He was arrested in 1937 during Stalinian terror and freed
a week later, thanks to Kapitza’s letter to Stalin.

with independent particles. The error is the correlation energy, and is negative by
definition: EC = EGS − EHF ≤ 0

1.1. The HF equations. In the variational approach one starts from N ortho-
normal one-particle trial states |ui〉. The antisymmetrized product state

(4) |HF 〉 =
√
N !A(N)|u1, . . . , uN 〉

is normalized (Slater state). The transformation |u′i〉 =
∑
j Uij |uj〉 with a SU(N)

matrix preserves orthonormality and does not change the Slater state |HF 〉 (ap-
pendix 1).
The expectation value of the Hamiltonian (appendix 2)

〈HF |H|HF 〉 =
∑

i
〈ui|h|ui〉+

1

2

∑
i,j
〈uiuj |v|uiuj − ujui〉(5)

is then unchanged. It involves one or two particles at a time, the others being
spectators. The interaction contains a direct term and an exchange term. The
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negative sign results from Fermi statistics (particles are exhanged) and cancels the
self-term i = j.

Minimization of the energy as a functional of ui is done while enforcing orthog-
onality and normalization, that are required for eq.(6) to hold. The functional to
minimize is

EHF [u1, ..., uN ] = 〈HF |H|HF 〉 −
∑
ij

εij (〈ui|uj〉 − δij)(6)

with Lagrange parameters εij that are the entries of a Hermitian matrix (reality of
EHF ). The N first variations for infinitesimal variations ui + ηi are:2

δiEHF =EHF [u1, ..., ui + ηi, .., uN ]− EHF [u1, .., ui, .., uN ]

= 〈ηi|h|ui〉+
∑

j
〈ηiuj |v|uiuj − ujui〉 − εij〈ηi|uj〉+ c.c.

They must vanish for all variations |ηi〉. In a Hilbert space, if 〈η|w〉+ 〈w|η〉 = 0 for
all η, then w = 0. Since the N−particle Slater state is left unchanged by a unitary
transformation, there is a degeneracy in the solutions ui. We may always pick the
set that diagonalizes the Hermitian matrix εij :

∑
j εij |uj〉 = εi|ui〉. Then we obtain

the system of Hartree-Fock equations:

(7) h|ui〉+

N∑
j=1

〈 ·uj |v|uiuj − ujui〉 = εi|ui〉, i = 1 . . . N

Projection of the equation on the solution |ui〉 gives:

(8) εi = 〈ui|h|ui〉+
∑

j
〈ui uj |v|uiuj − ujui〉

The identity simplifies the evaluation of the ground state energy (6):

EHF (N) =
∑

i
εi − 1

2

∑
i,j
〈uiuj |v|uiuj − ujui〉 = 1

2

∑
i

[〈ui|h|ui〉+ εi](9)

The chemical potential in the Hartree-Fock approximation is

µHF ≡ EHF (N)− EHF (N − 1)

Proposition 1.1 (Koopman’s lemma, 1934). For N � 1 particles, µHF = εN .

Proof. Let |u1〉, . . . , |uN 〉 be the solutions of HF equations for N particles. The
Hartree Fock energy is

EHF (N) =
∑

j=1..N

〈uj |h|uj〉+
1

2

N∑
i 6=j

〈uiuj |v|uiuj − ujui〉

=〈uN |h|uN 〉+
∑
j<N

〈uNuj |v|uNuj − ujuN 〉+

+
∑
j<N

〈uj |h|uj〉+
1

2

N−1∑
i 6=j

〈uiuj |v|uiuj − ujui〉

= εN + EHF [u1 . . . uN−1]

2the term 〈uiηj |v|uiuj − ujui〉 is identical to 〈ηjui|v|ujui − uiuj〉 because of the exchange

symmetry of the potential 〈12|v|34〉 = 〈21|v|43〉. The dummy indices ij are then redifined.
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For N − 1 particles, the solution of HF equations is a different set |u′1〉 . . . |u′N−1〉
that give the total energy EHF (N − 1). Therefore

µHF = EHF (N)− EHF (N − 1) = εN + EHF [u1 . . . uN−1]− EHF (N − 1) ≥ εN
because EHF (N−1) is a stationary point. Let |u′N 〉 be an arbitrary but normalized
state orthogonal to the solution |u′1〉, . . . , |u′N−1〉, then:

EHF (N) ≤ EHF [u′1, . . . , u
′
N ] = ε′N + EHF (N − 1)

where ε′N is the expression (9) evaluated with primed states. Therefore

εN ≤ µHF ≤ ε′N .

While the total energy is O(N), single particle energies are O(1). If we assume
that, for large N , the difference of two energies evaluated with HF states for N and
N − 1 particles (plus another which is arbitrary and can be adjusted to lower the
gap) is O(1/N) then µHF = εN . �

In the representation of position and spin, the equations gain the familiar form

(h+ UH)ui(x, σ)−
∑

σ′

∫
dx′Jσ,σ′(x,x′)ui(x

′, σ′) = εiui(x, σ)(10)

where h is the local 1-particle Hamiltonian, UH is the self-consistent Hartree po-
tential (3) and the exchange integral is a bi-local potential with the kernel

Jσσ′(x,x′) =
∑

j=1..N

uj(x, σ)v(x,x′)u∗j (x
′, σ′)

The single Hartree equation that only requires an initial guess for the density, is now
replaced with N coupled equations, which require a start of N vectors to improve
by iteration towards self-consistency.

If the Hamiltonian does not depend on spin, the solutions factorize as
ui(x)vmi

(σ), where vm is an eigenstate of Sz. The completeness relation∑
σ vm(σ)vm′(σ) = δmm′ simplifies the HF equations:

(h+ UH)ui(x)−
∫
dx′ v(x,x′)ui(x

′)
∑

j
δmi,mj

uj(x)uj(x
′)∗ = εiui(x)(11)

Slater [6] (1951) suggested to restore locality by approximating the exchange
term with the exchange term of the homogeneous electron gas (plane waves),
adapted to the local density. This anticipated the progress of Density Functional
Theory.

1.2. Homogeneous systems. The HF equations can be analytically solved if the
system is translation invariant, i.e. the two particle interaction is a function v(x−y)
(for simplicity we avoid spin dependence) and there is no external potential. We
consider h = p2/2m.

Proposition 1.2. The Hartree-Fock equations for N particles in a box with periodic
b.c. are solved by an arbitrary set of N eigenvectors |ki,mi〉 of p and Sz.

Proof. Let’s show that

~k2i
2m
|ki,mi〉+

∑
j

〈 · ,kjmj |v|kimi,kjmj − kjmj ,kimi〉 = εi|kimi〉
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A resolution of identity is inserted in the matrix element: 〈 · ,kjmj |v| . . .〉 =∑
k,m |km〉〈km,kjmj |v| . . .〉. Translation invariance enforces conservation of total

momentum, k + kj = ki + kj and spin conservation requires m = mi. Therefore
the sum reduces to the single term (k,m) = (ki,mi), and the vectors |kimi〉 solve
the HF equations. �

The matrix element is evaluated:

〈kimi,kjmj |v|kimi,kjmj − kjmj ,kimi〉 =
1

V

[
ṽ(0)− δmi,mj

ṽ(ki − kj)
]

where ṽ(k) =
∫
d3x v(x)e−ik·x. Note that ṽ(k) is real and even.

The eigenvalues and the total energy per particle are obtained:

(12) εi =
~2k2i
2m

+ n ṽ(0)− 1

V

∑
j

δmimj ṽ(ki − kj)

EHF
N

=
1

N

N∑
i=1

~2k2i
2m

+ 1
2n ṽ(0)− n

2N2

∑
ij

δmimj
ṽ(ki − kj)(13)

If ṽ(k) ≥ 0, the set {(ki,mi)} that actually minimizes EHF is not obvious, because
of two contrasting terms:
• The kinetic energy is minimized by choosing the vectors ki in the Fermi sphere
|k| ≤ kF , with both values of ms. This choice gives:

ε(k) =
~2k2

2m
+ nṽ(0)− 1

V

∑
k′

θ(kF − k′)ṽ(k− k′)(14)

EHF
N

=
3

5

~2k2F
2m

+ 1
2nṽ(0)− n

2N2

∑
kk′

θ(kF − k)θ(kF − k′)ṽ(k− k′).(15)

This total HF energy coincides with the energy evaluated in first order perturbation
theory: EHF = 〈F |H|F 〉, where |F 〉 is the Slater state with filled Fermi sphere.
• If ṽ(k) > 0 the negative exchange term in (14) is lowered by requiring mi = mj

for all particles. This increases the kinetic energy, but may be advantageous at low
density. The HF ground state would then be spin polarized.

Exercise. Consider a homogeneous system of N particles in a volume V , with
total energy E, density n = N/V , mean energy per particle ε = E/N . If ε only
depends on n, show that the chemical potential, the pressure and the bulk modulus
are given by:

µ =

(
∂E

∂N

)
V

=
d

dn
[nε(n)], p = −

(
∂E

∂V

)
N

= n[µ− ε(n)] = n2
dε

dn
,(16)

B = −V
(
∂p

∂V

)
N

= n2
∂µ

∂n
(17)

The bulk modulus measures the volume response of a solid to pressure, and is
always positive. At the equilibrium density n∗ the pressure is zero, and µ = ε(n∗).
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2. The electron gas

An important model is the gas of N electrons in presence of a static charge
distribution ρ(x), with Coulomb interactions:

H =

N∑
i=1

p2i
2m

+
1

2

∑
i 6=j

e2

|xi − xj |
−

N∑
i=1

∫
dy

eρ(y)

|y − xi|
+

1

2

∫∫
dxdy

ρ(x)ρ(y)

|x− y|
(18)

The terms in H = T + Uee + Ueb + Ubb are the kinetic and potential energy of the
electrons, the electron - static charge interaction energy, and the potential energy of
the static charge. Depending on the charge distribution, we are describing atoms,
molecules, crystals.
To express the operators with creation and destruction operators for the discrete
basis of spin and momentum, the system is enclosed in a box of volume L3 = V ,
with periodic b.c. Since the Coulomb potential 1/r is long-range, it is temporarily
replaced by a Yukawa potential U(r) = e−µr/r with Lµ� 1, so that it decays well
within the box (up to a region near the walls, that contributes negligibly in the
large volume limit). When taking the limit of infinite box, the limit µ→ 0 restores
the Coulomb potential. The operators are:

T =
∑
kσ

~2k2

2m
a†kσakσ

Uee =
e2

2V

∑
σσ′

∑
kk′q

4π

q2 + µ2
a†k+q,σa

†
k′−q,σ′ak′σ′akσ

Ueb = − e

V

∑
σ

∑
kq

4π

q2 + µ2
a†k,σak−qσρ(q)

Ubb =
1

2V

∑
q

ρ(q)ρ(−q)
4π

q2 + µ2

where ρ(q) =
∫
V
dx ρ(x) exp(−iq · x). In particular ρ(0) = Q (total charge). The

operator H does not change the number of electrons, which is fixed to be N .
Being q = (2π/L)n, n ∈ Z3, the only terms that diverge for µ = 0 are those with
q = 0 (otherwise q � µ in the limit):

Hq=0 =
4π

V µ2

[
e2

2

∑
σσ′

∑
kk′

a†kσa
†
k′σ′ak′σ′akσ − eQ

∑
kσ

a†kσakσ +
Q2

2

]

=
4π

V µ2

[
e2

2
N(N − 1) + (−eN)Q+

Q2

2

]
=

2π

L(Lµ)2
(Q− eN)2 − 2πN

V µ2
e2

The limit µ→ 0 can be taken with the conditions:
- If N and Q are finite, and L→∞, µ→ 0 with Lµ� 1 then Hq=0 = 0.
- If N and Q scale as the volume, we require neutrality (Q−Ne = 0) and a finite
energy per unit volume. Then the ratio Hq=0/V becomes zero in the limit.
Therefore, in the infinite box limit, H no longer contains the terms with q = 0, and
in the other terms one may set µ = 0 to restore the Coulomb potential.

2.1. HEG: the homogeneous electron gas. The simplest situation occurs when
the charge density is uniform: the N electrons are immersed in a cloud with charge



HF AND TF APPROXIMATIONS 7

density eN/V . This model is the ‘homogeneous electron gas’ (HEG) or ‘jellium’.
Now ρ(q) is non-zero only for q = 0, and the Hamiltonian simplifies:

HHEG =
∑
kσ

~2k2

2m
a†kσakσ +

e2

2V

∑
σσ′

∑
kk′

∑
q6=0

4π

q2
a†k+qσa

†
k′−qσ′ak′σ′akσ(19)

The HEG is neutral and translation invariant. It is a simple model for the conduc-
tion of electrons in metals, with the crystal structure being smoothed to a uniform
background.

2.2. Total energy in first order perturbation. If we consider the interaction
U as a perturbation to T , we can evaluate the total energy as 〈F |T + U |F 〉 where
|F 〉 is the ground state for free electrons in the box: all and only the states in the
Fermi sphere are occupied. The total number of particles and the kinetic energy
are

N =
∑
kσ

〈F |a†kσakσ|F 〉 = 2
∑
k

θ(kF − k)

T =
∑
kσ

~2k2

2m
〈F |a†kσakσ|F 〉 = 2

∑
k

~2k2

2m
θ(kF − k)

In the thermodynamic limit the first equation gives k3F = 3π2n, where n = N/V
and the second one gives T = 3

5NEF where the Fermi energy is EF = ~2k2F /(2m).
The first order correction is:

U =
1

2V

∑
σσ′

∑
kk′

∑
q6=0

4πe2

q2
〈F |a†k+qσa

†
k′−qσ′ak′σ′akσ|F 〉(20)

The matrix element is zero if k and k′ are greater than kF . The two holes must
be compensated by particles. Since q 6= 0 this is only possible if k = k′ − q and
σ = σ′. Then, after spin summation:

U =
1

V

∑
k 6=k′

4πe2

|k− k′|2
〈F |a†k′σa

†
kσak′σakσ|F 〉θ(kF − k)θ(kF − k′)

= − 1

V

∑
k6=k′

4πe2

|k− k′|2
θ(kF − k)θ(kF − k′)

= −V
∫∫

dk

(2π)3
dk′

(2π)3
4πe2

k2 + k′2 − 2k · k′
θ(kF − k)θ(kF − k′)

The result for the average energy per particle is:

ε(n) =
E

N
=

3

10

~2

m
(3π2n)2/3 − 34/3

4π1/3
e2n1/3(21)

µ = ∂n(nε(n)) =
~2

2m
(3π2n)2/3 − 31/3

π1/3
e2n1/3 = EF −

1

π
e2kF(22)
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Figure 2. The function F(x).

2.3. HEG in Hartree-Fock. The same total energy is obtained in the HF ap-
proximation if we choose to fill the Fermi sphere. The single particle energy is

ε(k) =
~2k2

2m
−
∫

dk′

(2π)3
θ(kF − k′)

4πe2

|k′ − k|2
=

~2k2

2m
− 2e2kF

π
F

(
k

kF

)
,(23)

F (x) =
1

2
+

1− x2

4x
log

1 + x

|1− x|

The function F is continuous but with singular derivative in x = 1: this result is
bad because dε/dk diverges at k = kF . It implies that, in this approximation, the
density of states (per unit volume and spin component)

(24) ρ(ε) =
1

V

∑
k

δ(ε− ε(k)) =
4π

(2π)3
k2

|ε′(k)|

∣∣∣
ε(k)=ε

vanishes at the Fermi energy ε(kF ), in sharp disagreement with experimental data
for several physical quantities at low temperature, such as the specific heat3, the
conductivity of metals, or the critical temperature for the superconducting transi-
tion4. Nevertheless, the total energy (that coincides with (22)) is of interest and
reliable at high density:

EHF
N

=
e2

2a0

[
3

5
(kFa0)2 − 3

2π
(kFa0)

]
(25)

The energy scale is fixed by the ionization energy of the H-atom, e2/2a0 = 13.61
eV (the Hartree energy unit is 1 Ha = e2/a0). If Seitz’s parameter rs is used5:

EHF
N

=
e2

2a0

[
3

5

(
9π

4

) 2
3 1

r2s
− 3

2π

(
9π

4

) 1
3 1

rs

]

≈ 13.61 eV

[
2.210

r2s
− 0.916

rs

]
.

3For the electron gas cV = 2
3
π2 k2Bρ(εF )T .

4In the BCS model it is TC ≈ TD exp(1/ρ(εF )g), where TD is Debye’s temperature and g is
the coupling of electrons to phonons

5rs measures the radius available per particle in units of Bohr’s radius: (4/3)π(rsa0)3 = V/N .

For spin 1/2: kF = (3π2N/V )1/3, then: (a0kF ) = (9π/4)1/3(1/rs)
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The negative exchange energy explains the cohesion of conduction electrons in met-
als: it balances the kinetic energy and stabilizes the electron gas at finite densi-
ties. The minimum is achieved at rmin = (4π/5)(9π/4)1/3 ≈ 4.83, with an energy
per particle equal to -1.29 eV. The value rmin is within the range of rs-values of
metals: rs(Li)= 3.25, rs(Na)= 3.93, rs(K)= 4.86, rs(Rb)= 5.20, rs(Cs)= 5.62,
rs(Al)= 2.07, rs(Au)= 3.01.
The HF energy per particle at the value rs(Na) is −1.23 eV, which compares with
the experimental value −1.13 eV of the binding energy measured as heat of vapor-
ization of the metal.

The HF expression (27) is an upper bound for the exact ground-state energy per
particle. A lower bound was found by Lieb and Narnhofer, by minimisinig T and
V separately [4]:

EGS
N

>
e2

2a0

[
3

5

(
9π

4

) 2
3 1

r2s
− 9

5

1

rs

]
The minimum value for kinetic energy is that of the ideal gas; the Coulomb mini-
mum corresponds to delta-localized electrons.

The relation dE = −pdV + µdN gives the pressure6 and the chemical potential
in HF approximation at T = 0, as functions of the density:

p = −∂E
∂V

∣∣∣
N

= − dE
drs

drs
dV

∣∣∣
N

=
e2

2a40

[
0.352

r5s
− 0.073

r4s

]
(26)

µ =
∂E

∂N

∣∣∣
V

=
e2

2a0

[
3.683

r2s
− 1.222

rs

]
(27)

It is µ = ε(kF ). At rmin the pressure vanishes, and the value µ = 1.29 eV coincides
with the average energy per particle.

Exercise. Evaluate the bulk modulus for the HEG. Show that at rmin = 4.83
it is B = 2.1 × 1010 erg/cm3; for Potassium (rs = 4.86) the experimental value is
B = 2.81 × 1010 erg/cm3. Other values are: Al) B = 76.0 × 1010 erg/cm3, Na)
B = 6.42× 1010 erg/cm3 (from Ashcroft-Mermin, Solid State Physics, Holt Saun-
ders 1976). Show that B < 0 for rs > 6.03, where HF badly fails.

What is the HF ground state as rs increases? Bloch (1929) conjectured that the
gas prefers to polarize, because parallel spins lower the Coulomb energy. However,
Overhauser showed that neither the para or ferro-magnetic HF ground states are
stable against the formation of spin density waves (particle density is uniform,
but with spatial modulation of spin density) [7]. The subject was reconsidered by
Ceperley et al. [1], with numerical simulations.

2.4. The Wigner Crystal. At very low densities (rs > 100), the total energy is
minimized by a state with the electrons localized in lattice sites (Wigner crystal),
where they perform zero point motion.
A 2D Wigner crystal was first observed in 1979 by Grimes and Adams [10]. The
electrons were bound to the surface of liquid He by the induced image charges and
the crystal structure was detected through the resonant coupling of a surface wave
in He to collective excitations of the electrons.

6e2a−4
0 = 2.94× 1013 Pa.
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In 3D the energy per particle for large rs is

E

N
=

e2

2a0

[
−1.79

rs
+

2.66

r
3/2
s

+ . . .

]
(28)

The formula refers to the optimal Wigner crystal structure (body centred cu-
bic), with 1 electron per cell. The first term is the electrostatic potential per
cell (Madelung’s constant).
We give a simple evaluation where the unit cell is approximated by a sphere of
radius R = rsa0. The sphere has charge −e at the center and charge e uniformly
distributed in its volume. At the surface, the forces are null (Gauss theorem). The
electrostatic energy per cell is

ε =
ρ20
2

∫
dxdy

|x− y|
− eρ0

∫
dx

|x|
=

3

5

e2

R
− 3

2

e2

R

The electron is subject to a harmonic potential, with energy p2/(2m)+ 1
2 (e2/R3)r2.

The lowest eigenvalue is 3
2~ω. The approximate formula is obtained:

E

N
=

e2

2a0

[
−1.8

rs
+

3

r
3/2
s

]
.

It is conjectured that the Wigner crystal provides the equation of state for “metallic
Hydrogen” (where protons form a lattice and electrons are spread in the volume).
Such crystal state may be present in the center of Jupiter.

3. The Thomas-Fermi approximation

Thomas [11] and Fermi [12] introduced an approximate method, variational in
character. The method aims at expressing the total energy as a functional of the
density. The ground state energy and density are obtained by minimization.
A main difficulty is to construct an effective functional for the kinetic energy. The
Thomas-Fermi functional is based on the total energy of the ideal Fermi gas, ad-
justed to allow for a position-dependent density:

TTF [n] =
3

5

~2

2m
(3π2)

2
3

∫
dxn(x)

5
3(29)

For a uniform density N/V , the total energy of free electrons is recovered.
The Thomas-Fermi energy functional for an atom with Z electrons is:

ETF [n] = TTF [n]− Ze2
∫
dx
n(x)

|x|
+
e2

2

∫
dxdy

n(x)n(y)

|x− y|
(30)

The electrostatic terms are classical. The functional is minimized with the addi-
tional Lagrange multiplier µ

[
Z −

∫
d3xn(x)

]
, to fix the number of electrons. The

density at minimum solves:

0 =
δETF

δn(x)
=

~2

2m
(3π2)

2
3n(x)

2
3 − Ze2

|x|
+ e2

∫
dy

n(y)

|x− y|
− µ

and µ = ∂ETF /∂Z. The equation can be rewritten with the aid of Poisson’s
formula:

µ =
~2

2m
(3π2)

2
3n(x)

2
3 − eϕ(x)

∇2ϕ(x) = −4πe2 [Z δ(x)− n(x)]
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A solution is found with the assumption of spherical symmetry, but the result is
not good: the atom is too large. Dirac (1930) [13] introduced an extra term, the
exchange energy functional, given by the expression for HEG, i.e. the second term
in eq.(26), but with local density:

Ex[n] = −e2 3
4
3

4π
1
3

∫
dxn(x)

4
3 .(31)

A term dependent on the gradient of the density was introduced by von Weizsacker
(1935) [14], to improve the kinetic functional:

T vW [n] =
~2

8m

∫
dx
|∇n(x)|2

n(x)
.

This form can be justified on the basis of HF approximation: the kinetic energy

is 〈T 〉 = ~2

2m

∑N
i=1

∑
m

∫
dx|gradui(x,m)|2. Put ui(x,m) =

√
n(x)fi(x,m) where

n(x) is the total density; then
∑N
i=1

∑
m |fi(x,m)|2 = 1. One evaluates: 〈T 〉 =

T vW [n] + ~2

2m

∫
dxn(x)

∑
m

∑N
i=1 |∇fi(x,m)|2. The second term is the “exchange

kinetic energy”.

Making approximations exact. DFT originated in 1964 from a theorem by Ho-
henberg and Kohn [8] who established that for of a quantum system of particles
with given interaction, there is a one-to-one correspondence among the external
potential (up to a constant) and the ground state density. This implies that the
total energy is a sum of the potential energy and a universal (unknown) functional
of the density, that makes the Thomas-Fermi approach exact.
Soon after, Kohn and Sham wrote a Schrödinger equation which made DFT us-
able. The many particle problem is associated to a single particle problem with an
appropriate exchange-correlation local potential

(h+ UH)ui(x) + vxc(x)ui(x) = εiui(x), i = 1 . . . N(32)

In Kohn’s words [9], the equation is the exactification of the Hartree equation.
The potential vxc is unknown, but useful approximations to it were obtained from
the theory of the homogeneous electron gas, that has been studied in depth by
perturbative methods and Montecarlo simulations.

Appendix 1. Let |u1〉 . . . |uN 〉 be orthonormal single particle states. Define the
new orthonormal states |u′i〉 =

∑
jUij |uj〉, where U is a SU(N) matrix. The two

sets produce the same N -particle fermionic Slater state.
Proof. Let us evaluate the new state, |Ψ′〉 =

√
N !S(N)−|u′1, . . . , u′N 〉 =√

N !U1j1 . . . UNjNS(N)−|uj1 . . . ujN 〉. The operator S(N)− produces a non zero
state only if {j1 . . . jN} is a permutation σ of {1 . . . N}. Therefore, the summation
on {j1 . . . jN} is a sum over permutations Pσ on N -particle states

|Ψ′〉 =
√
N !
∑

σ
U1σ1

. . . UNσN
S(N)−Pσ|u1 . . . uN 〉

=
∑

σ
(−1)σU1σ1

. . . UNσN

√
N !S(N)−|u1 . . . uN 〉 = detU |Ψ〉
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Appendix 2. Let |u1〉 . . . |uN 〉 be orthonormal one-particle states, and construct

the N -particle fermionic state |Ψ〉 =
√
N !S(N)−|u1, . . . , uN 〉. For one and two-

particle operators O1 =
∑N
i=1 o(i) and O2 = 1

2

∑
i 6=j o(i, j), with o(i, j) = o(j, i), it

is:

(33) 〈Ψ|O1|Ψ〉 =
∑
i=1..N

〈ui|o|ui〉, 〈Ψ|O2|Ψ〉 =
∑
ij

〈uiuj |o|uiuj − ujui〉

Proof: Since O1 commutes with S(N)− and S(N)2− = S(N)−:

〈Ψ|O1|Ψ〉 =N !
∑

i
〈u1 . . . uN |O1S(N)−|u1, . . . , uN 〉

=
∑

i

∑
σ
(−1)σ〈u1|uσ1

〉 . . . 〈ui|o|uσi
〉 . . . 〈uN |uσN

〉

The inner products are zero unless σk = k for all k 6= i. Then necessarily σi = i,
and only the identity permutation contributes to the sum. Similarly:

〈Ψ|O2|Ψ〉 =N !
∑

ij
〈u1 . . . uN |o(i, j)S(N)−|u1 . . . ui . . . uj . . . uN 〉

=
∑

ij

∑
σ
(−1)σδ1σ1 . . . 〈uiuj |o|uσiuσj 〉 . . . δNσN

the inner products are non-zero if σk = k for k 6= i, j. Then, the only permutations
that contribute are the identity and the exchange σi = j, σj = i. The last one has
a factor (−1)σ = −1.

Helium atom

Neglecting spin, the Hamiltonian of the Helium atom with fixed nucleus is:

(34) H =
∑
i=1,2

(
p2i
2m
− 2e2

|xi|

)
+

e2

|x1 − x2|

The ground state is spherically symmetric: ψ(r1, r2, ξ)v0,0(σ1, σ2) where
ψ(r1, r2, ξ) = ψ(r2, r1, ξ), ξ = cos θ (θ is the angle formed by the vectors ~r1 and ~r2)
and v0,0(σ1, σ2) = 1√

2
[v↑(σ1)v↓(σ2)− v↑(σ2)v↓(σ1)] is the singlet state of total spin,

antisymmetric in σ1, σ2. The eigenvalue equation for the ground state

− ~2

2m

[
1

r21

∂

∂r1
r21

∂

∂r1
+

1

r22

∂

∂r2
r22

∂

∂r2
+
r21 + r22
r21r

2
2

∂

∂ξ
(1− ξ2)

∂

∂ξ

]
ψ

−

[
2e2

r1
+

2e2

r2
− e2√

r21 + r22 − 2r1r2ξ

]
ψ = EGSψ(35)

cannot be solved analytically. In the HF approximation one employs trial functions
u(r)v↑(σ) and u(r)v↓(σ), which give the state u(r1)u(r2)v00(σ1, σ2). The single
particle function u(r) solves the HF equation

− ~2

2mr2
d

dr
r2
du

dr
− e2Z(r)

r
= ε u(r)(36)

The equation describes an electron in the potential of an effective charge

Z(r) = 2 − r

∫
d3r′

u(r′)2

|~r − ~r′|
= 2− 4π

∫ r

0

r′2dr′ u(r′)2 − 4πr

∫ ∞
r

r′dr′ u(r′)2
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Two terms measure the total charge (in units of e) in the sphere of radius r. For
large r the screened nucleus charge is Z(∞) = 1, while for r → 0 it is Z(0) = 2.
The total Hartree-Fock energy is:

EHF [u] = 8π

∫ ∞
0

r2dr

[
~2

2m
u′

2 − 2e2

r
u2
]
− 32π2e2

∫ ∞
0

r dr u2
∫ r

0

r′2dr′u2

The HF equation is non-linear and is not solved analytically. A viable approxi-
mation (the standard calculation found in textbooks) is to impose a Hydrogen-like
solution with a variational parameter Z:

u(r) =

√
Z3

πa30
e−Zr/a0 ,

and minimize EHF (Z) = (e2/a0)(Z2 − 4Z + 5
8Z). The minimum is at Z = 27

16 ,
which gives the ground state estimate (an upper bound) EHF = −77.5 eV.
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