
ELASTIC MEDIA & PHONONS

NOTES BY L. G. MOLINARI

1. The microscopic approach to phonons

Phonons are the quanta of vibrations of ions about their equilibrium positions
in crystals, glasses, or molecules. The microscopic theory starts with an Hamil-
tonian where both electrons and ions are dynamical. The smallness of the mass
ratio me/Mion often justifies the resolutive Adiabatic Approximation by Born and
Oppenheimer, by which the electronic state istantaneously adapts to the slowly
changing environment of the ions.
The Schrödinger equation for electrons and ions is then solved in two steps.
First, one solves for the electrons with the ions being fixed at positions Ri. The
ground state energy E0(R1 . . .RN ) defines an energy landscape, which can be very
complex, with maxima, minima, saddle points and valleys. Since positions are
measured in a frame that can be translated or rotated, these least symmetries
are present: E0(R1 + a, . . . ,RN + a) = E0(R1, . . . ,RN ), E0(RR1, . . . ,RRN ) =
E0(R1, . . . ,RN ), where R is a rotation.
Next, the function E0 is used as a potential for the ions. Minimization in all pa-
rameters Ri gives the equilibrium configuration {R0

i }. The expansion of the energy
function around the minimum yields the Hamiltonian for the ions

Hion = Emin +

N∑
i=1

∑
a=xyz

P 2
ia

2Mi
+

1

2

N∑
ij=1

∑
ab=xyz

Hia,jbηiaηjb, ηi = Ri −R0
i

Hia,jb is the Hessian matrix, of second derivatives evaluated at the minimum. Terms
beyond quadratic are called anharmonic, and are here neglected. The presence of
other minima of comparable depth makes the problem very complex, as thermal
activation, or tunneling, may drive the system from a configuration to another, or
a superposition of them.
The rescaling η′i = ηi

√
Mi/µ brings masses to the same value:

Hion = Emin +

N∑
i=1

∑
a=xyz

P ′2ia
2µ

+
1

2

N∑
ij=1

∑
ab=xyz

√
µ

Mi
Hia,jb

√
µ

Mj
η′iaη

′
jb,(1)

A rotation in R3N , ξia = Ria,jbη
′
jb, diagonalizes the Hessian. 3N−6 eigenvalues are

non-negative, while 6 are zero because of the translation and rotation symmetries,
and correspond to barycentric motion. The resulting Hamiltonian is a sum of
independent harmonic oscillators (normal modes). In a reference system where the
body is at rest:

Hion = Emin +

3N−6∑
a=1

p2a
2µ

+
1

2
µω2

aξ
2
a(2)
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Quantization of each oscillator gives the effective quantum Hamiltonian of the mo-
tion of the N ions:

Hion = Emin +

3N−6∑
a=1

~ωa(c†aca + 1
2 )

If the equilibrium configuration of the ions is a lattice, each oscillator is labelled
by a vector k of the dual lattice. In the long wave-length limit, the dispersion laws
ω(k), specific of the lattice, become those of an elastic medium. This is one reason
for studying phonons of elastic media.

2. Elastic media

In many-body theory, phonons are often introduced by approximating the back-
ground of ions as an elastic medium. In the long wavelength limit (i.e. low energy)
it gives a simple description of extended systems, the peculiarities of the material
being captured by few phenomenological parameters.

As a piece of matter is subjected to an external force, it deforms and develops
internal forces that oppose the deformation. Since internal forces are short-ranged,
the state of stress depends on how distances of neighboring parts are modified by
the deformation. This is encoded in the metric tensor.

Suppose that the medium has been deformed and is in equilibrium with the
applied forces. A physical point originally at position x is displaced to a position
x + u(x). The field u is the displacement of the physical points.
Two close points x and x+dx get displaced to x+u(x) and x+dx+u(x+dx). The
squared distance of the two images, to lowest order in u, is a quadratic expression
that defines the metric tensor:

ds′2 = dx′idx′i ≡ gij(x)dxidxj(3)

gjk(x) =
∂x′i

∂xj
∂x′i
∂xk

= δij + 2Dij(x)

If the Jacobian matrix of the transformation x → x′ is invertible, then the metric
tensor is strictly positive. D is the symmetric strain tensor (Cauchy):

Dij(x) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(4)

A cube of volume dx centred in x transforms under the displacement to some
shape with volume

dx′ =
∣∣∣det

∂x′i

∂xj

∣∣∣dx =
√
g(x)dx

where g = det gij . For small deformations it is
√
g =

√
det(I + 2D) ≈

√
1 + 2trD ≈

1+divu(x) i.e. the divergence of the displacement field describes the local variation
of the volume:

(5)
δV

V
= divu(x)

After a deformation, the initially uniform mass-density ρ0 becomes position de-
pendent, and since the matter content within a closed surface is unchanged, it is
ρ0dx = (ρ0 + δρ(x′))dx′ i.e.

δρ(x) = −ρ0 divu(x)(6)
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2.1. The stress tensor. A deformation produces a state of stress, with internal
forces that oppose the external forces that produce it. It is clear that only gradients
of the displacements are relevant, since a local translation produces no stress (no
elementary “springs” are stretched).
The forces in a continuum are described by a symmetric1 stress tensor field πij(x),
introduced by Augustine-Louis Cauchy in 1822. He proved that the force acting on
a surface element of area da at x, with normal vector n, is2.

df i = πij(x)nj da.

In a perfect fluid the stress tensor is isotropic πij = −pδij , with force orthogonal to
the area element, and no tangential components. For a general stress tensor, the
pressure is defined as p(x) = − 1

3π
j
j(x).

Consider a volume V enclosed by a surface S with outer normal n(x). The force
that the exterior exerts on the volume is the resultant of the surface forces:

F i =

∫
S

πijnjda =

∫
V

dx ∂jπ
ij

by the divergence theorem. Therefore, ∂j π
ij(x) is the force per unit volume.

If ρ0 is the mass density at equilibrium, the linearized equation of motion for the
displacement field is

ρ0
∂2

∂t2
ui(x, t) =

∂

∂xj
πij(x, t)(7)

A homogeneous elastic medium is defined by the generalization of Hooke’s law3:
πij(x) = CijklD

kl(x). If the medium is isotropic it simplifies to

πij(x) = λδijD
k
k(x) + 2µDij(x)(8)

where λ > 0 and µ ≥ 0 are the Lamé constants4.
While initially the pressure is zero, a deformation builds a nonzero pressure δp(x) =
− 1

3π
j
j = − 1

3 (3λ + 2µ) divu(x) = −(λ + 2
3µ)δV/V . This formula links the Lamé

constants to the (adiabatic) bulk modulus:

(9) B = −V
(
∂p

∂V

)
S

= λ+ 2
3µ

Other relations link λ, µ to the Poisson and Young parameters.

1symmetry is related to angular momentum conservation.
2a nice book is: B. Lautrup, Physics of continuous matter, 2nd ed. CRC Press (2011)
3The most general linear homogeneous relation πij = CijklD

kl entails 34 = 81 coefficients.

The simmetry of the stress and the strain tensors reduces the number to 62 = 36. Isotropy means
that in a rotated frame the coefficients remain unchanged: π′

ij(x) = CijklD
′kl(x) for all matrices

Q and x. The stress tensor transforms as π′
ij(x) = QirQjsπ

rs(Qtx) and the same for Dij . Then

we require:

QirQjsπ
rs(Qtx) = CijklQ

kmQlnDmn(Qtx)

for any Q and x. This means: Crsmn = QriQsjC
ijklQkmQln. In particular, Cr

rmn =

Cr
rklQ

k
mQl

n, meaning that the matrix Cr
rmn commutes with any rotation, i.e. Cr

rmn =

Aumn. In the same way Cijm
m = Buij . Consistency requires A = B. It is also Crs

r
n =

Qs
jCrj

r
lQ

l
n meaning that Crs

r
n = Cusn. Putting pieces together, the isotropic tensor is

Cijkl = λuijukl + 2µuikujl.
4For Aluminum: ρ0 = 2.7 × 103kg/m3, λ = 55 GPa, µ = 26 GPa (1 GPa = 109N/m2), sound

velocity vs = 6.3 km/s



4 NOTES BY L. G. MOLINARI

Proposition 2.1. If Cijkl = Cklij, there is a conserved elastic energy:

E =

∫
d3x

[
1
2ρ0u̇

2 + 1
2C

ijklDijDkl

]
(10)

Proof. Contraction of (7) with u̇i gives: 1
2ρ0∂t(u̇

2) = ∂j(u̇iπ
ij) − πij∂j u̇i. The

tensor ∂j u̇i, being contracted with πij is symmetrized. This gives 1
2ρ0∂t(u̇

2) +

πijḊij = ∂j(u̇iπ
ij). Since πij = CijklD

kl, a total derivative is obtained:

∂t
[
1
2ρ0u̇

2 + 1
2π

ijDij

]
= ∂j(u̇iπ

ij)

The volume integral becomes a surface integral in the right hand side, that vanishes
at infinity. The conservation of the energy is obtained. �

2.2. Elastic waves. With the stress tensor (8) the equation of motion is

ρ0∂
2
t u = µ∇2u + (λ+ µ) grad divu(11)

By taking the divergence or the rotor, one obtains two wave equations:[
1

v2L

∂

∂2t
−∇2

]
divu(x, t) = 0 ,

[
1

v2T

∂

∂2t
−∇2

]
rotu(x, t) = 0(12)

We’ll show that the first one describes longitudinal waves, that involve variations
of the volume and propagate with velocity vL. The second equation describes
transversal waves (rotu is orthogonal to u) with velocity vT .

vL =

√
λ+ 2µ

ρ0
, vT =

√
µ

ρ0
.(13)

Note the inequality vL >
√

2 vT : longitudinal waves are always faster than transver-
sal waves5 (in general vL ≈

√
3vT ). The longitudinal velocity coincides with the

speed of sound in the medium.
The distinction among longitudinal and transversal refers to the Fourier modes

of the waves. In a box of side L:

u(x, t) =
∑
k

u(k, t)
eik·x√
V
,

with u(k, t)∗ = u(−k, t) for reality. Each Fourier component is then decomposed
into a vector parallel to k and an orthogonal vector:

u(k, t) =
k

|k|2
(k · u) +

[
u− k

|k|2
(k · u)

]
= uL(k, t) + uT (k, t)

It is k× uL(k, t) = 0 and k·uT (k, t) = 0. In components:

ui(k, t) =
kikj
|k|2

uj +

[
δij −

kikj
|k|2

]
uj

The matrices are the projectors on the direction parallel to k and in the plane
orthogonal to k.

Exercise 2.2. Show that any vector field admits a decomposition into irrotational
(longitudinal) and divergence-free (transversal) fields: F(x) = FL(x)+FT (x) where
rotFL(x) = 0 and divFT (x) = 0.

5in seismology they are named P (prima) and S (secunda)
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In k space eq.(11) becomes:

d2

dt2
ui(k, t) = −k2v2T

[
δij −

kikj
k2

]
uj(k, t)− k2v2L

[
kikj
k2

]
uj(k, t)

By acting with the orthogonal projections, one obtains two independent equations:[
d2

dt2
+ v2Lk

2

]
uL(k, t) = 0,

[
d2

dt2
+ v2T k

2

]
uT (k, t) = 0.(14)

For each k, introduce the orthonormal basis eλ(k): e3(k) = k/|k| and e1,2(k) ⊥
e3(k) (polarization vectors). The general solution of (11) is the real sum of longi-
tudinal and transversal plane waves. A convenient expression is

u(x, t) =
1√
V

∑
k,λ

eλ(k)
1

i

(
dk,λe

ik·x−iωλ(k)t − d∗k,λe−ik·x+iωλ(k)t
)

(15)

with complex amplitudes dk,λ that are determined by the initial conditions, and
linear dispersions:

ωλ(k) =

{
vT k λ = 1, 2

vLk λ = 3
(16)

Exercise 2.3. Show that the polarised fields uλ(x, t) with Fourier components
uλ(k, t) solve the wave equations (∂2t − v2λ∇2)uλ(x, t) = 0 with rot uL(x, t) = 0
and div uT (x, t) at all times.
Show that the following expressions are constants of the motion6:

EL = 1
2ρ0

∫
d3x

[
(∂tuL)2 + v2L(divuL)2

]
(17)

ET = 1
2ρ0

∫
d3x

[
(∂tuT )2 + v2T |rotuT |2

]
(18)

2.3. The Debye frequency. The number of normal modes (k, λ) with frequency
less than ω is

(19) N (ω) =
∑
k,λ

θ(ω − vλk) = V
ω3

6π2

(
1

v3L
+

2

v3T

)
If the number of ions in the box of volume V is N , there are 3N independent normal
modes of vibration. The relation N (ωD) = 3N defines the Debye frequency. The
Debye frequency is a cut-off ωλ(k) ≤ ωD on allowed frequencies, i.e. k-vectors7.

A rough approximation gives ωD ≈ vLn
1/3 (the inverse of the Debye frequency

is the about the time for sound to travel a lattice spacing).
The Debye temperature is kBTD = ~ωD. Some values (from Kittel): 428 K (Al),
343 K (Cu), 170 K (Au), 645 K (Si).

6Note the analogy between ET and the e.m. energy density, with field A.
7For the normal modes of a crystal lattice, the natural cutoff is the restriction of k-vectors to

the reciprocal lattice cell.
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3. Phonons

In Fourier space, the total energy is the sum of single-mode energies, and is
quadratic in the amplitudes: E =

∑
k,λρ0ω

2
λ(k)[d∗k,λdk,λ + dk,λd

∗
k,λ ].

With the rescaling ck,λ = (2ρ0ωλ(k)/~)1/2dk,λ, it becomes:

E =
∑

k,λ
~ωλ(k) 1

2 [c∗k,λck,λ + ck,λc
∗
k,λ]

Quantization is performed by imposing canonical commutation relations

[ĉk,λ, ĉ
†
k′,λ′ ] = δk,k′δλλ′ [ĉk,λ, ĉk′,λ′ ] = 0 [ĉ†k,λ, ĉ

†
k′,λ′ ] = 0(20)

The total energy becomes the Hamiltonian operator for longitudinal and transverse
phonon oscillators:

Ĥph =
∑

k,λ
~ωλ(k)

[
ĉ†k,λĉk,λ + 1

2

]
θ(ωD − ωλ(k))(21)

whose physical meaning is clear. The vacuum state is characterized by ĉk,λ|0〉 = 0.

The operators ĉ†k,λ and ĉk,λ respectively create and destroy a phonon of polar-

ization λ, momentum ~k and energy ~ωλ(k).
The Heisenberg evolution of the canonical operators is

ĉk,λ(t) = e−iωλ(k)tĉk,λ, ĉ†k,λ(t) = eiωλ(k)tĉ†k,λ(22)

The displacement operator is

û(x) =

√
~

2ρ0V

∑
k,λ

1

i
√
vλk

eλ(k)
[
ĉk,λe

ik·x − ĉ†k,λe
−ik·x

]
θ(ωD − kvλ)

In particular, if nI is the number of ions per unit volume, the ionic density fluctu-
ation operator δn̂I(x) = −nIdivû(x) is

δn̂I(x) = − 1√
V

∑
k

√
~nIk
2vLM

[
ĉk,L + ĉ†−k,L

]
eik·xθ(ωD − kvL)(23)

where M is the ionic mass, ρ0 = nIM .

Exercise 3.1. Define the correlator id(x, x′) = 〈0|TδnI(x)δnI(x
′)|0〉. Show that,

in Fourier space:

. d(k, ω) =
~nI
M

k2

ω2 − (vL k − iη)2
θ(ωD − vLk)(24)

Exercise 3.2. (Debye theory) Evaluate the partition function of the phonon gas
Z = tr exp(−βHph) and the thermodynamic potential. Then study the specific
heat, with the limits T � TD and T � TD (Dulong-Petit law).

.

4. Electron-Phonon interaction

In the theory of the homogeneous electron gas (HEG) the charged background
is now described as an elastic medium, with charge density Ze(nI + δnI(x)), where
ZenI is the uniform charge density that makes the system neutral (ZnIe−Nee = 0)
and δnI(x) = −nIdivu(x). Neutrality requires

∫
dxδnI(x) = 0.
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The Hamiltonian of the electron gas with phonons is: H = H0
el + H0

ph + Hint,

where H0
el is the kinetic Hamiltonian of the electrons, H0

ph is (21), and the interac-
tion is the sum of the Coulomb term and the elecron-phonon term

Hint =

∫∫
dxdy

e2

2

∑
µν

ψ†µ(x)ψ†ν(y)ψν(y)ψµ(x)

|x− y|
− Ze2

∑
µ

ψ†µ(x)ψµ(x)δnI(y)

|x− y|

In the interaction picture, the expression of the scattering operator is8:

(25) S = T exp
1

i~

∫∫
dx dy

[
e2

2
n(x)n(y)− Ze2n(x)δnI(y)

]
δ(tx − ty)

|x− y|

where Ze is the charge of an ion and the operators evolve according to H0
el and

H0
ph. Since the operators of electrons and phonons in the integral commute9, the

scattering operator factors: S = SeeSep.
Consider the electron propagator (or any correlator of electronic field operators)
in interaction picture with ground state |F, 0〉 (Fermi sphere and state with zero
phonons).

iG(x, y) =
〈F, 0|TSeeSepψ(x)ψ†(y)|F, 0〉

〈F, 0|TSeeSep|F, 0〉

In the numerator, expand in power series the phonon scattering operator

Sep = T exp
−Ze2

i~

∫
dx dy n(x)U0

c (x, y)δnI(y)

where U0
c (x, x′) = δ(t − t′)/|x − x′|, and use the fact that T-ordering and Wick’s

theorem apply to fermion and phonon operators independently. Then, the matrix
element factors:

iG(x, y) =

∞∑
k=0

(−Ze2)k

k!(i~)k

∫ k∏
j=1

dxjdyj U
0
c (x1, y1) . . . U0

c (xk, yk)

× 〈F |TSeen(x1) . . . n(xk)ψ(x)ψ†(y)|F 〉 〈0|TδnI(y1) . . . δnI(yk)|0〉

By Wick’s theorem, the phonon average is the sum of total contractions, where a
contraction is a factor id(y, y′) = 〈0|TδnI(y)δnI(y

′)|0〉. Terms with odd k vanish.
Since phonon variables are integrated, each total contraction yields the same result.

There are (2k − 1)(2k − 3) · · · 1 = (2k)!
2kk!

identical terms:

=

∞∑
k=0

(Ze2)2k

(2k)!(i~)2k
(2k)!

2kk!
ik
∫ 2k∏

j=1

dxj dyj U
0
c (x1, y1)d(y1, y2)U0

c (x2, y2) · · ·

× · · · d(y2k−1, y2k)U0
c (x2k, y2k) 〈F |TSeen(x1) . . . n(x2k)ψ(x)ψ†(y)|F 〉

=

∞∑
k=0

1

(i~)kk!

1

2k

∫ 2k∏
j=1

dxj V
0
ph(x1, x2) · · ·V 0

ph(x2k−1, x2k)

× 〈F |TSeen(x1) . . . n(x2k)ψ(x)ψ†(y)|F 〉

8note that within T-ordering the Coulomb interaction can be written with density operators.
9Show that [ψ†(1)ψ†(2)ψ(2)ψ(1), ψ†(3)ψ(3)] = 0
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where V 0
ph(x, x′) = 1

~ (Ze2)2
∫
dydy′U0

c (x, y)d(y, y′)U0
c (x′, y′). Then

= 〈F |TSee exp
1

i~

[
1

2

∫∫
dx′dy′n(x′)V 0

ph(x′, y′)n(y′)

]
ψ(x)ψ†(y)|F 〉

= 〈F |TSeffψ(x)ψ†(y)|F 〉
Seff is built only with electronic operators and a two-body e-e interaction that is
the sum of the Coulomb interaction and a Coulomb-phonon-Coulomb interaction:

Seff = T exp
1

2i~
∑
mm′

∫
dx dx′ψ†m(x)ψ†m′(x

′)U0
tot(x, x

′)ψm′(x′)ψm(x)(26)

U0
tot(x, x

′) = e2U0
c (x, x′) +

Z2e4

~

∫
dydy′U0

c (x, y)d(y, y′)U0
c (x′, y′)(27)

As a consequence, one obtains the same diagrams of the model with Coulomb in-
teraction, with e2U0

c being replaced by U0
tot. With this replacement, the diagrams

with vacuum factors exactly cancel the denominator in the reduction formula:

iG(1, 2) = 〈F |TSeffψ(1)ψ†(2)|F 〉?
In momentum space the total e-e bare interaction is:

U0
tot(k, ω) =

4πe2

k2
+

(
4πZe2

k2v

)2
nI
M

(vk)2

ω2 − (v k − iη)2
θ(ωD − vk)(28)

where v is the velocity of sound (hereafter we neglect to specify L = longitudinal).
A resummation of diagrams replaces the Coulomb factors U0

c in the phonon in-
tegrals (27) with factors Uc dressed by polarization insertions. In Fourier space and
in the Thomas Fermi approximation, we replace 4π/k2 with 4π/(k2 + k2TF ). Next,
because of the Debye cutoff, we further simplify to 4π/k2TF . In this approximation,
the interaction mediated by phonons has a new coupling constant at each vertex,
that accounts for the Thomas-Fermi momentum:

(29) U0
ep(k, ω) = γ2

(vk)2

ω2 − (vk − iη)2
θ(ωD − vk) γ =

4πZe2

k2TF v

√
nI
M

In direct space, the replacement of the Coulomb interaction 4πe2/k2 with the num-
ber 4πe2/k2TF simplifies the term in the Hamiltonian that couples electrons to
phonons:

Hep = γ

∫
dx n̂(x)ϕ̂(x)(30)

ϕ̂(x) =
1√
V

∑
k

√
vk

2
(ĉk + ĉ†−k)eik·xθ(ωD − kv)(31)

A list of important properties of the e-e potential mediated by phonons:
1) For k = 0 the potential is zero. Therefore, in a translation invariant model, there
are no tadpoles.
2) For |ω| < vk the potential is negative (attractive): this is significant for the
Cooper pairing in superconductivity.
3) In the static limit (ω = 0) the potential is constant in k-space, i.e. a quartic
interaction in x-space (this will be the interaction in the B.C.S. model).
4) Because of the Debye cut-off, an electron with momentum |k| < kF may be
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excited above the Fermi energy by absorption of a phonon of momentum q (i.e.
|k + q| > kF ) only if the electron is in the energy shell

EF − ~ωD ≤
~2k2

2m
≤ EF

5. Dressed e-e interaction

The total bare interaction U0
tot = U0

c + U0
ep becomes dressed by the polariza-

tion insertions. In a translation-invariant system it can be given an interesting
expression:

Utot(q, ω) ≈ 4πe2

q2ε(q, ω)
+

γ2

ε2(q, 0)

ω2
q

ω2 − Ω2
q

where the Coulomb term is screened by the dielectric function ε(q, ω) = 1 −
(4πe2/q2)Π?(q, ω), and the phonon term is modified in the coupling and in the
pole:

Ω2
q = ω2

q [1 +
γ2

ε(q, 0)
Π?(q, 0)]

The phonon bare dispersion ωq = vq, is now ωq = Ω(q).
Proof: Write U = (vc/ε) + Uep, where vc is the bare Coulomb potential. Then:

Uep =
U0
tot

1− U0
totΠ

?
− U0

c

ε
=

U0
tot

ε− U0
epΠ

?
− vc

ε
=

U0
ep

ε(ε− U0
epΠ

?)

because ε−vcΠ? = 1. Now insert U0
ep to obtain the result for the dressed interaction

mediated by phonons. �
In the RPA the static expression for Π(0) has singular derivative in q = 2kF ,

which reflects in the singular derivative ∂Ω/∂q at q = 2kF . This is Kohn’s anom-
aly10.
The Kohn anomaly is known as an abrupt change in the slope of the phonon dis-
persion curves and is considered to be induced by the logarithmic singularity of the
dielectric function, which is a reflection of the special shape of the Fermi surfaces.
Until now, the Kohn anomaly has been reported for various metallic elements, such
as lead, palladium, aluminum, chromium and niobium11.

10W. Kohn, Image of the Fermi surface in the vibration spectrum of a metal, Phys. Rev. Lett.
2 (1959) 393

11Platinum is also an element in which the Kohn anomaly was observed in the early age of
inelastic neutron scattering (from Y. Tsunoda, T. Kodama, and M. Nishia, Question on the Kohn
Anomaly and Screening Effects in Pt and Pt Alloys, J. Phys. Soc. Japan 80 (2011) 054603).


