BCS

PRELIMINARY NOTES (IN PROGRESS) BY L. G. MOLINARI

1. THE BCS HAMILTONIAN

In electronic systems the low temperature properties are determined by the long-
lived quasi-particles in an energy shell ~ kgT near the Fermi surface. Because of
the Debye cutoff, the interaction mediated by phonons

2]€2
Upn(k,w) =g 5

72]{29( — Vs k)

is attractive in the energy shell [e—ep| < fiwp and this, at low enough temperatures,
leads to the formation of Cooper pairs with binding energy A ~ fiwp exp(—2/gpr)
characterising a superconductive phase, with critical temperature kgTc ~ A.
Cooper obtained this important result (1956) by solving a 2-particle problem in
presence of a filled Fermi sea [3].

The BCS theory (1957)! is a full many-electron model, characterized by the at-
tractive interaction that arises in the static limit, —gd(x — x’), which captures the
essence [2]:

1) K =3 [ ax bl ) 00 — S0L 0100000

where k, = 55 (p + £A)% + U(x) — p and the Debye cut-off is understood for the
interaction. By the exclusion prlnc1ple only two spin configurations are allowed,
and are equivalent: 1/)T1/1 J/1/) W’T 1/) J/1/JT1/JT1/J .- The quartic interaction gets simplified
by replacing pairs of operators with their mean values,

DLPldrdy = 1PN dy + Pl (ridy)
This introduces a complex field A, which behaves as an order parameter that can
be related to the Ginzburg Landau field:

(2) A(z) = —g(Pr(2)dy ()

The thermal average is calculated with the effective Hamiltonian, that no longer
conserves the number of electrons

®) Rt = Ko+ [ dx ) 91 (1 0.00) + 6] )5 (09 A

Date: 19 dec 2017.
LAt the time, Leon Cooper and Robert Schrieffer were respectively post-doc and graduate
student of John Bardeen. Read the nice hystorical account by Hoddeson [7]
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1.1. The Hartree approximation. To gain some understanding of the approxi-
mation, let K = Ko+ K7, where K3 is the quartic term, and consider the (thermal)
interaction picture. A thermal average of field operators is
(TU (1B, 0)i(x1)D(2) .. )i,

(% (hB,0)) K

where z = (x, 7). Consider the discretization of Dyson’s T-product expansion:

08.0) =T oo (1) 3 [0 G wri 0]

(T(x)h(zs) .. Yk =

_THeXp[ (WG] @) () (@)]

where, because with time-ordering, the quadratic operators commute. The four-
fermion interaction may be splitted with the introduction of an auxiliary complex
field A’(z). At each point x the following complex integral applies

2
exp {%AB] = d—e Xp [ ( | 2|2 —l—zA—l—Bz)]
)

With z = A’(x), we obtain a product of integrals which defines a Gaussian func-
tional integral, where all pairs of operators commute because of T-ordering:

2A/ — A A PRTIN
(06,0 =T [ “5 1 exp |- A @ = (B + ]3] o)

ZL/QA/ T exp {_ES[A/,Z’]]
A h

S = [de(LAP + Ky + $llA), Za = [ 22 exp [_hig fdx|A/(x)|2}.
The partition function is Z = Zo(%;(hf3,0))k,, with Zy = tr (e7#¥0) and

— L ! 7%S[A/1Zl]
() (@(05,0), == [ 72 (Te ),

Now comes the approximation: the main contribution to the functional integral
comes from the auxiliary field A(x) that maximises the Boltzmann weight (7e=5/").
The extremum condition for a variation §A’ is an equation for A(x). By retaining
only linear terms:

1 _ _
(T exp(—7 SIA', A + 64,

= (Texp(—%S[A/, A')) [1 + /dxéA/(:zr) [gilA/(x) + @T(x)ﬁi(x)} +.. }>KO

The first variation is zero for

5) Alx) = —g (Te~ #5188l (2) by () K

- <67%S[A,Z]>KO

This is an equation for A(x), which appears on both sides (time-dependence cancels
because of equal times). The integral (6) simplifies:

(6) (W (1B,0)) iy = Na(Te FSISS) — ofhog=iken
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Na is a normalization factor. The equation for A corresponds to eq.(2) with the
effective Hamiltonian (7) (see Zagoskin, [10]).

Exercise 1.1. Prove that, if A and B commute, then
1
/dxdy exp(——|z|* + ZA + Bz) = ngexp(gAB), z=x+1y
g

1.2. Matrix formulation. In the operator Ky an integration by parts and an
anticommutation bring wlkﬂ/m to —1/)¢Ex1/1; up to a constant?. Then:

Kug — / dx {_JJTEM/X + Ol katy + By +d[PIA

The Hamiltonian is now written in a matrix form introduced by Nambu [8]:

) Kt = / dx U () (K, ©) (x)
[ ke A®X) | d(x) I .
® =] 1y F | e U | e = b e

The components of ¥ and ¥T anticommute (note that (¥,)" = (¥1),):
(9) {‘I’r(x)a‘l’l(Y)} = 0rs03(x — ), {W,, ¥} = {\IJL\IJL} =0

As the effective Hamiltonian is quadratic in the fields, the model can be solved

like a theory of independent particles or a Hartree theory, with the self-consistency
eq.(2), named gap equation.
Two equivalent approaches are presented: one, by de Gennes, generalises the canon-
ical transformation introduced by Bogoljubov and Valatin (1958) for homogeneous
systems; the other one is based on Green functions, introduced by Gor’kov in 1958
[5] and here expressed with Nambu’s matrix formalism.

1.3. The Bogoljubov - de Gennes equations. The matrix operator K, acts on
the Hilbert space L2(R3) x C? and is self-adjoint. It has real eigenvalues, and the
eigenvectors form an orthonormal basis. The eigenvalue equation

(10) [ Zk&) A_%Z) ] [ Z:((;? } = o [ ZZE:; ]

gives the pair of Bogoljubov - de Gennes equations:
(kua)(x) + A(x)va (x) = Equa(x)
(Fva)(x) — A(x)uq(x) = —Eqva(x)

If (uq, va) solve them with eigenvalue E, > 0, then (—7,, u,) are a solution with
eigenvalue —F,. The equations (10) with eigenvalues +£F, may be written jointly:

I A e B L |

2The operators kg and kg differ by the sign of the term linear in p, if any.
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The ortho-normalization and completeness of the doublets in Hilbert space may be
expressed in matrix form:

(12) / dx{ (%) - Ty(x) ] [ Ua(x)  —Ta(x) } — 61,

—vp(x)  up(x) Va(X)  Uqa(x)

I e il | B SR RLEEE

1.4. Diagonalization of the many-body Hamiltonian. The matrix relation
(11) suggests that the many body Hamiltonian is diagonalized by the following
transformation to new operators:

oo 8] z{z:ézzi ][]
This and the adjoint are, in detail:

(15)  Pu(x) =D ua(x)da — Ta(x)5], Zua x)af — v4(x) e
(16) &T(X) = Zﬁa(x)&l + ua(x)ﬂa, 7/}T(X) = Zva(x)&a +Ea(X)Bl

a a

Inversion is done with the aid of (12):

G Ug(X)  Ta(x) } %( )
17 5 = / dx[
a7) [ 4 ] —va(x) ua(x) | | (%)
The adjoint operators are also obtained. The transformation is canonical i.e. the
new operators have canonical anticommutation relations:

(18) {Ga, @} =0ars  {Bar B} = dut

(all other anticommutators vanish). By eq.(11)
_ Ug(X) —Tq(x) E, 0 G
(lell)(x) - Z |: UQ(X) ﬂa(x) :| |: 0 _Ea ﬂl
Evaluation of Keg = J dx UTKW and (12) give a diagonal operator for quasiparticles
(bogolons):

(19) f(cff =Uo + Z Ea[&lda + BlBa]

a

where Uy = — ", E,. The ground state is defined by a,|BCS) = 0 and 3,| BCS) =
0 for all a.

1.5. The gap equation. The change of basis (15) simplifies the gap equation:

A(X) = =920 ua(X)T(x)(a}db) — Ta(x)us(x)(Babh) = 93, wa(x)Ta(x)[1 —
2n(E,)] where n(E,) is the Fermi-Dirac occupation number of the state with energy
E,. Then:

(20) = gZua x) tanh <ﬁE )

The equation must be solved self-consistently with the Bogoljubov - de Gennes
equations for u, and v,.
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Remark 1.2. As the gap function depends on temperature, the amplitudes uq, vq
as well as the energies E, and |BCS) depend on T.

Exercise 1.3. Show that Q = —% >, log (2cosh 38E,).

Exercise 1.4. Show that the average density of electrons is:

(21) n(x) = Z |ua(x)|2na + |Ua(x)|2(1 — Na), Na

a

_ 1
 efBa 4]

1.6. Nambu - Gorkov theory. There are advantages in studying the BCS model
with the Green function formalism. The imaginary time evolution of operators is
O(r) = ™5 /"0e~TK/" where K is the effective hamiltonian (7). The equation of
motion of ¥(x,7) is:

—h%\ﬂr(x, T) = e%TK[\I/T(x), K]e_%TK

ze%TK/dx’[\Ilr(x),\I/L(x’)(KS/S\I/S)(x’)ef%TK
:e%TK/dx'{qlr(x),\1/1,(x’)}(Ks/sws)(x’)e*%fK
= (KTS\IJS)(Xa )

Let us introduce the thermal Nambu propagator

(22) —G(z,2") = (TU(z)¥(z))

It is a matrix with components
Gl o) = — | TR@VE) (T apin() _{%uww Z(x,a")
’ (Tl () (Tel@)w () Flaa') 9 )

Note the sign and the exchange of z and z’ in one component. The correlators .%
and .ZT are named anomalous and vanish in the normal phase. In particular:

(23) |A(x) = g7 (2,27

The equation of motion of the Nambu propagator,

(24) [hag + Km} G(z,2') = —hds(z — ') Iy
T

simplifies in Matsubara (odd) frequency space:

(25) { _m%?x—; Fa —ih?u(xi T } G(x,x';iwy) = —hds(x — x') I
;. | Y(x,%iwn) F(x, %/, iwy,)
(26) G(X7X 7an) - |: yT(X7 x',iwn) —g(XI,X, —iwn)

Exercise 1.5. The propagators can be represented as expansions in the Bogoljubov
- de Gennes eigenstates. Show that:

@ P ion) = 3 P 4 T
(28) F(x,x iw) =Y _%a(X)Ta(X) | Ta(x)ua(x)

twp, — Equ/h iw, + Eu /R

a
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and recover the gap equation (20) by evaluating the Matsubara sum
1 .
A(x) = 975 Zn: F (X, X, iwy, ) e

1.7. Perturbative expansion. When A = 0, eq.(25) is solved by the normal
Nambu propagator G, (z,z'), which can be used to transform (25) into a Dyson
equation (integration and summation of repeated variables is implicit):

1 , , , 0 A
In BCS model the self-energy D is local and time-independent. When this de-
scription is inadeguate, one has to consider a microscopic model with the actual
phonon-electron interaction. The Dyson’s equation becomes

(30) G(z,y) = Gu(z,y) + Gy (z,2)S(2’, 2" G(2" , y).
where S is a non-local self-energy matrix. In a 1-phonon exchange approximation,
S(z,y) = —+G(z, y)UD,(x — y), the coupled equations for & and .7 are:
G(z,y) = 9Gn(z,y) + %Gz, 2)S11 (2", "G (2", y) + Gn(x,2")S12(2’, 2")F (2", y)
F(x,y) = —%p(x,2")S12(2', 29 (y, 2") + G (2, 2")S11 (2, 2" ) F (2, ).
with the addition of the gap equation.

2. HOMOGENEOUS SYSTEMS

In homogeneous problems there is no external field and A is constant. An
analytic solution is found in momentum space.

2.1. The Bogoljubov - Valatin canonical transformation. We seek for a so-
lution of the Bogoljubov - de Gennes equations of the form

& FelE=a

5 ]l ]enl]

where &, = €, — u are the single-particle energies (normal phase) measured with
respect to the chemical potential. The homogeneous system admits a nontrivial
solution if

(32) Ep = /& +|A]?

(the positive root is selected for stability). The energy gap |A| separating the
Fermi surface £ = 0 from the lowest excitation, profoundly modifies the properties
of the electron gas at low temperatures.

The amplitudes solve the normalization condition |ug|?> + |vg|> = 1 and the
condition &up + Avg = Epug. The latter gives |Aljvg| = (Ex — & )|ug|, with
solutions

1 &k 1 &k
(53 wl =5 (1+2), k-3 (1- 1)

Then

[\
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FIGURE 1. The parameters |ux|? and |vx|? as functions of & for
|A| =0.1.

In the normal phase Ej = |&|; then: |ug| = 0(ex — 1) and |vg| = 0(p — €x).
The equation &gur, + Av,, = Epug gives Alvg|? = (Ex — & )urk ie. the useful
relation:

A

4 Tp = ——
(3 ) URVE 2Ek

The expansion of the field operators in the two canonical basis,

] -w5 L TR 2 (A

k k

implies the Bogoljubov - Valatin transformation:

ax,y | [ ur -© Ay
) L =l e L]

and the Hermitian conjugate. Inversion gives:

(36) Qx = Uplk,| + 5kCALT_k)T, (3&;[( = deL‘L + Uka_k 4
(37) B = _’Dkdik)¢ + Upax 1, Bl = —vrG-k,| + udeT
The operators &g and Bk annihilate, for all vectors k, the state
(38) 1BCS) = [ [ (uk + vralyaly))[0)

k

which reads as a sea of Cooper pairs®. In the normal phase (A = 0) it coincides
with the filled Fermi sphere.

| BCS) = [ (g + vgal raf | )éne(tix + val ypaf,)|0)
q#k

= [ (ag + 040" ol ) (anvrin,al ol +optral )0y =0
q#k

3In [2] Bardeen, Cooper and Schrieffer (1957) introduced the state with variational parameters
ug, and v, with |ug|24|vg|? = 1 for normalization. Minimization of (BC'S|K.g|BCS) with respect
to the parameters yields the same results presented here. Bogoljubov and Valatin independently
simplified the theory by their canonical transformation [1, 9].



8 PRELIMINARY NOTES (IN PROGRESS) BY L. G. MOLINARI

B_x|BCS) = H (g + 6(1 —qt® ¢)B k(g + ﬁkﬁimfbhﬂm
a#k

= [[ (@ + vqal ) (—onunal, | + arvraral paf )|0) =0
q#k

Creation operators create excited states (bogolons) consisting of Cooper pairs and
unpaired electrons. For example:

al|BCS) = [ (ug + v,a! yal))af, 10)

a7k
5T_k|BOS> = H (g + Vg0 a qTa’ )@k¢|0>
a7k
a8, BCS) = an [ ] (ag + 040" gy, )k, a4 10)
a7k

2.2. The gap equation. By means of (34) the gap equation (20) becomes:

%Z—mm@>wm4w

By introducing the density of states per unit volume and single spin component of
the normal phase,

pul€) = 32 32 5(6 ~ &)
k

the sum in k-space is changed into an integral in energy,

— 8 [ o) G BR
2 VE+IAF
With the assumption that the density is almost constant in the energy shell [£| <
hwp it simplifies to:

L /ﬁwD dgtanh(%ﬁm)
9pn(0)  Jo VE + A?

where p(0) is the density of states at the Fermi energy, ¢ is the squared coupling
constant of the phonon to the electron. According to the microscopic theory:

2 240
Vg = Miwe T

Z¢ is the number of conducting electrons per ion, n; is the number of ions per unit
volume, M; is the ionic mass, vy is the speed of sound.

)

(39) gap equation

Exercise 2.1. Show that the density of states per unit volume and spin component
of the free electron gas at the Fermi energy is pn(0) = 2n/Ep, where n is the density
of electrons and Er is the Fermi energy. Then show that

2

Ze m [ VR
n(0) = 2 (F
9pn(0) 6Mi<vs>

where m is the electron’s mass and vp is the Fermi velocity.
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2.3. The Green functions. In k-space the equation of motion (25) for the Nambu
propagator is algebraic

— & —-A o —
i T
o —h ihwn + &k A
G(k;iwn) = n2w2 + & + A2 { A thwy, — &

The normal and anomalous propagators are obtained, with Ej, = /& + |A]?:

. thw, + & |ug |2 g |?
Gk iw,) = —h -
(ks iton) W26 + B2 iwn — (Ee/h) | iwn + (Ex/h)
\ v v
F(k,iwn) = —h = Uk UkOk

R2w2 + B2 iw, — (Ep/B)  iwn + (Ex/h)

The Matsubara sum in the gap equation

F(kyiwy,)e™

yields the expression (39).

Example 2.2. Show that the average number of electrons in a state (k, o) is

(40) ng = o ;g(k,zwn) =5 §E—ktanh —

Exercise 2.3 (spectral density). Evaluate the spectral density of the supercon-
ducting phase

ps(E) = Z luk|*6(E — Ex) + |vg|*6(E + Ex)
Kk
(use the approximation |A| < p). Note the presence of an energy gap of width 2A
centred at E = 0 (chemical potential).

SEE oAt J1+ E 4 BB h E L <E<-A
|E| < A

0
41 =
(41) o (0) Efm\/ﬁerﬁ\/i A<E<p

21/1+E ILL<E

1 (2m)?
(42) pu(E)=75 |53 ) VE+u
4 I
Near the gap ps(E) = 2p,(0)|E|/VE? — A2,

2.4. Discussion of the gap equation.
T = T.. At the critical temperature the order parameter A is zero, and the gap
equation is an equation for T,:

1 fn g *d X o]
— :/ &© tanh (= Bcﬁ) = / = tanhx = tanh (x¢) log(xc) — / dx —BX
0 o X 0

gp(0) 13 cosh2
o log z c hwp Tp
~ logz,. — dr——— = logx. + log(4e™ /m), T, = =
8 /0 cosh? z & 8 /) 2kgT,. 2T,
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FIGURE 2. The spectral density (u = 20, A = 0.6). The thin line
is the square root v/E of the normal phase. The gap is centred on
the chemical potential.

The approximations are justified by Tp /T, > 1. With C' & 0.5772.., the result is

1
43 kT, = 1.134 hwp exp (——)
(43) o P gp(0)

T = 0. The gap equation becomes:

1 hep 1
R v
with solution
hwp

—— T
sinh 7700)

(44) Ay = ~ 2hwp exp <——>

gp(0)

The following universal ratio is then obtained:

Bo =7ne Y ~1.76

4 =

3. THE GINZBURG - LANDAU LIMIT OF BCS

The Ginzburg-Landau theory can be derived from the microscopic BCS model.
Near the transition line H = H.(T'), the function A is small, and the Dyson equation
(29) for G(x,y;iw,) can be solved by iteration:

1
h

1

G=GCy,+ =

G,DG, + =G,DG, DG, + %Gn]D)Gn]D)GnDGn
The truncation to third order in A evaluates the anomalous correlator Z(x,y, iwy,)

and the Green function 4(x,y,iw,) in terms of the normal Green function and the
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gap function:

(46) F(1,2,iwy,) = —%%(1,3,iwn)A(3)%(2,3, —itwn)

1 . . — . .
+ ﬁgn(l, 3, iwn)A(3)9, (4,3, —iwn ) A(4)9, (4,5, iwn ) A(5)%, (2,5, —iwy);

(47) 9(1,2,iw,) = 9,(1,2,iwy,)
1

2

The space variables 3,4,5 are integrated. ¥, are the normal Green functions for

independent particles in a static magnetic field.

The equations are the starting point for Gor’kov’s derivation [6] of the two

Ginzburg-Landau equations (1959).

Eq.(46) with 2 = 17 and summation of Matsubara frequencies, is a cubic expan-

sion of the gap equation for A, and provides the first G.L. equation with order

parameter 1 o< A:

gn(lv 3, an)A(3)gn(4a 3, _an)z(4)gn (47 2, iwn)

(48) éA(l) =Q(1,2)A(2) + R(1,2,3,4)A(2)A(3)A(4)
with weight functions

Q1,2) = 135 3 ol 2 0n) (1,2, i)

R(1,2,3,4) = _% > Gn(1,2,1wn) G (3,2, —itn) G (3,4, it )G (1,4, —itwy,)

Eq.(47) is an expansion for the Green function, that is used to to evaluate the
super-current, and yields the second G.L. equation.

The derivation of G.L. equations relies crucially on the large difference among the
length scales involved. We need some preliminaries. ...
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