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PRELIMINARY NOTES (IN PROGRESS) BY L. G. MOLINARI

1. The BCS Hamiltonian

In electronic systems the low temperature properties are determined by the long-
lived quasi-particles in an energy shell ∼ kBT near the Fermi surface. Because of
the Debye cutoff, the interaction mediated by phonons

Uph(k, ω) = g
v2sk

2

ω2 − v2sk
2
θ(ωD − vs k)

is attractive in the energy shell |ǫ−ǫF | < ~ωD and this, at low enough temperatures,
leads to the formation of Cooper pairs with binding energy ∆ ∼ ~ωD exp(−2/gρF )
characterising a superconductive phase, with critical temperature kBTC ∼ ∆.
Cooper obtained this important result (1956) by solving a 2-particle problem in
presence of a filled Fermi sea [3].
The BCS theory (1957)1 is a full many-electron model, characterized by the at-
tractive interaction that arises in the static limit, −gδ(x− x′), which captures the
essence [2]:

(1) K̂ =
∑

µν

∫

dx δµν(ψ̂
†
µkxψ̂ν)(x)−

g

2
(ψ̂†

µψ̂
†
νψ̂ν ψ̂µ)(x)

where kx = 1
2m (p + e

cA)2 + U(x) − µ and the Debye cut-off is understood for the
interaction. By the exclusion principle, only two spin configurations are allowed,

and are equivalent: ψ̂†
↑ψ̂

†
↓ψ̂↓ψ̂↑ = ψ̂†

↓ψ̂
†
↑ψ̂↑ψ̂↓. The quartic interaction gets simplified

by replacing pairs of operators with their mean values,

ψ̂†
↓ψ̂

†
↑ψ̂↑ψ̂↓ ≈ 〈ψ̂†

↓ψ̂
†
↑〉ψ̂↑ψ̂↓ + ψ̂†

↓ψ̂
†
↑〈ψ̂↑ψ̂↓〉

This introduces a complex field ∆, which behaves as an order parameter that can
be related to the Ginzburg Landau field:

(2) ∆(x) = −g〈 ψ̂↑(x)ψ̂↓(x)〉

The thermal average is calculated with the effective Hamiltonian, that no longer
conserves the number of electrons

K̂eff = K̂0 +

∫

dx ∆(x) ψ̂↑(x)ψ̂↓(x) + ψ̂†
↓(x)ψ̂

†
↑(x)∆(x).(3)

Date: 19 dec 2017.
1At the time, Leon Cooper and Robert Schrieffer were respectively post-doc and graduate

student of John Bardeen. Read the nice hystorical account by Hoddeson [7]
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1.1. The Hartree approximation. To gain some understanding of the approxi-
mation, let K̂ = K̂0+K̂1, where K̂1 is the quartic term, and consider the (thermal)
interaction picture. A thermal average of field operators is

〈T ψ̂(x1)ψ̂(x2) . . .〉K =
〈T UI(~β, 0)ψ̂(x1)ψ̂(x2) . . .〉K0

〈UI(~β, 0)〉K0

.

where x = (x, τ). Consider the discretization of Dyson’s T-product expansion:

UI(~β, 0) = T exp

(

− 1

~

)

∑

x

[

−g (ψ̂†
↓ψ̂

†
↑)(x

+)(ψ̂↑ψ̂↓)(x)
]

= T
∏

x

exp
[

+
g

~
(ψ̂†

↓ψ̂
†
↑)(x

+)(ψ̂↑ψ̂↓)(x)
]

where, because with time-ordering, the quadratic operators commute. The four-
fermion interaction may be splitted with the introduction of an auxiliary complex
field ∆′(x). At each point x the following complex integral applies

exp
[g

~
AB

]

=

∫

d2z

πg
exp

[

− 1

~

(

1

g
|z|2 + zA+Bz

)]

With z = ∆′(x), we obtain a product of integrals which defines a Gaussian func-
tional integral, where all pairs of operators commute because of T -ordering:

UI(~β, 0) =T
∏

x

∫

d2∆′(x)

πg
exp

[

− 1

~g
|∆′(x)|2 − 1

~
(∆

′
ψ̂↑ψ̂↓ + ψ̂†

↓ψ̂
†
↑∆

′)(x)

]

=
1

Z∆

∫

D∆′ T exp

[

− 1

~
S[∆′,∆

′
]

]

S =
∫

dx( 1g |∆′|2 +∆
′
ψ̂↑ψ̂↓ + ψ̂†

↓ψ̂
†
↑∆

′), Z∆ =
∫

D∆′ exp
[

− 1
~g

∫

dx|∆′(x)|2
]

.

The partition function is Z = Z0〈UI(~β, 0)〉K0
, with Z0 = tr (e−βK0) and

〈UI(~β, 0)〉K0
=

1

Z∆

∫

D
′∆

〈

T e− 1

~
S[∆′,∆

′

]
〉

K0

(4)

Now comes the approximation: the main contribution to the functional integral
comes from the auxiliary field ∆(x) that maximises the Boltzmann weight 〈T e−S/~〉.
The extremum condition for a variation δ∆̄′ is an equation for ∆(x). By retaining
only linear terms:

〈T exp(− 1

~
S[∆′, ∆̄′ + δ∆̄′])〉K0

= 〈T exp(− 1

~
S[∆′, ∆̄′])

[

1 +

∫

dxδ∆̄′(x)
[

g−1∆′(x) + ψ̂↑(x)ψ̂↓(x)
]

+ . . .

]

〉K0

The first variation is zero for

∆(x) = −g 〈T e
− 1

~
S[∆,∆]ψ̂↑(x)ψ̂↓(x)〉K0

〈e− 1

~
S[∆,∆]〉K0

(5)

This is an equation for ∆(x), which appears on both sides (time-dependence cancels
because of equal times). The integral (6) simplifies:

〈UI(~β, 0)〉K0
≈ N∆

〈

T e− 1

~
S[∆,∆]

〉

K0

= eβK̂0e−βK̂eff(6)
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N∆ is a normalization factor. The equation for ∆ corresponds to eq.(2) with the
effective Hamiltonian (7) (see Zagoskin, [10]).

Exercise 1.1. Prove that, if A and B commute, then
∫

dx dy exp(−1

g
|z|2 + zA+Bz) = πg exp(gAB), z = x+ iy

1.2. Matrix formulation. In the operator K̂0 an integration by parts and an

anticommutation bring ψ̂†
↑kxψ̂↑ to −ψ̂↑kxψ̂

†
↑ up to a constant2. Then:

K̂eff =

∫

dx
[

−ψ̂↑kxψ̂
†
↑ + ψ̂†

↓kxψ̂↓ +∆ψ̂↑ψ̂↓ + ψ̂†
↓ψ̂

†
↑∆

]

The Hamiltonian is now written in a matrix form introduced by Nambu [8]:

K̂eff =

∫

dxΨ†(x)(KxΨ)(x)(7)

Kx =

[

kx ∆(x)

∆(x) −kx

]

, Ψ(x) =

[

ψ̂↓(x)

ψ̂†
↑(x)

]

, Ψ†(x) =
[

ψ̂†
↓(x), ψ̂↑(x)

]

(8)

The components of Ψ and Ψ† anticommute (note that (Ψr)
† = (Ψ†)r):

{Ψr(x),Ψ
†
s(y)} = δrsδ3(x− y), {Ψr,Ψs} = {Ψ†

r,Ψ
†
s} = 0(9)

As the effective Hamiltonian is quadratic in the fields, the model can be solved
like a theory of independent particles or a Hartree theory, with the self-consistency
eq.(2), named gap equation.
Two equivalent approaches are presented: one, by de Gennes, generalises the canon-
ical transformation introduced by Bogoljubov and Valatin (1958) for homogeneous
systems; the other one is based on Green functions, introduced by Gor’kov in 1958
[5] and here expressed with Nambu’s matrix formalism.

1.3. The Bogoljubov - de Gennes equations. The matrix operator Kx acts on
the Hilbert space L2(R3)× C2 and is self-adjoint. It has real eigenvalues, and the
eigenvectors form an orthonormal basis. The eigenvalue equation

(10)

[

kx ∆(x)

∆(x) −kx

] [

ua(x)
va(x)

]

= Ea

[

ua(x)
va(x)

]

gives the pair of Bogoljubov - de Gennes equations:

(kua)(x) + ∆(x)va(x) = Eaua(x)

(kva)(x) −∆(x)ua(x) = −Eava(x)

If (ua, va) solve them with eigenvalue Ea > 0, then (−va, ua) are a solution with
eigenvalue −Ea. The equations (10) with eigenvalues ±Ea may be written jointly:

(11) Kx

[

ua(x) −va(x)
va(x) ua(x)

]

=

[

ua(x) −va(x)
va(x) ua(x)

] [

Ea 0
0 −Ea

]

2The operators kx and kx differ by the sign of the term linear in p, if any.
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The ortho-normalization and completeness of the doublets in Hilbert space may be
expressed in matrix form:

∫

dx

[

ub(x) vb(x)
−vb(x) ub(x)

] [

ua(x) −va(x)
va(x) ua(x)

]

= δab I2(12)

∑

a

[

ua(x) −va(x)
va(x) ua(x)

] [

ua(y) va(y)
−va(y) ua(y)

]

= δ(x− y) I2(13)

1.4. Diagonalization of the many-body Hamiltonian. The matrix relation
(11) suggests that the many body Hamiltonian is diagonalized by the following
transformation to new operators:

(14)

[

ψ̂↓(x)

ψ̂†
↑(x)

]

=
∑

a

[

ua(x) −va(x)
va(x) ua(x)

] [

α̂a

β̂†
a

]

This and the adjoint are, in detail:

ψ̂↓(x) =
∑

a

ua(x)α̂a − va(x)β̂
†
a, ψ̂†

↓(x) =
∑

a

ua(x)α̂
†
a − va(x)β̂a(15)

ψ̂↑(x) =
∑

a

va(x)α̂
†
a + ua(x)β̂a, ψ̂†

↑(x) =
∑

a

va(x)α̂a + ua(x)β̂
†
a(16)

Inversion is done with the aid of (12):

(17)

[

α̂a

β̂†
a

]

=

∫

dx

[

ua(x) va(x)
−va(x) ua(x)

]

[

ψ̂↓(x)

ψ̂†
↑(x)

]

The adjoint operators are also obtained. The transformation is canonical i.e. the
new operators have canonical anticommutation relations:

{α̂a, α̂
†
b} = δab, {β̂a, β̂†

b} = δab(18)

(all other anticommutators vanish). By eq.(11)

(KxΨ)(x) =
∑

a

[

ua(x) −va(x)
va(x) ua(x)

] [

Ea 0
0 −Ea

] [

α̂a

β̂†
a

]

Evaluation of K̂eff =
∫

dxΨ†KΨ and (12) give a diagonal operator for quasiparticles
(bogolons):

(19) K̂eff = U0 +
∑

a

Ea[α̂
†
aα̂a + β̂†

aβ̂a]

where U0 = −∑

aEa. The ground state is defined by α̂a|BCS〉 = 0 and β̂a|BCS〉 =
0 for all a.

1.5. The gap equation. The change of basis (15) simplifies the gap equation:

∆(x) = −g
∑

ab ua(x)vb(x)〈α̂†
aα̂b〉 − va(x)ub(x)〈β̂aβ̂†

b 〉 = g
∑

a ua(x)va(x)[1 −
2n(Ea)] where n(Ea) is the Fermi-Dirac occupation number of the state with energy
Ea. Then:

∆(x) = g
∑

a

ua(x)va(x) tanh

(

β

2
Ea

)

(20)

The equation must be solved self-consistently with the Bogoljubov - de Gennes
equations for ua and va.
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Remark 1.2. As the gap function depends on temperature, the amplitudes ua, va
as well as the energies Ea and |BCS〉 depend on T .

Exercise 1.3. Show that Ω = − 2
β

∑

a log
(

2 cosh 1
2βEa

)

.

Exercise 1.4. Show that the average density of electrons is:

n(x) =
∑

a

|ua(x)|2na + |va(x)|2(1 − na), na =
1

eβEa + 1
(21)

1.6. Nambu - Gorkov theory. There are advantages in studying the BCS model
with the Green function formalism. The imaginary time evolution of operators is
O(τ) = eτK/~Oe−τK/~, where K is the effective hamiltonian (7). The equation of
motion of Ψ(x, τ) is:

−~
∂

∂τ
Ψr(x, τ) = e

1

~
τK [Ψr(x),K]e−

1

~
τK

= e
1

~
τK

∫

dx′[Ψr(x),Ψ
†
s′ (x

′)(Ks′sΨs)(x
′)e−

1

~
τK

= e
1

~
τK

∫

dx′{Ψr(x),Ψ
†
s′(x

′)}(Ks′sΨs)(x
′)e−

1

~
τK

=(KrsΨs)(x, τ)

Let us introduce the thermal Nambu propagator

(22) −G(x, x′) = 〈T Ψ(x)Ψ†(x′)〉
It is a matrix with components

G(x, x′) = −
[

〈T ψ↓(x)ψ
†
↓(x

′)〉 〈T ψ↓(x)ψ↑(x′)〉
〈T ψ†

↑(x)ψ
†
↓(x

′)〉 〈T ψ†
↑(x)ψ↑(x′)〉

]

=

[

G (x, x′) F (x, x′)
F †(x, x′) −G (x′, x)

]

Note the sign and the exchange of x and x′ in one component. The correlators F

and F † are named anomalous and vanish in the normal phase. In particular:

(23) ∆(x) = −gF (x, x+)

The equation of motion of the Nambu propagator,

(24)

[

~
∂

∂τ
+Kx

]

G(x, x′) = −~δ4(x− x′) I2

simplifies in Matsubara (odd) frequency space:
[

−i~ωn + kx ∆(x)

∆(x) −i~ωn − kx

]

G(x,x′; iωn) = −~δ3(x− x′) I2(25)

G(x,x′, iωn) =

[

G (x,x′, iωn) F (x,x′, iωn)
F †(x,x′, iωn) −G (x′,x,−iωn)

]

(26)

Exercise 1.5. The propagators can be represented as expansions in the Bogoljubov
- de Gennes eigenstates. Show that:

G (x,x′, iωn) =
∑

a

ua(x)ua(x
′)

iωn − Ea/~
+
va(x)va(x

′)

iωn + Ea/~
(27)

F (x,x′, iωn) =
∑

a

−ua(x)va(x
′)

iωn − Ea/~
+
va(x)ua(x

′)

iωn + Ea/~
(28)
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and recover the gap equation (20) by evaluating the Matsubara sum

∆(x) = −g 1

~β

∑

n

F (x,x, iωn)e
iωnη

1.7. Perturbative expansion. When ∆ = 0, eq.(25) is solved by the normal
Nambu propagator Gn(x, x

′), which can be used to transform (25) into a Dyson
equation (integration and summation of repeated variables is implicit):

G(x, y) = Gn(x, y) +
1

~
Gn(x, x

′)D(x′)G(x′, y), D(x) =

[

0 ∆
∆ 0

]

(29)

In BCS model the self-energy D is local and time-independent. When this de-
scription is inadeguate, one has to consider a microscopic model with the actual
phonon-electron interaction. The Dyson’s equation becomes

G(x, y) = Gn(x, y) +Gn(x, x
′)S(x′, x′′)G(x′′, y).(30)

where S is a non-local self-energy matrix. In a 1-phonon exchange approximation,
S(x, y) = − 1

~
G(x, y)U0

ph(x− y), the coupled equations for G and F are:

G (x, y) = Gn(x, y) + Gn(x, x
′)S11(x

′, x′′)G (x′′, y) + Gn(x, x
′)S12(x

′, x′′)F (x′′, y)

F (x, y) = −Gn(x, x
′)S12(x

′, x′′)G (y, x′′) + Gn(x, x
′)S11(x

′, x′′)F (x′′, y).

with the addition of the gap equation.

2. Homogeneous systems

In homogeneous problems there is no external field and ∆ is constant. An
analytic solution is found in momentum space.

2.1. The Bogoljubov - Valatin canonical transformation. We seek for a so-
lution of the Bogoljubov - de Gennes equations of the form

[

uk(x)
vk(x)

]

=
eik·x√
V

[

uk
vk

]

(31)

Then
[

ξk ∆
∆ −ξk

] [

uk
vk

]

= Ek

[

uk
vk

]

where ξk = ǫk − µ are the single-particle energies (normal phase) measured with
respect to the chemical potential. The homogeneous system admits a nontrivial
solution if

(32) Ek =
√

ξ2k + |∆|2

(the positive root is selected for stability). The energy gap |∆| separating the
Fermi surface ξ = 0 from the lowest excitation, profoundly modifies the properties
of the electron gas at low temperatures.

The amplitudes solve the normalization condition |uk|2 + |vk|2 = 1 and the
condition ξkuk + ∆ vk = Ekuk. The latter gives |∆||vk| = (Ek − ξk)|uk|, with
solutions

|uk|2 =
1

2

(

1 +
ξk
Ek

)

, |vk|2 =
1

2

(

1− ξk
Ek

)

(33)
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Figure 1. The parameters |uk|2 and |vk|2 as functions of ξk for
|∆| = 0.1.

In the normal phase Ek = |ξk|; then: |uk| = θ(ǫk − µ) and |vk| = θ(µ− ǫk).
The equation ξkuk + ∆ vk = Ekuk gives ∆|vk|2 = (Ek − ξk)ukvk i.e. the useful
relation:

ukvk =
∆

2Ek
(34)

The expansion of the field operators in the two canonical basis,
[

ψ̂↓(x)

ψ̂†
↑(x)

]

=
∑

k

eik·x√
V

[

âk,↓
â†−k,↑

]

=
∑

k

eik·x√
V

[

uk −vk
vk uk

] [

α̂k

β̂†
−k

]

implies the Bogoljubov - Valatin transformation:
[

âk,↓
â†−k,↑

]

=

[

uk −vk
vk uk

] [

α̂k

β̂†
−k

]

(35)

and the Hermitian conjugate. Inversion gives:

α̂k = ūkâk,↓ + v̄kâ
†
−k,↑, α̂†

k = ukâ
†
k,↓ + vkâ−k,↑(36)

β̂k = −v̄kâ†−k,↓ + ūkâk,↑, β̂†
k = −vkâ−k,↓ + ukâ

†
k,↑(37)

The operators α̂k and β̂k annihilate, for all vectors k, the state

|BCS〉 =
∏

k

(ūk + v̄ka
†
k↑a

†
−k↓)|0〉(38)

which reads as a sea of Cooper pairs3. In the normal phase (∆ = 0) it coincides
with the filled Fermi sphere.

α̂k|BCS〉 =
∏

q 6=k

(ūq + v̄q â
†
−q↑â

†
q↓)α̂k(ūk + v̄kâ

†
−k↑â

†
k↓)|0〉

=
∏

q 6=k

(ūq + v̄q â
†
−q↑â

†
q↓)(ūkv̄kâk,↓â

†
−k↑â

†
k↓ + v̄kūkâ

†
−k,↑)|0〉 = 0

3In [2] Bardeen, Cooper and Schrieffer (1957) introduced the state with variational parameters

uk and vk with |uk|
2+|vk|

2 = 1 for normalization. Minimization of 〈BCS|K̂eff |BCS〉 with respect
to the parameters yields the same results presented here. Bogoljubov and Valatin independently
simplified the theory by their canonical transformation [1, 9].
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β̂−k|BCS〉 =
∏

q 6=k

(ūq + v̄q â
†
−q↑â

†
q↓)β̂−k(ūk + v̄kâ

†
−k↑â

†
k↓)|0〉

=
∏

q 6=k

(ūq + v̄q â
†
−q↑â

†
q↓)(−v̄kūkâ

†
k,↓ + ūkv̄kâ−k↑â

†
−k↑â

†
k,↓)|0〉 = 0

Creation operators create excited states (bogolons) consisting of Cooper pairs and
unpaired electrons. For example:

α̂†
k|BCS〉 =

∏

q 6=k

(ūq + v̄q â
†
−q↑â

†
q↓)â

†
k↓|0〉

β̂†
−k|BCS〉 =

∏

q 6=k

(ūq + v̄q â
†
−q↑â

†
q↓)â

†
k↑|0〉

α̂†
kβ

†
−k|BCS〉 = ūk

∏

q 6=k

(ūq + v̄q â
†
−q↑â

†
q↓)â

†
k↓â

†
k↑|0〉

2.2. The gap equation. By means of (34) the gap equation (20) becomes:

∆ = g
1

V

∑

k

∆

2Ek
tanh

(

β

2
Ek

)

θ(~ωD − |ξk|)

By introducing the density of states per unit volume and single spin component of
the normal phase,

ρn(ξ) =
1

V

∑

k

δ(ξ − ξk)

the sum in k-space is changed into an integral in energy,

1 =
g

2

∫

dξ ρn(ξ)
tanh (12β

√

ξ2 + |∆|2)
√

ξ2 + |∆|2
θ(~ωD − |ξ|)

With the assumption that the density is almost constant in the energy shell |ξ| <
~ωD it simplifies to:

(39)
1

gρn(0)
=

∫ ~ωD

0

dξ
tanh (12β

√

ξ2 +∆2)
√

ξ2 +∆2
gap equation

where ρ(0) is the density of states at the Fermi energy, g is the squared coupling
constant of the phonon to the electron. According to the microscopic theory:

√
g =

zc
vs

√

ni

Mi
π2e2

a0
kF

zc is the number of conducting electrons per ion, ni is the number of ions per unit
volume, Mi is the ionic mass, vs is the speed of sound.

Exercise 2.1. Show that the density of states per unit volume and spin component
of the free electron gas at the Fermi energy is ρn(0) =

3
4n/EF , where n is the density

of electrons and EF is the Fermi energy. Then show that

gρn(0) =
zc
6

m

Mi

(

vF
vs

)2

where m is the electron’s mass and vF is the Fermi velocity.
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2.3. The Green functions. In k-space the equation of motion (25) for the Nambu
propagator is algebraic

[

i~ωn − ξk −∆
−∆ i~ωn + ξk

]

G(k; iωn) = ~ I2

G(k; iωn) =
−~

~2ω2
n + ξ2k + |∆|2

[

i~ωn + ξk ∆
∆ i~ωn − ξk

]

The normal and anomalous propagators are obtained, with Ek =
√

ξ2k + |∆|2:

G (k, iωn) = −~
i~ωn + ξk
~2ω2

n + E2
k

=
|uk|2

iωn − (Ek/~)
+

|vk|2
iωn + (Ek/~)

F (k, iωn) = −~
∆

~2ω2
n + E2

k

=
ukvk

iωn − (Ek/~)
− ukvk
iωn + (Ek/~)

The Matsubara sum in the gap equation

∆ = − g

~β

∑

n

∫

d3k

(2π)3
F (k, iωn)e

iωnη

yields the expression (39).

Example 2.2. Show that the average number of electrons in a state (k, σ) is

nk =
1

~β

∑

n

G (k, iωn) =
1

2
− 1

2

ξk
Ek

tanh
βEk

2
(40)

Exercise 2.3 (spectral density). Evaluate the spectral density of the supercon-
ducting phase

ρs(E) =
∑

k

|uk|2δ(E − Ek) + |vk|2δ(E + Ek)

(use the approximation |∆| ≪ µ). Note the presence of an energy gap of width 2∆
centred at E = 0 (chemical potential).

ρs(E)

ρn(0)
=



























−E+
√
E2−∆2√

E2−∆2

√

1 + E
µ + |E|−

√
E2−∆2

√
E2−∆2

√

1− E
µ −µ < E < −∆

0 |E| < ∆
E−

√
E2−∆2√

E2−∆2

√

1− E
µ + E+

√
E2−∆2√

E2−∆2

√

1 + E
µ ∆ < E < µ

2
√

1 + E
µ µ < E

(41)

ρn(E) =
1

4π2

(

2m

~2

)
3

2
√

E + µ(42)

Near the gap ρs(E) ≈ 2ρn(0)|E|/
√
E2 −∆2.

2.4. Discussion of the gap equation.

T = Tc. At the critical temperature the order parameter ∆ is zero, and the gap
equation is an equation for Tc:

1

gρ(0)
=

∫ ~ωD

0

dξ

ξ
tanh (

1

2
βcξ) =

∫ xc

0

dx

x
tanh x = tanh (xc) log(xc)−

∫ xc

0

dx
log x

cosh2 x

≈ log xc −
∫ ∞

0

dx
log x

cosh2 x
= log xc + log(4eC/π), xc =

~ωD

2kBTc
=
TD
2Tc
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Figure 2. The spectral density (µ = 20, ∆ = 0.6). The thin line

is the square root
√
E of the normal phase. The gap is centred on

the chemical potential.

The approximations are justified by TD/Tc ≫ 1. With C ≈ 0.5772.., the result is

(43) kBTc = 1.134 ~ωD exp

(

− 1

gρ(0)

)

T = 0. The gap equation becomes:

1

gρ(0)
=

∫ ~ωD

0

dξ
1

√

ξ2 +∆2
0

with solution

(44) ∆0 =
~ωD

sinh 1
gρ(0)

≈ 2~ωD exp

(

− 1

gρ(0)

)

The following universal ratio is then obtained:

(45)
∆0

kBTc
= πe−C ≈ 1.76

3. The Ginzburg - Landau limit of BCS

The Ginzburg-Landau theory can be derived from the microscopic BCS model.
Near the transition lineH = Hc(T ), the function ∆ is small, and the Dyson equation
(29) for G(x,y; iωn) can be solved by iteration:

G = Gn +
1

~
GnDGn +

1

~2
GnDGnDGn +

1

~3
GnDGnDGnDGn

The truncation to third order in ∆ evaluates the anomalous correlator F (x,y, iωn)
and the Green function G (x,y, iωn) in terms of the normal Green function and the
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gap function:

F (1, 2, iωn) = − 1

~
Gn(1, 3, iωn)∆(3)Gn(2, 3,−iωn)(46)

+
1

~3
Gn(1, 3, iωn)∆(3)Gn(4, 3,−iωn)∆(4)Gn(4, 5, iωn)∆(5)Gn(2, 5,−iωn);

G (1, 2, iωn) = Gn(1, 2, iωn)(47)

− 1

~2
Gn(1, 3, iωn)∆(3)Gn(4, 3,−iωn)∆(4)Gn(4, 2, iωn)

The space variables 3, 4, 5 are integrated. Gn are the normal Green functions for
independent particles in a static magnetic field.
The equations are the starting point for Gor’kov’s derivation [6] of the two
Ginzburg-Landau equations (1959).
Eq.(46) with 2 = 1+ and summation of Matsubara frequencies, is a cubic expan-
sion of the gap equation for ∆, and provides the first G.L. equation with order
parameter ψ ∝ ∆:

1

g
∆(1) = Q(1, 2)∆(2) +R(1, 2, 3, 4)∆(2)∆(3)∆(4)(48)

with weight functions

Q(1, 2) =
1

~2β

∑

n

Gn(1, 2, iωn)Gn(1, 2,−iωn)

R(1, 2, 3, 4) = − 1

~4β

∑

n

Gn(1, 2, iωn)Gn(3, 2,−iωn)Gn(3, 4, iωn)Gn(1, 4,−iωn)

Eq.(47) is an expansion for the Green function, that is used to to evaluate the
super-current, and yields the second G.L. equation.
The derivation of G.L. equations relies crucially on the large difference among the
length scales involved. We need some preliminaries. ...
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