LONDON VORTICES

NOTES BY L. G. MOLINARI

Let us summarise the main formulas of the theory by Ginzburg and Landau for superconductivity. The free energy and the supercurrent density are

(1)
$$F = \int d\mathbf{x} \frac{\hbar^2}{2m^*} |(-i\mathbf{\nabla} + \frac{e^*}{\hbar c}\mathbf{A})\psi|^2 + a|\psi|^2 + \frac{b}{2}|\psi|^4 + \frac{\mathbf{B}^2}{8\pi} + F_n^0$$

(2)
$$\mathbf{J}_S = -\frac{e^{\star 2}}{m^{\star}c} |\psi|^2 (\frac{\phi_0}{2\pi} \mathbf{\nabla} \alpha + \mathbf{A})$$

where $\psi = |\psi|e^{i\alpha}$, $a = a'(T - T_c)$, b > 0 and $\phi_0 = hc/e^*$ is the unit of magnetic flux. The single-valuedness of ψ implies this integral identity on a closed circuit:

(3)
$$\frac{m^*c}{e^{\star 2}} \oint_C \frac{\mathbf{J}_S \cdot d\ell}{|\psi|^2} + \int_S da \, \mathbf{n} \cdot \mathbf{B} = m\phi_0, \quad m \text{ integer}$$

where the surface S has boundary line C.

The (squared) coherence and penetration lengths, the GL ratio, the bulk value of the order parameter are:

$$(4) \qquad \xi^2 = \frac{\hbar^2}{2m^{\star}|a|}, \quad \delta^2 = \frac{m^{\star}c^2b}{4\pi e^{\star 2}|a|}, \quad \kappa = \frac{\delta}{\xi} = \frac{m^{\star}c}{e^{\star}\hbar}\sqrt{\frac{b}{2\pi}}, \quad \psi_{\infty}^2 = \frac{|a|}{b}$$

The following relations are useful:

(5)
$$\frac{H_c(T)^2}{8\pi} = \frac{a^2}{2b}, \qquad H_{c2}(T) = \kappa \sqrt{2}H_c(T)$$

(6)
$$\phi_0 = \frac{hc}{2e} = 2\pi \xi^2 H_{c2}$$

(7)
$$\xi \delta H_c = \frac{\phi_0}{2\pi\sqrt{2}}$$

LONDON VORTICES

The study of the G.L. equations is simpler in the regime $\kappa \gg 1$, where f=1 in bulk regions, and rapidly drops to zero in contact with normal regions. The free energy and the current density (2) are approximated by

$$F = \int_{V} d\mathbf{x} \frac{e^{\star 2}}{2m^{\star}c^{2}} \psi_{\infty}^{2} |\frac{\phi_{0}}{2\pi} \nabla \alpha + \mathbf{A}|^{2} + a\psi_{\infty}^{2} + \frac{b}{2} \psi_{\infty}^{4} + \frac{\mathbf{B}^{2}}{8\pi} + F_{n}^{0}$$

(8)
$$\mathbf{J} = -\frac{e^{\star 2}}{m^{\star}c}\psi_{\infty}^{2}(\frac{\phi_{0}}{2\pi}\boldsymbol{\nabla}\alpha + \mathbf{A})$$

where the volume V excludes regions where f differs from 1. With the 2nd GL equation (Maxwell's equation), $\mathbf{J} = \frac{c}{4\pi} \mathrm{rot} \mathbf{B}$, the free energy becomes:

(9)
$$F = \frac{1}{8\pi} \int_{V} d\mathbf{x} \left(\mathbf{B}^2 + \delta^2 |\text{rot} \mathbf{B}|^2 \right) - \frac{H_c^2}{8\pi} + F_{n,0}$$

 $Date : \ dec \ 2021$ - $\ dec \ 2023.$

The same expression results in London's theory for a superfluid with uniform mass density m^*n_s , velocity \mathbf{v}_s , supercurrent $\mathbf{J}_s = -e^*n_s\mathbf{v_s}$. Maxwell's equation gives the kinetic energy

$$\frac{1}{2}m^*n_sv_s^2 = \frac{1}{2}m^*n_s\frac{c^2}{16\pi^2}\frac{|\text{rot}B|^2}{e^{*2}n_s^2} = \frac{\delta^2}{8\pi}|\text{rot}B|^2$$

The rot operator of (8) and Maxwell's equation give: rot rot $\mathbf{B} = -\frac{4\pi e^{\star^2}}{m^{\star}c^2}\psi_{\infty}^2\mathbf{B}$

$$\mathbf{B} - \delta^2 \nabla^2 \mathbf{B} = 0$$

In the following we consider vortex solutions $\mathbf{B} = B(x,y)\mathbf{k}$. Then: $|\operatorname{rot} \mathbf{B}|^2 = (\partial_x B)^2 + (\partial_y B)^2 = -B\nabla^2 B + \frac{1}{2}\nabla^2 B^2$. The free energy per unit length is

$$\frac{F}{L} = \frac{1}{8\pi} \int_{S} da \, B(B - \delta^2 \nabla^2 B) + \frac{\delta^2}{16\pi} \int_{S} da \, \nabla^2 B^2$$

where the surface S excludes the vortex cores. The first integral is zero for a solution of (10). Since $\nabla^2 = \text{div grad}$ we obtain an integral along the boundary:

(11)
$$\frac{F}{L} = \frac{\delta^2}{16\pi} \sum_{k} \oint d\ell \, (\mathbf{n} \cdot \mathbf{\nabla}) B^2$$

The sum is on all vortex cores, and the integrals are on circles of radius ξ centered in each core, with normal vector **n** pointing to the center of the core. In a core the field B is almost constant (the supercurrents are zero inside).

1-vortex solution. For a single vortex, B(r) solves (10) outside the core. In coordinates (r, θ, z) it is Bessel's equation

(12)
$$B'' + \frac{1}{r}B' - \frac{1}{\delta^2}B = 0 \qquad r > \xi$$

The solution is Hankel's function $CK_0(r/\delta)$, with a constant C. The function is always positive and decreasing, with limit behaviours:

(13)
$$K_0(x) = \begin{cases} \sqrt{\frac{\pi}{2x}} \exp(-x) & x \gg 1\\ -\log x + \log 2 - \gamma & x \to 0 \end{cases}$$

 $\log 2 - \gamma \approx 0.12$ (γ is Euler's constant). $K_0(1) = 0.421$, $K_0(2) = 0.114$. The derivative is $K_0'(x) = -K_1(x)$. Since $x = r/\delta$, the limit $x \to 0$ is achieved for $\xi/\delta \ll 1$ i.e. a type II superconductor.

To relate the constant C to a physical property, let us evaluate the flux through an annulus $\xi < r < R$, where R is arbitrary. We use $B = \delta^2 \frac{1}{r} (r \frac{d}{dr} B)$:

$$\Phi(R) = 2\pi \int_{\xi}^{R} r dr B(r) = 2\pi C \delta^{2} \int_{\xi/\delta}^{R/\delta} x dx \frac{1}{x} \frac{d}{dx} (-xK_{1})$$
$$= 2\pi C \delta [\xi K_{1}(\xi/\delta) - RK_{1}(R/\delta)]$$

For $\xi \ll \delta$ we approximate $K_1(\delta/\xi) \simeq \xi/\delta$. The total flux is collected within few screening lengths δ . Then we may take $R \gg \delta$:

$$\Phi(R) \approx 2\pi\delta^2 C - C(\pi\delta)^{3/2} \sqrt{2R} e^{-R/\delta} \approx 2\pi\delta^2 C$$

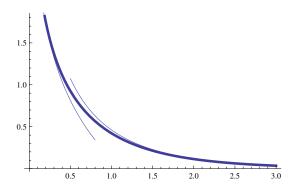


FIGURE 1. The function $K_0(x)$. The thin lines describe the limit functions in eq.(13)

We thus obtain C, and write the solution B:

(14)
$$B(r) = \frac{\Phi}{2\pi\delta^2} K_0 \left(\frac{r}{\delta}\right)$$

The field at the core with a unit flux quantum ϕ_0 , with eq.(6), is:

$$B(\xi) = \frac{2\pi \xi^2 H_{c2}}{2\pi \delta^2} \log \kappa = \frac{H_{c2}}{\kappa^2} \log \kappa = H_c \sqrt{2} \frac{\log \kappa}{\kappa}$$

The core flux is $\Phi_{core} = \pi \xi^2 B(\xi) = \pi \xi^2 H_{c2} \frac{\log \kappa}{\kappa^2} = \phi_0 \frac{\log \kappa}{2\kappa^2}$.

The lower field H_{c1} at which the flux penetrates, marking the limit of the pure diamagnetic phase, is about half of it (the term 0.12 is omitted)

(15)
$$H_{c1} = H_c \frac{\log \kappa}{\kappa \sqrt{2}}$$

At this value the difference of the Gibbs potentials $G_s - G_n$ becomes negative. In a type II superconductor, nothing happens as $H = H_c$.

The integral for the free energy per unit length of a vortex is evaluated on the circle $r = \xi$:

$$\frac{F_1}{L} = -\frac{\delta^2}{16\pi} \oint d\ell \, \frac{d}{dr} B^2(r) = -\frac{\delta^2}{16\pi} \frac{d}{dr} B^2(r) \Big|_{r=\xi} 2\pi\xi$$
$$= \left(\frac{\Phi}{4\pi\delta}\right)^2 K_0\left(\frac{\xi}{\delta}\right) K_1\left(\frac{\xi}{\delta}\right) \frac{\xi}{\delta}$$

In the limit $\kappa = \delta/\xi \gg 1$, it is:

(16)
$$\frac{F_1}{L} = \left(\frac{\Phi}{4\pi\delta}\right)^2 (\log \kappa + 0.12)$$

The constant value 0.12 will be neglected. The current density circulates around the core and fades within few London lengths:

(17)
$$\mathbf{J}(r) = \frac{c}{4\pi} \operatorname{rot} \mathbf{B} = \frac{c}{4\pi} [\mathbf{i}\partial_y B - \mathbf{j}\partial_x B] = -\frac{c}{4\pi} \frac{dB}{dr} \boldsymbol{\theta} = \frac{c\Phi}{8\pi^2 \delta^3} K_1 \left(\frac{r}{\delta}\right) \boldsymbol{\theta}$$

Example 0.1. The superconducting alloy Nb₃Sn has $T_c = 18.3K$, $\kappa \approx 40$, $\xi_0 = 3.3$ nm, $\delta = 135$ nm, $H_{c1} = 0.038$ T. It can attain $H_{c2} = 30$ T [6]. Evaluate the free energy per unit length of a vortex.

$$\xi^2 = \frac{\phi_0}{2\pi H_{c2}} = \frac{2.07 \times 10^{-7} \mathrm{Oe} \cdot \mathrm{cm}^2}{2\pi \cdot 30 \times 10^4 \mathrm{Oe}} = 10.9 \times 10^{-14} \mathrm{cm}^2, \quad \xi \approx 3.3 \, \mathrm{nm}$$

With $mc^2 = 0.51$ MeV, $a_0 = \hbar^2/(me^2) = 5.29 \times 10^{-2}$ nm, the energy per unit length of a vortex with 1 elementary flux $\phi_0 = hc/2e$ is:

$$\epsilon = \left(\frac{hc}{8e\pi\delta}\right)^2 (\log \kappa + 0.12) = \frac{mc^2}{16} \frac{a_0}{\delta^2} (\log \kappa + 0.12) \approx 3.5 \frac{\text{MeV}}{\text{cm}} = 5.6 \times 10^{-6} \frac{\text{erg}}{\text{cm}}$$

The 2-vortex solution. Since the equation (10) is linear, a 2-vortex solution is the superposition a two 1-vortex solutions with flux Φ in the origin and another in position \mathbf{R} :

(18)
$$B(\mathbf{x}) = \frac{\Phi}{2\pi\delta^2} \left[K_0 \left(\frac{|\mathbf{x}|}{\delta} \right) + K_0 \left(\frac{|\mathbf{x} - \mathbf{R}|}{\delta} \right) \right]$$

with $R \gg \xi$. The free energy per unit length is

$$\epsilon_{2} = \frac{\delta^{2}}{16\pi} \sum_{j=1,2} \oint_{C_{j}} d\ell \, (\mathbf{n} \cdot \nabla) (\mathbf{B_{1}} + \mathbf{B_{2}})^{2}$$

$$\approx \frac{\delta^{2}}{16\pi} \sum_{j=1,2} \oint_{C_{j}} d\ell \, (\mathbf{n} \cdot \nabla) B_{j}^{2} + 2 \frac{\delta^{2}}{16\pi} \sum_{j=1,2} \oint_{C_{j}} d\ell \, (\mathbf{n} \cdot \nabla) (B_{1}B_{2})$$

$$= 2\epsilon_{1} + \frac{4\delta^{2}}{16\pi} \left(\frac{\Phi}{2\pi\delta^{2}}\right)^{2} \oint_{|\mathbf{x}|=\xi} d\ell (-\frac{d}{dr}) K_{0} \left(\frac{|\mathbf{x}|}{\delta}\right) K_{0} \left(\frac{|\mathbf{x} - \mathbf{R}|}{\delta}\right)$$

$$\approx 2\epsilon_{1} + \frac{\delta^{2}}{4\pi} \left(\frac{\Phi}{2\pi\delta^{2}}\right)^{2} \frac{1}{\delta} K_{1} \left(\frac{\xi}{\delta}\right) K_{0} \left(\frac{R}{\delta}\right) 2\pi\xi$$

We neglected the contribution of B_1^2 to the hole 2 and of B_2^2 to hole 1 (i.e. $\delta/\xi = \kappa \gg 1$), and a term arising from the derivative (it is order $1/\kappa^2$ of the first one). The interaction energy per unit length among the two parallel and equal vortices at distance R is $\epsilon_{\rm int} = \epsilon_2 - 2\epsilon_1$,

(19)
$$\epsilon_{int}(R) = \frac{\Phi^2}{8\pi^2 \delta^2} K_0 \left(\frac{R}{\delta}\right)$$

Since K_0 is monotonically decreasing, the force per unit length between vortices is repulsive: $f_{12}(R) = -\epsilon'_{int}(R) > 0$.

A more accurate expression, valid for $R \gg \xi$, is [5]

(20)
$$\epsilon_{int}(R) = c^2 K_0 \left(\frac{R}{\delta}\right) - \frac{d^2}{\kappa^2} K_0 \left(\sqrt{2}\frac{R}{\xi}\right)$$

with parameters c, d. It is attractive for type I superconductors, and always attractive for vortex antivortex pairs. It is zero for $\kappa = 1/\sqrt{2}$.

Example 0.2. Show that the free energy per unit length of a single vortex with flux 2Φ is greater than the free energy of two vortices each carrying a flux Φ .

Example 0.3. (from [7]). Find the attractive force exerted on a vortex by the surface of a flat superconductor if the vortex is parallel to the surface at a distance $\ell = 50 \text{nm}$ and $\delta = 300 \text{nm}$.

Being $\delta > \ell$, the magnetic field of the vortex reaches the surface, where B=0. The situation vortex+s-surface is equivalent to two specular vortices with opposite fluxes. The interaction energy per unit length is $\epsilon = \frac{\phi^2}{8\pi^2\delta^2}K_0(\frac{2\ell}{\delta}) \approx -\frac{\phi^2}{8\pi^2\delta^2}\log\frac{2\ell}{\delta}$. The force per unit length is $F/L = -d\epsilon/d\ell = \frac{\phi^2}{8\pi^2\delta^2}\frac{1}{\ell}$.

References

- [1] P. G. de Gennes, Superconductivity of metals and alloys, Benjamin, 1966.
- [2] This is a useful source about special functions: http://dlmf.nist.gov A nice book is N. N. Lebedev, Special functions and their applications, Dover.
- [3] M. Tinkham, Introduction to Superconductivity, second ed. 1996, reprinted by Dover.
- [4] A. Chaves, F. M. Peeters, G. A. Farias and M. V. Milošević, Vortex-vortex interaction in bulk superconductors: Ginzburg-Landau theory, Phys. Rev. B 83 054516 (2011), (14 pages).
- [5] L. Kramer, Thermodynamic Behavior of Type-II Superconductors with Small κ near the Lower Critical Field, Phys. Rev. B 3 (1) (1971) 3821–3825.
- [6] A. Godeke, Nb₃Sn for radio frequency cavities, (2006) Technical Report 62140 (LBNL), https://escholarship.org/uc/item/6d3753q7
- [7] V. V. Schmidt, The Physics of Superconductors, Springer, 1997.