
LONDON VORTICES

NOTES BY L. G. MOLINARI

Let us summarise the main formulas of the theory by Ginzburg and Landau for
superconductivity. The free energy and the supercurrent density are
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where ψ = |ψ|eiα, a = a′(T − Tc), b > 0 and φ0 = hc/e? is the unit of magnetic
flux. The single-valuedness of ψ implies this integral identity on a closed circuit:
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where the surface S has boundary line C.
The (squared) coherence and penetration lengths, the GL ratio, the bulk value of
the order parameter are:
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The following relations are useful:
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London vortices

The study of the G.L. equations is simpler in the regime κ� 1, where f = 1 in
bulk regions, and rapidly drops to zero in contact with normal regions. The free
energy and the current density (2) are approximated by
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where the volume V excludes regions where f differs from 1. With the 2nd GL
equation (Maxwell’s equation), J = c

4π rotB, the free energy becomes:
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The same expression results in London’s theory for a superfluid with uniform
mass density m?ns, velocity vs, supercurrent Js = −e?nsvs. Maxwell’s equation
gives the kinetic energy
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The rot operator of (8) and Maxwell’s equation give: rot rot B = − 4πe?2

m?c2 ψ
2
∞B

B− δ2∇2B = 0(10)

In the following we consider vortex solutions B = B(x, y)k. Then: |rotB|2 =
(∂xB)2 + (∂yB)2 = −B∇2B + 1

2∇
2B2. The free energy per unit length is
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where the surface S excludes the vortex cores. The first integral is zero for a solution
of (10). Since ∇2 = div grad we obtain an integral along the boundary:
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The sum is on all vortex cores, and the integrals are on circles of radius ξ centered
in each core, with normal vector n pointing to the center of the core.
In a core the field B is almost constant (the supercurrents are zero inside).

1-vortex solution. For a single vortex, B(r) solves (10) outside the core. In
coordinates (r, θ, z) it is Bessel’s equation
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The solution is Hankel’s function CK0(r/δ), with a constant C. The function is
always positive and decreasing, with limit behaviours:

K0(x) =

{√
π
2x exp(−x) x� 1

− log x+ log 2− γ x→ 0
(13)

log 2 − γ ≈ 0.12 (γ is Euler’s constant). K0(1) = 0.421, K0(2) = 0.114. The
derivative is K ′0(x) = −K1(x). Since x = r/δ, the limit x → 0 is achieved for
ξ/δ � 1 i.e. a type II superconductor.
To relate the constant C to a physical property, let us evaluate the flux through an
annulus ξ < r < R, where R is arbitrary. We use B = δ2 1

r (r ddrB):
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∫ R

ξ

rdrB(r) = 2πCδ2
∫ R/δ

ξ/δ

xdx
1

x

d

dx
(−xK1)

= 2πCδ[ξK1(ξ/δ)−RK1(R/δ)]

For ξ � δ we approximate K1(δ/ξ) ' ξ/δ. The total flux is collected within few
screening lengths δ. Then we may take R� δ:

Φ(R) ≈ 2πδ2C − C(πδ)3/2
√

2Re−R/δ ≈ 2πδ2C
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Figure 1. The function K0(x). The thin lines describe the limit
functions in eq.(13)

We thus obtain C, and write the solution B:
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The field at the core with a unit flux quantum φ0, with eq.(6), is:
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The core flux is Φcore = πξ2B(ξ) = πξ2Hc2
log κ
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log κ
2κ2 .

The lower field Hc1 at which the flux penetrates, marking the limit of the pure
diamagnetic phase, is about half of it (the term 0.12 is omitted)
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κ
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2
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At this value the difference of the Gibbs potentials Gs −Gn becomes negative. In
a type II superconductor, nothing happens as H = Hc.

The integral for the free energy per unit length of a vortex is evaluated on the
circle r = ξ:
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In the limit κ = δ/ξ � 1, it is:
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The constant value 0.12 will be neglected. The current density circulates around
the core and fades within few London lengths:
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Example 0.1. The superconducting alloy Nb3Sn has Tc = 18.3K, κ ≈ 40, ξ0 =
3.3nm, δ = 135nm, Hc1 = 0.038T. It can attain Hc2 = 30T [6].
Evaluate the free energy per unit length of a vortex.

ξ2 =
φ0

2πHc2
=

2.07× 10−7Oe · cm2

2π · 30× 104Oe
= 10.9× 10−14cm2, ξ ≈ 3.3 nm

With mc2 = 0.51 MeV, a0 = ~2/(me2) = 5.29×10−2nm, the energy per unit length
of a vortex with 1 elementary flux φ0 = hc/2e is:

ε =
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)2
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16
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(log κ+ 0.12) ≈ 3.5
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cm

The 2-vortex solution. Since the equation (10) is linear, a 2-vortex solution is
the superposition a two 1-vortex solutions with flux Φ in the origin and another in
position R:
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with R� ξ. The free energy per unit length is
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We neglected the contribution of B2
1 to the hole 2 and of B2

2 to hole 1 (i.e. δ/ξ =
κ� 1), and a term arising from the derivative (it is order 1/κ2 of the first one).
The interaction energy per unit length among the two parallel and equal vortices
at distance R is εint = ε2 − 2ε1,

εint(R) =
Φ2

8π2δ2
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Since K0 is monotonically decreasing, the force per unit length between vortices is
repulsive: f12(R) = −ε′int(R) > 0.
A more accurate expression, valid for R� ξ, is [5]

εint(R) = c2K0
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with parameters c, d. It is attractive for type I superconductors, and always at-
tractive for vortex antivortex pairs. It is zero for κ = 1/

√
2.

Example 0.2. Show that the free energy per unit length of a single vortex with
flux 2Φ is greater than the free energy of two vortices each carrying a flux Φ.
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Example 0.3. (from [7]). Find the attractive force exerted on a vortex by the
surface of a flat superconductor if the vortex is parallel to the surface at a distance
` = 50nm and δ = 300nm.
Being δ > `, the magnetic field of the vortex reaches the surface, where B = 0.
The situation vortex+s-surface is equivalent to two specular vortices with opposite

fluxes. The interaction energy per unit length is ε = φ2

8π2δ2K0( 2`
δ ) ≈ − φ2

8π2δ2 log 2`
δ .

The force per unit length is F/L = −dε/d` = φ2

8π2δ2
1
` .
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