LONDON VORTICES
NOTES BY L. G. MOLINARI

Let us summarise the main formulas of the theory by Ginzburg and Landau for
superconductivity. The free energy and the supercurrent density are
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where ¢ = |1/J|ew‘7 a=a (T —Te), b > 0 and ¢y = he/e* is the unit of magnetic
flux. The single—valuedness of ¥ implies this integral identity on a closed circuit:
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where the surface S has boundary line C.
The (squared) coherence and penetration lengths, the GL ratio, the bulk value of
the order parameter are:
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The following relations are useful:
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LONDON VORTICES

The study of the G.L. equations is simpler in the regime x > 1, where f =1 in
bulk regions, and rapidly drops to zero in contact with normal regions. The free
energy and the current density (2) are approximated by
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where the volume V' excludes regzons where f differs from 1. With the 2nd GL
equation (Maxwell’s equation), J = ;ZrotB, the free energy becomes:
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The same expression results in London’s theory for a superfluid with uniform

mass density m*ng, velocity v, supercurrent Js = —e*ngvs. Maxwell’s equation
gives the kinetic energy
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The rot operator of (8) and Maxwell’s equation give: rot rot B = i’fcz 2. B
(10) B - 5°V’B =0
In the following we consider vortex solutions B = B(z,y)k. Then: [rotBJ? =
(0.B)* + (8,B)? = —BV?B + $V?B?. The free energy per unit length is
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where the surface S excludes the vortex cores. The first integral is zero for a solution
of (10). Since V2 = div grad we obtain an integral along the boundary:
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The sum is on all vortex cores, and the integrals are on circles of radius £ centered
in each core, with normal vector n pointing to the center of the core.
In a core the field B is almost constant (the supercurrents are zero inside).

1-vortex solution. For a single vortex, B(r) solves (10) outside the core. In
coordinates (r, 6, z) it is Bessel’s equation
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The solution is Hankel’s function C'Ky(r/d), with a constant C. The function is
always positive and decreasing, with limit behaviours:
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log2 — v =~ 0.12 (v is Euler’s constant). Ko(1) = 0.421, Ky(2) = 0.114. The
derivative is K{(z) = —Ki(x). Since z = r/d, the limit x — 0 is achieved for
¢/6 < 11i.e. a type II superconductor.

To relate the constant C' to a physical property, let us evaluate the flux through an

annulus £ < r < R, where R is arbitrary. We use B = §?1(r-4L B):
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For £ < ¢ we approximate K1(§/§) ~ £/6. The total flux is collected within few
screening lengths §. Then we may take R > §:
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FIGURE 1. The function Ko(x). The thin lines describe the limit
functions in eq.(13)

We thus obtain C, and write the solution B:

(14) B(r) = 5o Ko (5)

The field at the core with a unit flux quantum ¢, with eq.(6), is:
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The lower field H.; at which the flux penetrates, marking the limit of the pure
diamagnetic phase, is about half of it (the term 0.12 is omitted)
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At this value the difference of the Gibbs potentials G — G,, becomes negative. In
a type II superconductor, nothing happens as H = H..

The integral for the free energy per unit length of a vortex is evaluated on the
circle r = &:
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In the limit k = 6/€ > 1, it is:
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The constant value 0.12 will be neglected. The current density circulates around
the core and fades within few London lengths:
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Example 0.1. The superconducting alloy Nb3Sn has T, = 18.3K, k =~ 40, & =

3.3nm, 6 = 135nm, H.; = 0.038T. It can attain H.o, = 30T [6].

Evaluate the free energy per unit length of a vortex.
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With me? = 0.51 MeV, ag = h%/(me?) = 5.29 x 10~?nm, the energy per unit length

of a vortex with 1 elementary flux ¢y = hc/2e is:

=10.9 x 107 "em?, € ~3.3nm
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The 2-vortex solution. Since the equation (10) is linear, a 2-vortex solution is
the superposition a two 1-vortex solutions with flux ® in the origin and another in
position R.:
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with R > £. The free energy per unit length is
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We neglected the contribution of B} to the hole 2 and of B3 to hole 1 (i.e. §/¢ =
k> 1), and a term arising from the derivative (it is order 1/k? of the first one).
The interaction energy per unit length among the two parallel and equal vortices
at distance R iS €, = €9 — 2€7,
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Since K| is monotonically decreasing, the force per unit length between vortices is
repulsive: fi2(R) = —¢,,(R) > 0.
A more accurate expression, valid for R > &, is [5]
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with parameters ¢, d. It is attractive for type I superconductors, and always at-
tractive for vortex antivortex pairs. It is zero for k = 1/ V2.

Example 0.2. Show that the free energy per unit length of a single vortex with
flux 29 is greater than the free energy of two vortices each carrying a flux ®.



Example 0.3. (from [7]). Find the attractive force exerted on a vortex by the
surface of a flat superconductor if the vortex is parallel to the surface at a distance
¢ = 50nm and § = 300nm.

Being § > ¢, the magnetic field of the vortex reaches the surface, where B = 0.
The situation vortex+s-surface is equivalent to two specular vortices with opposite
fluxes. The interaction energy per unit length is € = %KO(%Z) A —% log %Z.

The force per unit length is F//L = —de/dl = 87?2262 g
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