
VORTICES

PRELIMINARY NOTES BY L. G. MOLINARI

Let us summarise the main formulas of the theory by Ginzburg and Landau for
superconductivity. The free energy and the current density are

F =

∫
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where ψ = |ψ|eiω, a = a′(T − Tc), b > 0 and φ0 = hc/e∗ is the unit of magnetic
flux. The single-valuedness of ψ implies this integral identity on a closed circuit:
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where S is encircled by the line C. The (squared) coherence and London lengths,
the GL ratio, the bulk value of the order parameter are:
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The following relations are useful:
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2
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1. London vortices

The study of the G.L. equations is simpler in the regime κ � 1, where f = 1,
i.e. ψ = ψ∞e

iω in bulk regions, and drops to zero in contact with normal regions.
The free energy and the current density (2) are approximated by
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where the volume excludes regions where f differs from 1.
With the II GL equation (Maxwell’s equation), J = c

4π rotB, the free energy be-
comes:

F =
1

8π

∫
V

dx (B2 + λ2|rotB|2)− H2
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Remark 1.1. The same expression results in London’s theory for a superfluid with
uniform mass density m∗ns, velocity vs, supercurrent Js = −e?nsvs. Maxwell’s
equation gives the kinetic energy

1

2
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2
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m∗ns

c2

16π2

|rotB|2

e?2n2s
=
λ2

8π
|rotB|2

The rotation of (7) and Maxwell’s equation give: rot rot B = − 4πe∗2

m∗c2 ψ
2
∞B, i.e.

B− λ2∇2B = 0(9)

In the following we consider vortex solutions B = B(x)k. Then: |rotB|2 =
(∂xB)2 + (∂yB)2 = −B∇2B + 1

2∇
2B2. The free energy per unit length is

ε =
F

L
=

1

8π

∫
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daB(B − λ2∇2B) +
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16π

∫
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where the surface S excludes the vortex cores. The first integral is zero for a solution
of (9). Since ∇2 = div grad we obtain an integration along the boundary:

ε =
λ2

16π

∑
k

∮
d` n · gradB2(10)

The sum is on all vortex cores, and the integrals are on circles of radius ξ centered
in each core, with normal vector n pointing to the center of the core. In a core
the field is almost constant (supercurrents vanish). The contribution to the total
energy of the cores is small.

1.1. 1-vortex solution. For a single vortex, B(r) solves (9) outside the core. In
polar coordinates it is Bessel’s equation

B′′ +
1

r
B′ − 1

λ2
B = 0 r > ξ(11)

The solution is Hankel’s function K0(r/λ), up to a multiplicative constant c. The
function is always positive and decreasing, with limit behaviours:

K0(x) =

{√
π
2x exp(−x) x� 1

− log x+ log 2− γ x→ 0
(12)

log 2− γ ≈ 0.12 (γ is Euler’s constant). K0(1) = 0.421, K0(2) = 0.114. The deriv-
ative is K ′0(x) = −K1(x).
Since x = r/λ, the limit x→ 0 is achieved for ξ/λ� 1 i.e. a type II superconduc-

tor.
To obtain the constant c let us evaluate the flux through a ring ξ < r < R, where
R is arbitrary:

Φ(R) = 2π

∫ R

ξ

rdrB(r) = 2πcλ2
∫ R/λ

ξ/λ

xdx
1

x

d

dx
(−xK1)

= 2πcλ[ξK1(ξ/λ)−RK1(R/λ)]

For ξ � λ we approximate K1(x) ' 1/x; the total flux is collected within a distance
of few screening London lengths λ. Then R� λ:

Φ(R) ≈ 2πλ2c− c(πλ)3/2
√

2Re−R/λ
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Figure 1. The function K0(x). The thin lines describe the limit
functions in eq.(12)

We thus determine c, and put in the solution B:

B(r) =
Φ

2πλ2
K0

( r
λ

)
(13)

The field at the core for a unit quantum flux, is

B(ξ) =
2πξ2Hc2

2πλ2
log κ = Hc

√
2

log κ

κ

The actual field Hc1 at which the flux first penetrates when leaving the pure dia-
magnetic phase is about half of it (the term 0.12 is omitted)

Hc1 = Hc
log κ

κ
√

2
(14)

It is the value at which difference of the Gibbs potentials Gs−Gn becomes negative.
In a type II superconductor, nothing happens as H = Hc (the thermodynamic
critical field).

The free energy per unit length of a vortex is evaluated on the circle r = ξ:
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In the limit κ = λ/ξ � 1, it is:

ε1 =
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Φ

4πλ

)2

(log κ+ 0.12)(15)

The constant value 0.12 will be neglected. The current density circulates around
the core and fades within few London lengths:

J(r) =
c

4π
rotB =

c

4π
[i∂yB − j∂xB] = − c

4π

dB
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Example 1.2. The superconducting alloy Nb3Sn has Tc = 18.3K, κ ≈ 40, ξ0 =
3.3nm, λ = 135nm, Hc1 = 0.038T. It can attain Hc2 = 30T [6]. Evaluate the free
energy per unit length of a vortex.

ξ2 =
φ0

2πHc2
=

2.07× 10−7Oe · cm2

2π · 30× 10−4T
= 10.9× 10−14cm2, ξ ≈ 3.3 nm

With mc2 = 0.51 MeV, a0 = ~2/(me2) = 5.29×10−2nm, the energy per unit length
of a vortex with 1 elementary flux φ0 = hc/2e is:

ε =

(
hc

8eπλ

)2

(log κ+ 0.12) =
mc2

16

a0
λ2

(log κ+ 0.12) ≈ 3.5
MeV

cm
= 5.6× 10−6

erg

cm

Example 1.3. Show that the ratio ε1/εcore = 4 log κ, where εcore = 1
8ξ

2H2
c is an

estimate of the energy per unit length stored in the normal core of the vortex.

1.2. The 2-vortex solution. Since the equation is linear, a 2-vortex solution is
the superposition a two 1-vortex solutions with a flux Φ in the origin and another
in R:
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)
+K0

(
|x−R|

λ
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(17)

with R� ξ. The free energy per unit length is

ε2 =
λ2

16π

∑
j=1,2

∮
Cj

d`n · grad(B1 +B2)2

≈ λ2

16π

∑
j=1,2

∮
Cj

d`n · gradB2
j + 2

λ2

16π

∑
j=1,2

∮
Cj

d`n · grad(B1B2)

= 2ε1 +
4λ2

16π

(
Φ

2πλ2

)2 ∮
|x|=ξ

d`(− d

dr
)K0

(
|x|
λ

)
K0

(
|x−R|

λ

)
≈ 2ε1 +

λ2

4π

(
Φ

2πλ2

)2
1

λ
K1

(
ξ

λ

)
K0

(
R

λ

)
2πξ

We neglected the contribution of B2
1 to the hole 2 and of B2

2 to hole 1 (i.e. λ/ξ =
κ� 1), and a term arising from the derivative (it is order 1/κ2 of the first one).
The interaction energy per unit length among the two parallel and equal vortices
at distance R is εint = ε2 − 2ε1,

εint(R) =
Φ2

8π2λ2
K0

(
R

λ

)
(18)

Since K0 is monotonically decreasing, the force per unit length between vortices is
repulsive: f12(R) = −ε′int(R) > 0.
A more accurate expression, valid for R� ξ, is [5]

εint(R) = c2K0

(
R

λ

)
− d2

κ2
K0

(√
2
R

ξ

)
(19)

with parameters c, d. It is attractive for type I superconductors, and always at-
tractive for vortex antivortex pairs. It is zero for κ = 1/

√
2.

Exercise 1.4. Show that the free energy per unit length of a single vortex with
flux 2Φ is greater than the free energy of two vortices each carrying a flux Φ.



5

Exercise 1.5. (from [7]). Find the attractive force exerted on a vortex by the
surface of a flat superconductor if the vortex is parallel to the surface at a distance
` = 50nm and λ = 300nm.
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