
NOTES ON LINEAR RESPONSE

AND LEHMANN’S REPRESENTATION

L. G. MOLINARI

1. Linear Response

To investigate the properties of a system, one has to interact with it. If the
interaction is weak, the system is usually weakly perturbed from equilibrium, and
information about unperturbed properties may be gathered. In the linear regime, a
measurement of an observable gives the deviation from the equilibrium value that
is proportional to the perturbing field. The proportionality is through a response
function that is a property of the unperturbed system (such as conductivity, dielec-
tric function, magnetic susceptibility, ... ).
The theory of linear response provides an expression for such functions.

Let H be the Hamiltonian of the system under investigation. The interaction
with an external field gives a time-dependent Hamiltonian

H(t) = H + V (t), V (t) = 0 for t < 0

The state at t ≤ 0 is the ground state |E0〉 of H. For t > 0 the state is |Ψ(t)〉 =

U(t, 0)|E0〉 = e−
i
~HtUI(t, 0)|E0〉. An observable O has mean value

〈Ψ(t)|O|Ψ(t)〉 = 〈E0|UI(t, 0)†OH(t)UI(t, 0)|E0〉

UI(t, 0) = T exp
1

i~

∫ t

0

dt′VH(t′)

In the linear regime we only keep terms linear in V , then:

〈Ψ(t)|O|Ψ(t)〉 − 〈E0|O|E0〉 =
1

i~

∫ t

0

dt′〈E0| [OH(t), VH(t′)] |E0〉

The left-hand-side is the variation δO(t) induced by the perturbation. In the right-
hand side, we exploit V (t) = 0 for t < 0, to rewrite the result.
This is the simple general formula for linear response (Ryogo Kubo, 1957):

δO(t) =
1

i~

∫ +∞

−∞
dt′θ(t− t′)〈E0| [OH(t), VH(t′)] |E0〉(1)

The theta function enforces causality: the observed effect at time t only depends
on the perturbation at earlier times.
To identify a response function, we consider two important cases.
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Perturbation coupled to the density. V (t) =
∫
dxn(x)ϕ(x, t), where n(x) is

the density of particles of the system and ϕ(x) is an assigned external field that is
zero for t < 0.
This choice of perturbation is appropriate for evaluating the variation of the density:

δn(x, t) =
1

i~

∫ +∞

−∞
dt′
∫
dx′θ(t− t′)〈E0| [nH(x, t), nH(x′, t′)] |E0〉ϕ(x′, t′)

The density variation is proportional to the field through a retarded correlator:

δn(x) =
1

~

∫
d4x
′Dret(x, x′)ϕ(x′)(2)

Dret(x, x′) = θ(t− t′)〈E0| [n(x), n(x′)] |E0〉(3)

If the system with Hamiltonian H is homogeneous, then the correlator depends on
x − x′, and the linear response (2) is a convolution. In Fourier components the
linear response is:

δn(k) =
1

~
Dret(k)ϕ(k)(4)

The Fourier modes decouple and respond independently! The function 1
~D

ret(k) is
a generalized susceptibility.

Perturbation coupled to the current. For particles with charge q with Hamil-
tonian H minimally coupled to a perturbing vector field, the total Hamiltonian
is:

H(t) = H − q

c

∫
dx j(x)·A(x, t) +

q2

2mc2

∫
dxn(x)A2(x, t)(5)

with jk(x) = i~
2m

∑
σ[(∂kψ

†
σ)(x)ψσ(x)− ψ†σ(x)(∂kψ

†
σ)(x)] (density current).

The charged current density is the vector operator J(x, t) = qj(x)− q2

mcn(x)A(x, t).
For t < 0 there is no current. For t > 0, in linear response it is (equal indices are
summed):

Jj(x) = − q2

mc
〈E0|n(x)|E0〉Aj(x)− q2

~c

∫
d4x
′ Dret

jk (x, x′)Ak(x′)(6)

iDret
jk (x, x′) = θ(t− t′)〈E0| [jj(x), jk(x′)] |E0〉(7)

In a homogeneous system, with uniform density n:

Jj(k) =

[
− e2

mc
nδjk −

q2

~c
Djk(k)

]
Ak(k)(8)

If the vector potential describes an electric field, E(k) = iω
c A(k), then the induced

current density is

Jj(k) = σjk(k)Ek(k), σjk(k) = − q2

imω
nδjk −

q2

i~ω
Djk(k)

σjk is the conductivity tensor. In [4] it is evaluated in a model of independent
electrons in a medium of randomly placed potential scatterers.
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2. The Lehmann’s representation

The retarded correlators that appear in the Linear Response theory, can be eval-
uated from time-ordered correlators via the Lehmann representation in frequency
space.
Let us consider the correlators of two observables A and B that evolve in time
according to a time-independent Hamiltonian with eigenstates H|En〉 = En|En〉
(|E0〉 is the ground state):

iCret
AB(t− t′) =〈E0|[A(t), B(t′)]|E0〉θ(t− t′)(9)

iCT
AB(t− t′) =〈E0|TδA(t)δB(t′)|E0〉(10)

=〈E0|TA(t)B(t′)|E0〉 − 〈E0|A|E0〉〈E0|B|E0〉

The operators A(t) and B(t) commute in the T ordering. The correlators are
functions of t− t′.

In frequency space they have the following Lehmann representations:

Cret
AB(ω) =

∫ +∞

−∞
dω′

CAB(ω′)

ω − ω′ + iη
, CT

AB(ω) =

∫ +∞

−∞
dω′

CAB(ω′)

ω − ω′ + iη signω′
(11)

with the spectral function

CAB(ω) =
∑
n>0

[
A0nBn0δ(ω − En−E0

~ )−B0,nAn,0δ(ω + En−E0

~ )
]

(12)

and matrix elements A0,n = 〈E0|A|En〉 etc.

Proof. Insertion of the completeness
∑
n≥0|En〉〈En| in the retarded correlator (9)

and the action of the time-evolution on the eigenstates makes time dependence
explicit:

iCret
AB(t− t′) = θ(t− t′)

∑
n
[A0,nBn,0e

− i
~ (En−E0)(t−t′) −B0nAn0e

i
~ (En−E0)(t−t′)]

Note that the term n = 0 cancels in the sum. The Fourier representation of the
Heaviside function is now used:

θ(t− t′) = i

∫ +∞

−∞

dω

2π

e−iω(t−t
′)

ω + iη

After shifts of the variable ω one obtains the Fourier integral

Cret
AB(t− t′) =

∫ +∞

−∞

dω

2π
e−iω(t−t

′)Cret
AB(ω)

Cret
AB(ω) =

∑
n>0

[
A0,nBn,0

ω − En−E0

~ + iη
− B0,nAn,0

ω + En−E0

~ + iη

]
(13)

Similarly, insertion of the completeness in the time-ordered correlator (10) gives:

iCT
AB(t− t′) =θ(t− t′)

∑
n≥0

A0,nBn,0e
− 1

~ (En−E0)(t−t′)

+ θ(t′ − t)
∑

n≥0
B0,nAn,0e

1
~ (En−E0)(t−t′) −A0,0B0,0

The term n = 0 in the sum cancels the term A0,0B0,0 (this is the reason for
considering the time-ordered correlator of fluctuations δA = A−A00. We could as
well consider [δA(t), δB(t)] without any change in eq.(9)).
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The insertion of the Fourier integrals of the Heaviside functions, and shifts in ω
give the expression

CT
AB(ω) =

∑
n>0

[
A0,nBn,0

ω − En−E0

~ + iη
− B0,nAn,0

ω + En−E0

~ − iη

]
The final Lehmann expressions are obtained, with the same spectral function. �

Remark 2.1. Since En − E0 > 0, the two delta functions in the spectral function
(13) are mutually exclusive.
The poles of a retarded correlator only occur in Im ω < 0.
The poles of a time-ordered correlator have Im ω with opposite sign of Re ω.

Proposition 2.2 (Kramers-Krönig relations).

ReCret
AB(ω) = P

∫ +∞

−∞

dω′

π

ImCret
AB(ω′)

ω′ − ω
(14)

ImCret
AB(ω) = −P

∫ +∞

−∞

dω′

π

ReCret
AB(ω′)

ω′ − ω
(15)

Proof. The retarded correlator is analytic in Im ω > 0. For ω real consider the
closed contour γ given by the segment [−R,R] closed by a half-circle of radius R
in the upper half-plane. The following integral is zero:∮

γ

dω′

2πi

Cret
AB(ω′)

ω′ − ω + iη
= 0

If RCretAB(Reiθ) vanishes for large R, we obtain: 0 =
∫ +∞
−∞

dω′

2πi
Cret

AB(ω′)
ω′−ω+iη . With the

Plemelj - Sokhotski formula

1

x− y ± iη
=

P

x− y
∓ iπδ(x− y)(16)

we have, for real ω:

0 = P

∫ +∞

−∞

dω′

2πi

Cret
AB(ω′)

ω′ − ω
− 1

2
Cret
AB(ω)

Separation of real and imaginary parts gives the results. �

Lehmann representation with translation invariance.
The relation beween retarded and time-ordered correlators becomes more explicit
for local operators in presence of space-translation symmetry of the Hamiltonian,
[H,P] = 0. The eigenstates of H and P are now |En,k,k〉, with eigenvalues En(k)
and ~k. We assume that the ground state has zero momentum: P|E0〉 = 0.

Consider the operators A = n(x) and B = n(y). With the operator identity

n(x) = e−
i
~x·Pn(0)e

i
~x·P, the matrix element is

〈E0|n(x)|Enk,k〉 = 〈E0|n(0)|Enk,k〉eik·x

Then, the spectral function of the density-density correlator is:

D(x− y, ω) =
∑
n>0,k

eik·(x−y)
[
|〈E0|n(0)|Enk,k〉|2δ(ω − En(k)−E0

~ )

−|〈E0|n(0)|En−k,−k〉|2δ(ω + En(−k)−E0

~ )
]
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We read the Fourier transform

D(k, ω) = V
∑
n>0

[
|〈E0|n(0)|Enk,k〉|2δ(ω − En(k)−E0

~ )

− |〈E0|n(0)|En−k,−k〉|2δ(ω + En(−k)−E0

~ )
]

The notable facts are that the spectral function is real and has the same sign of ω.
The correlators in momentum space have Lehmann representations

Dret(k, ω) =

∫ +∞

−∞
dω′

D(k, ω′)

ω − ω′ + iη
(17)

DT(k, ω) =

∫ +∞

−∞
dω′

D(k, ω′)

ω − ω′ + iη signω′
(18)

The Plemelj - Sokhotski formula (16) and separation of real and imaginary parts,
give the useful relations:

ReDret(k, ω) = ReDT(k, ω′)(19)

ImDret(k, ω) = ImDT(k, ω) signω(20)

The retarded polarization. The time ordered density-density correlator is, by
definition, proportional to the total polarization:

DT(x, y) = ~Π(x, y)

One also defines the retarded polarization: ~Πret(x, y) = Dret(x, y).
With translation invariance:

Re Πret(k, ω) = Re Π(k, ω), Im Πret(k, ω) = Im Π(k, ω) signω

If we define Π?ret(k, ω) = Re Π?(k, ω) + iIm Π?(k, ω)signω, then it follows that:

Πret(k, ω) =
Π?ret(k, ω)

1− v(k)Π?ret(k, ω)
(21)

The denominator is the retarded generalized dielectric function εret(k, ω).

Dielectric function in homogeneous electron gas. In linear response, the
variation of the electron charge density (the induced charge density) in response to
the perturbation caused by the electrostatic potential of an external charge density
ρext(x, t) is:

−eδn(x) =
e2

~

∫
d4x
′Dret(x, x′)

∫
d4x
′′ δ(t

′ − t′′)
|x′ − x′′|

ρext(x′′)

If the unperturbed electron system is invariant for space translations, the retarded
function depends on x− x′. In Fourier space, the induced charge is:

δρind(k, ω) = Πret(k, ω)
4πe2

k2
ρext(k, ω)
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The Maxwell equation divE = 4π(ρext + ρind) now is:

ik ·E(k, ω) =4π

[
1 + Πret(k, ω)

4πe2

k2

]
ρext(k, ω)

=4π
1

1− v(k)Π?ret(k, ω)
ρext(k, ω)

=4π
1

εret(k, ω)
ρext(k, ω)

This is compared with the Maxwell equation ik ·D(k, ω) = 4πρext(k, ω).
Simple approximate expressions for the dielectric functions [2, 4] are:

εTF (q) = 1 +
q2TF
q2

(
q2TF =

6πe2n0
EF

)
(Thomas-Fermi)(22)

εretRPA(q, ω) = 1− 4πe2

q2
Π(0)ret(q, ω) (Lindhard)(23)
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