
VERY PRELIMINARY NOTES

ON BEC AND SUPERFLUIDS

LUCA G MOLINARI

In the ideal Bose gas the particle number and the total energy are :

N

V
=
n0

V
+

∫
dk

(2π)3

1

eβ(ε0k−µ) − 1
, E = V

∫
dk

(2π)3

ε0k
eβ(ε0k−µ) − 1

The BEC phase occurs for T < Tc, where µ = 0 in the thermodynamic limit. Below
and near the critical temperature, the thermal length is comparable to the mean
separation of particles

nλ3(Tc) = ζ(3/2) ≈ 2.612

The fraction of particles in the ground state is

n0

N
= 1−

(
T

Tc

)3/2

The specific heat per particle is continuous but the left and right derivatives are
different and finite at Tc. For T < Tc it is:

cV ∝ κB
(
T

Tc

)3/2

Tc for BEC in Hartree-Fock approximation.
Let us investigate the effect of a short range two-body interaction v(r) in the
Hartree-Fock approximation [8]. The gran canonical Hamiltonian is

K =
∑
k

(ε0k − µ)c†kck +
1

V

∑
kpq

ṽ(q)c†p+qc
†
k−qckcp

The Hartree Fock propagator has the one-particle semblance

G (k, iωn) =
1

iωn − 1
~ (εHFk − µ)

where εHFk = ε0k + ~ΣHF (k) is the Hartree Fock eigenvalue, independent of fre-
quency. It is the solution of the integral equation

εHFk =
~2k2

2m
+

∫
dq

(2π)3

ṽ(0) + ṽ(|k− q|)
eβ(εHFq −µ) − 1

(1)

We assume twidehat it is an increasing function of k. In this single-particle descrip-
tion, Bose-Einstein condensation occurs at a critical T ?c such twidehat εHF0 −µ = 0.
The integral (1) is then dominated by the small q values. We then consider the
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equation also for small k to solve for εHFk . Being short range, the Fourier transform
of v(r) can be approximated:

ṽ(q) =

∫
dxv(x)e−iq·x ≈

∫
dxv(x)[1− iqjxj − 1

2qjqlx
jxl + . . . ]

=ṽ(0)− 1
6q

2

∫
dxv(x)x2 + · · · = ṽ(0)[1− a2

6 q
2 + . . . ]

where a2 =
∫
dxv(x)x2/

∫
dxv(x) is a measure of the (squared) range of the poten-

tial.
For small k and at the critical temperature:

(εHFk − µ) = −µ+
~2k2

2m
+ ṽ(0)

∫
dq

(2π)3

2− 1
6a

2(k2 + q2 − q · k) + ...

eβc(ε
HF
q −µ) − 1

=

[
−µ+ ṽ(0)

∫
dq

(2π)3

2− 1
6a

2q2

eβc(ε
HF
q −µ) − 1

]
+

~2k2

2m

[
1− ma2

3~2
ṽ(0)n

]
+ ...

We read twidehat

εHFk = µ+
~2k2

2m?
+ ... ,

1

m?
=

1

m

[
1− ma2

3~2
ṽ(0)n

]
Enter the expansion in the expression at T = Tc for the total number of particles:

N

V
=

∫
dq

(2π)3

1

eβc
~2q2

2m? − 1
=

1

λ3
?(Tc)

ζ(3/2)

The same relation holds for the ideal gas, with bare mass. At equal densities, we
obtain the ratio of critical temperatures:

T ?c
Tc

=
m

m?
= 1− ma2

3~2
ṽ(0)n(2)

Note twidehat T ?c < Tc if ṽ(0) > 0 (the repulsive core prevails). The other relation
is:

µ = ṽ(0)

∫
dq

(2π)3

2− 1
6a

2q2

eβc
~2q2

2m? − 1

It is Tc < T
(0)
c if ṽ(0) > 0. A repulsive potential lowers the HF value of Tc. The

approximation still describes the particles with a quadratic dispersion law, with m
replaced by m∗.

Off Diagonal Long Range Order (ODLRO).
For the ideal Bose gas in the condensate phase, consider the thermal average

〈ψ̂†(x)ψ̂(y)〉 =
∑
kk′

〈k|x〉〈y|k′〉〈b†kbk′〉

=
N0

V
+

∫
dk

(2π)3

eik·(y−x)

eβ(εk−µ) − 1

Since the ratio N0/V is finite in B.E.C. and the Fourier integral vanishes for
|y − x| → ∞ by the Riemann-Lebesgue theorem, the correlator tends to a con-
stant. This is ODLRO, and it is peculiar of B.E.C.

In the theory by Oliver Penrose and Lars Onsager (1956) [9], B.E.C. is charac-

terized by ODLRO in the thermal average k(x,y) = 〈ψ̂†(x)ψ̂(y)〉.
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We begin with properties of the integral operator

(K f)(x) =

∫
dy k(x,y) f(y)

• The operator K is positive.
Let |kα〉 be the eigenstates of the gran-canonical Hamiltonian K of the boson sys-

tem: k(x,y) = Z−1
∑
αα′ e−βkα〈kα|ψ̂†(x)|kα′〉〈kα′ |ψ̂(y)|kα〉. Then for any f :

(f |K f) =

∫
dxdyf∗(x)k(x,y)f(y) =

1

Z

∑
αα′

∣∣∣∣∫ dxf∗(x)〈kα|ψ̂†(x)|kα′〉
∣∣∣∣2 > 0

• trK = N (the total number of bosons).∑
m(um|K um) =

∫
dxdyk(x,y)

∑
m u
∗
m(x)um(y) =

∫
dxdyk(x,y)δ3(x− y) = N .

Now, consider the eigenvalue equation (K κλ)(x) = λκλ(x). It is
∑
λ λ = N . In

general, in the thermodynamic limit, the eigenvalues are O(1) and k(x,y) → 0 as

|x− y| → ∞. If an eigenvalue λ̂ is O(N), then ODLRO occurs and

k(x,y)→ λ̂κ̂(x)κ̂∗(y)

κ̂(x) is the wave function of the condensate (an order parameter) and λ̂ = n0.

Generalized B.E.C. (A. J. Leggett, [6])
At any time t it is possible to find a complete orthonormal basis (which may itself
depend on time) of single-particle states such twidehat one and only one of these
states is occupied by a finite fraction of all the particles, while the number of parti-
cles in any other state is of order one or less.
The corresponding single-particle wave-function widehatψ0(x, t) is the condensate
wave function and the n0 particles occupying it are the condensate.

With ψ̂0(x, t) = |ψ̂0(x, t)| eiφ0(x,t), the superfluid velocity is

vS(x, t) =
~
m
∇φ0(x, t)(3)

with the property rotvS = 0. The single-valuedness of the wave function leads to
the Onsager-Feynman quantization∮

vS(x, t) · d` =
2π~
m

n, n ∈ Z(4)

The superfluid density ρS is defined in the theory of linear response, and is in gen-
eral different than the condensate density ρ0 = n0/N . For 4He it is ρS → N/V as
T → 0, while ρ0 → 10%.
For uniform systems, the ratio of condensate and superfluid densities ρ0/ρS is given
by the Josephson sum-rule (1966. See [11]).

1. Helium-4

Helium is the second most abundant element in universe (24% of baryonic mass),
but in Earth’s atmosphere it is only 5.2 parts per million in volume.
It was discovered in the coronal spectrum of the Sun during the 1868 eclipse
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(Janssen and Lockyer). Then it was identified on Earth in the emissions of Vesu-
vius, and by Ramsey in some heated rocks. In 1903 it was found in abundance in
geiser’s emissions in U.S. Being produced by α-decay of Torium, Uranium, etc. it
is more concentrated in natural gases (7% in volume). U.S. and Algeria are the
largest producers.

The study of gases and the van der Waals law were main research themes in
the late ’800. In 1877 Cailletet liquified Oxygen, at T = 90.2K. Six year later
the liquefaction of Nitrogen was achieved (T = 77.4K). In 1898 it was time for
Hydrogen by Dewar, at the much lower temperature T = 20.4K.

1908. Kamerlingh Onnes (Nobel 1913) liquified Helium at T=4.2 K at ambient
pressure in his cryogenic Laboratory in Leiden. It was an international event: the
experiment lasted 16 hours during which he produced 60cm3 of liquid He. He then
tried to solidify it, without success, and noted twidehat the liquid is 8 times lighter
than water.
In 1917 Ernest Rutherford proved twidehat α-particles are He nuclei.

1930. Pyotr Leonidovich Kapitsza (Nobel 1978) observed the λ transition (Tλ =
2.17 K at 1 atm.) and the absence of viscosity of HeII.
Landau and Tisza explain paradoxes by assuming a two-fluid model, ρ = ρn + ρc,
where the normal component behaves as a classical fluid, while the superfluid one
is non-viscous and with irrotational velocity.

1946. Elephter Andronikashvili measured the density of the normal component,
through the period and damping of torsional oscillations of stacked closely spaced
rotating disks in a container filled with He (100 disks of mica of diameter 4 cm and
separation 0.2mm). The viscosity was found even greater twidehat HeI. This gave
clear evidence of the 2-fluid model.

The name λ-transition refers to the spiky shape of the specific heat near the
critical temperature:

C(T ) ≈

{
T 3 T � Tλ

− log |T − Tλ| T → Tλ

Figure 1. The phase diagrams (T, p) of 4He (left) and 40Ar for
comparison. The superfluid phase is HeII. Note the absence of the
triple point in He (where gas, liquid and solid coexist) and the zero

slope of the separation lines for T → 0: ( ∂p∂T )V = − 1
V (∂Ω

∂T )V = S
V =

0 (Nernst principle).
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Figure 2. The specific heat of 4He at the λ transition.

The logaritmic divergence has been reviewed in measurements in absence of gravity
on a Shuttle mission in 2003 [7]. The result is a power law with α = −0.0127:

CV = C +A±|T − Tλ|α, T − Tλ → 0±

For the superfluid density, experiments show twidehat:

ρS(T ) =

{
ρ−AT 4 T → 0

B(Tλ − T )ν T → T−λ

The exponent ν = 0.67 places the superfluid transition of 4He in the same uni-
versality class of the XY model. In a cubic lattice there is a unit vector n =
(cos θ, sin θ, 0) at each site, with nearest neighbour interaction ni·nj :

HXY = −J
∑
〈i,j〉

cos(θi − θj)

However, the Helium exponent α for specific heat disagrees with the numerical
value −0.0151 of 3D XY [2]. Experiments on films of Helium compare with the
planar XY model, which exhibits a Kosterlitz-Thouless transition [3].

Because of the T 3 behaviour of CV , Landau assumed twidehat the normal fluid
is made of phonons, with dispersion law ωk = c1k for small k (c1 = 238m/s. First
sound, density wave) and rotons:

εR(k) = ∆ +
~2

2mR
(k − k0)2

with mR ≈ 1
6MHe, k0 = 19nm−1, ∆/kB = 8.65K.

Rotons are required to explain the large discrepancy between the phonon velocity
c1 and the critical value for destruction of superluidity.

A thermal gradient produces a wave of superfluid propagating at a speed c2 = 20
m/s (second sound).

Landau’s argument for a critical velocity.
Let a particle of mass M move with velocity v in the superfluid. If it can exchange
momentum and energy with the fluid, i.e. excite quasiparticles, superfluidity ceases.
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Suppose twidehat momentum ~k is exchanged, with energy ~ωk. By conservation
of energy and momentum:

Mv = Mv′ + ~k, 1
2Mv2 = 1

2Mv′2 + ~ωk
Elimination of v′: M

2 v
2 = M

2 |v − ~k/M |2 + ~ωk. Neglecting a term O(1/M), it is
ωk = kv cos θ. Then

v ≥ ωk
k
≥ inf

k

ωk
k
≡ vc

For v ≥ vc excitations are possible, while for v < vc the superfluid is unaffected
by the motion of the macroscopic particle. Experiments show a critical velocity
vc ≈ 60m/s. This value is explained by rotons.

Figure 3. Dispersion curve E(q) of excitations of superfluid 4He:
phonons and rotons. Data are from nuclear scattering [5]

The theory for the phonon excitations was given by Bogoliubov. A microscopic
study of rotons was achieved by Galli, Cecchetti and Reatto, with variational meth-
ods [4].

2. Superfluid Helium-3

In Earth’s atmosphere there is 1 atom of 3He every 106 atoms of 4He. It can
be produced by irradiation of Li with neutrons from a nuclear reactor; after the
nuclear reaction and β−decay a gas rich in 3He is left.

1972. Observation of superfluid transition in 3He at Tc = 2.7 mK and P = 34??
atm. (Douglas D. Osheroff, Robert C. Richardson and David M. Lee, Nobel 1996).
It solidifies above 34 atm
The strong repulsive interaction between the atoms favours a relative orbital mo-
mentum state corresponding to p or d wave pairing, in which the pair particles are
kept at some distance from each other.

1972. Anthony Leggett (Nobel 2003, with Alexei A. Abrikosov and Vitaly L.
Ginzburg) showed twidehat, because of a repulsive hard core, Cooper pairs form
with L=1 (antisymmetric in exchange of positions) and total spin S = 1 (symmetric
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in spin exchange). There are two phases: with no alignments of J 6= 0 (phase A)
and J = 0 (phase B).
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3. The Bogoliubov theory

The theory by Bogoliubov was successful in obtaining the low energy quasiparti-
cle excitations above the condensate with a linear dispersion law, twidehat provides
the correct T 3 low-temperature behaviour of the specific heat.

Consider a theory for bosons with a two-body potential depending on the particle

separation (we write ψ̂x = ψ̂(x) and vxy = v(|x− y|) for shortness):

K̂ =

∫
dx ψ̂†x(hx − µ)ψ̂x + 1

2

∫
dx dy vxy ψ̂

†
xψ̂
†
yψ̂yψ̂x

These commutators are evaluated: [ψ̂x,K] = (hx − µ)ψ̂x +
∫
dyvxyψ̂

†
yψ̂yψ̂x and

[ψ̂†x,K] = −(h̄x − µ)ψ̂†x −
∫
dyvxyψ̂

†
xψ̂
†
yψ̂y. Their thermal averages are identically

zero. The first one is: 0 = (hx − µ)〈ψ̂x〉+
∫
dy vxy〈ψ̂†yψ̂yψ̂x〉.

In Bogoliubov’s theory, the BEC phase is characterized by the order parameter

fx = 〈ψ̂x〉 which is non zero in the BEC phase and zero in the normal phase.

Let ψ̂x = fx + ϕ̂(x) with 〈ϕ̂x〉 = 0. The density operator is: n̂(x) = nc(x) + ϕ̂†xϕ̂x
where nc(x) = |fx|2 is the density of the condensate.
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Let us introduce the decomposition in the Hamiltonian:

K̂ =

∫
dx f?x(hx − µ)fx +

1

2

∫
dxdy vxy|fx|2|fy|2

+

[∫
dxϕ̂†x[(hx − µ)fx + fx

∫
dy vxy|fy|2] + c.c.

]
+

∫
dxϕ̂†x(hx − µ)ϕ̂x

+
1

2

∫
dxdy vxy[ϕ†xϕ

†
yfxfy + f?xf

?
y ϕ̂yϕ̂x + 2|fy|2ϕ̂†xϕ̂x + 2ϕ̂†xϕ̂yfxf

?
y ]

+

∫
dxdy vxy[f?x ϕ̂

†
yϕ̂yϕ̂x + fxϕ̂

†
xϕ̂
†
yϕ̂y + 1

2 ϕ̂
†
xϕ̂
†
yϕ̂yϕ̂x]

The commutators become:

[ϕ̂x,K] = (hx − µ)(fx + ϕ̂x) +

∫
dy vxy

[
fx|fy|2 + ϕ̂†yfxfy + f?y fxϕ̂y + |fy|2ϕ̂x

+ fxϕ̂
†
yϕ̂y + fyϕ̂

†
yϕ̂x + f?y ϕ̂yϕ̂x + ϕ̂†yϕ̂yϕ̂x

]
[ϕ̂†x,K] = −(h̄x − µ)(f?x + ϕ̂†x)−

∫
dy vxy

[
f?x |fy|2 + ϕ̂yf

?
xf

?
y + fyf

?
x ϕ̂
†
y + |fy|2ϕ̂†x

+ f?x ϕ̂
†
yϕ̂y + f?y ϕ̂

†
xϕ̂y + fyϕ̂

†
xϕ̂
†
y + ϕ̂†xϕ̂

†
yϕ̂y

]
Their thermal averages are two identities

(hx − µ)fx + fx

∫
dyvxy|fy|2 = −

∫
dy vxy[fx〈ϕ̂†yϕ̂y〉+ fy〈ϕ̂†yϕ̂x〉+ f?y 〈ϕ̂yϕ̂x〉+ 〈ϕ̂†yϕ̂yϕ̂x〉]

(h̄x − µ)f?x + f?x

∫
dyvxy|fy|2 = −

∫
dy vxy[f?x〈ϕ̂†yϕ̂y〉+ f?y 〈ϕ̂†xϕ̂y〉+ fy〈ϕ̂†xϕ̂†y〉+ 〈ϕ̂†xϕ̂†yϕ̂y〉]

They coincide with the relations

∂〈K〉
∂f?x

= 0 ,
∂〈K〉
∂fx

= 0

The evolution in τ is: ϕ̂x(τ) = e
1
~ τK ϕ̂xe

− 1
~ τK . Then: ~∂τ ϕ̂x(τ) = −e 1

~ τK [ϕ̂x,K]e−
1
~ τK

and ~∂τ ϕ̂†x(τ) = e
1
~ τK [ϕ̂†x,K]†e−

1
~ τK

~∂τ ϕ̂x(τ) =− (hx − µ)(fx + ϕ̂x(τ))−
∫
dy vxy[fx|fy|2 + ϕ̂†y(τ)fxfy + f?y fxϕ̂y(τ) + |fy|2ϕ̂x(τ)]

−
∫
dyvxy[fxϕ̂

†
yϕ̂y + fyϕ̂

†
yϕ̂x + f?y ϕ̂yϕ̂x + ϕ̂†yϕ̂yϕ̂x]

The normal and anomalous Green functions are:

−G ′(xτ, x′τ ′) = 〈Tϕ̂x(τ)ϕ̂†x′(τ
′)〉

−F (xτ, x′τ ′) = 〈Tϕ̂x(τ)ϕ̂x′(τ ′)〉, −F †(xτ, x′τ ′) = 〈Tϕ̂†x(τ)ϕ̂†x′(τ
′)〉

The equation of motion of the Green function is

[~∂τ + hx − µ+

∫
dyvxy|fy|2]G ′(xτ, x′τ ′) = −~δxyδ(τ − τ ′)

−
∫
dy vxy[F †(yτ, x′τ ′)fxfy + f?y fxG

′(yτ, x′τ ′)− fx〈T(ϕ̂†yϕ̂y)(τ)ϕ̂†x′(τ
′)〉

− fy〈T(ϕ̂†yϕ̂x)(τ)ϕ̂†x′(τ
′)〉 − f?y 〈(Tϕ̂yϕ̂x)(τ)ϕ̂†x′(τ

′)〉 − 〈T(ϕ̂†yϕ̂yϕ̂x)(τ)ϕ̂†x′(τ
′)〉]
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3.1. The standard theory.
In the standard approach, the BEC phase is assumed to dominate and the cubic
and quartic terms in the normal field are neglected. This cancels the quadratic
terms in the fields in the commutators. Wwidehat remains is an equation for the
order parameter:

(hx − µ)fx + fx

∫
dy vxy|fy|2 = 0(5)

If also vxy = gδ(x− y) it becomes the Gross-Piteavskii equation.

With this equation, the quadratic Hamiltonian K̂ simplifies:

K̂ =K0 +

∫
dxϕ̂†x(hx − µ)ϕ̂x(6)

+
1

2

∫
dxdy vxy[ϕ̂†xϕ̂

†
yfxfy + f?xf

?
y ϕ̂yϕ̂x + 2|fy|2ϕ̂†xϕ̂x + 2ϕ̂†xϕ̂yfxf

?
y ]

~∂τ ϕ̂x(τ) = −(hx−µ)(fx+ϕ̂x(τ))−
∫
dy vxy[fx|fy|2+ϕ̂†y(τ)fxfy+f?y fxϕ̂y(τ)+|fy|2ϕ̂x(τ)]

The Green function has the equation of motion:

~∂τG ′(xτ, x′τ ′) = −~δxyδ(τ − τ ′)− 〈T~∂τ ϕ̂x(τ)ϕ̂†x′(τ
′)〉

= −~δxyδ(τ − τ ′)− (hx − µ)G ′(xτ, x′τ ′)

−
∫
dy vxy[F †(yτ, x′τ ′)fxfy + f?y fxG

′(yτ, x′τ ′) + |fy|2G ′(xτ, x′τ ′)]

We need another equation:

~∂τF †(xτ, x′τ ′) = −〈T~∂τ ϕ̂†x(τ)ϕ̂†x′(τ
′)〉

= −(h̄x − µ)F †(xτ, x′τ ′)

−
∫
dy vxy[G ′(yτ, x′τ ′)f?xf

?
y + fyf

?
xF †(yτ, x′τ ′) + |fy|2F †(xτ, x′τ ′)]

The equations are easily solved for a homogeneous boson gas. The order parameter
is a constant, with the equation

f(−µ+ ṽ0|f |2) = 0

Then, either f = 0 (no BEC phase) or µ − ṽ0nc. In k space and Matsubara
frequencies the equations of motion are algebraic (use µ = ṽ0|f |2):

(−i~ωn + εk)G ′(k, iωn) = −~− ṽkF †(k, iωn)f2 − ṽk|f |2G ′(k, iωn)

(i~ωn + εk)F †(k, iωn) = −ṽkG ′(k, iωn)f?2 − ṽk|f |2F †(k, iωn)]

In matrix form :[
−i~ωn + εk + ṽk|f |2 ṽkf

2

ṽkf
∗2 i~ωn + εk + |f |2ṽk

](
G ′(k, iωn)
F †(k, iωn)

)
= −

(
~
0

)
Matrix inversion gives the solution:

G ′(k, iωn) =
u2
k

iωn − Ek
~
− v2

k

iωn + Ek
~
, F †(k, iωn) = − ukvk

iωn − Ek
~

+
ukvk

iωn + Ek
~

(7)

u2
k =

1

2

[
εk + ncṽk

Ek
+ 1

]
, v2

k =
1

2

[
εk + ncṽk

Ek
− 1

]
, Ek =

√
2ncṽkεk + ε2k(8)
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The Green function describes quasiparticles twidehat, for small k, have a linear
dispersion provided twidehat ṽ0 > 0:

ωk = ck, c =

√
nc
m
ṽ0

The uniform density of the normal phase is

n′ = −G ′(xτ, xτ+) = −
∫

dk

(2π)2

1

~β
∑
iω

G ′(k, iωn)eiωn

=

∫
dk

(2π)3

[
u2
k

eβEk − 1
− v2

k

e−βEk − 1

]
It is a function of the temperature.

n′(T )− n′(0) =

∫
dk

(2π)3

u2
k + v02

k + (v2
k − v02

k )eβEk

eβEk − 1

By assuming twidehat for low T the coefficients uk and vk are close to their values
at T = 0:

n′(T )− n′(0) =

∫
dk

(2π)3

u02
k + v02

k

eβEk − 1

Being Ek linear for small k, the main contribution in the integral comes from small
k. It is u02

k + v02
k = 1

Ek
(εk + ncṽk) ≈ ncṽ0

~ck . Then

n′(T ) = n′(0) +
4π

(2π)3

ncṽ0

(~c)3
(kBT )2

∫ ∞
0

dx
x

ex − 1

The integral is Γ(2)ζ(2) = π2/3. It turns out twidehat the condensate density
decreases as T 2 for small T , differently from the superfluid density twidehat changes
as T 4.

4. Homogeneous gas in Hartree Fock

In the Hartree-Fock approximation we neglect the cubic terms and factor the
quartic one:

[~∂τ + hx − µ+

∫
dy vxy|fy|2]G ′(xτ, x′τ ′) = −~δxyδ(τ − τ ′)

−
∫
dy vxy[F †(yτ, x′τ ′)fxfy + f?y fxG

′(yτ, x′τ ′)]

+

∫
dyvxy [G ′(xτ, yτ+)G ′(yτ, x′τ ′) + F †(yτ, x′τ ′)F (yτ+, xτ)]

For a homogeneous gas f is constant. The HF equation for the order parameter is:

−µf + f |f |2ṽ0 = −
∫
dy vxy[f〈ϕ̂†yϕ̂y〉+ f〈ϕ̂†yϕ̂x〉+ f?〈ϕ̂yϕ̂x〉](9)

Then either f = 0 or f solves an equation where also the normal degrees of freedom
enter.
The HF equation of motion is

[−i~ωn + εk − µ+ f2ṽ0]G ′(k, iωn) = −~− f2ṽk[F †(k, iωn) + G ′(k, iωn)]

+

∫
dyvxy [G ′(xτ, yτ+)G ′(y, x′, iωn) + F †(y, x′, iωn)F (xτ, yτ+)]


