
EQUATIONS OF MOTION

LUCA GUIDO MOLINARI

1. Equation of motion of destruction operators

Consider a system of bosons or fermions described by the Hamiltonian H =
H1 +H2, where H1 and H2 are the one and two particle operators

H1 =
∑
ab

habc
†
acb, H2 =

1

2

∑
abcd

vabcdc
†
ac
†
bcdcc(1)

An arbitrary one-particle basis is used, with correspondent canonical operators ca
and c†a. The matrix elements are hab = 〈a|h|b〉 and vabcd = 〈ab|v|cd〉 = vbadc
(exchange symmetry).
The time evolution of a destruction operator, cr(t) = eiHt/~cre

−iHt/~, solves the
equation of motion i~ d

dtcr(t) = eiHt/~[cr, H]e−iHt/~. By means of the commutators

[cr, c
†
acb] = δarcb(2)

[cr, c
†
ac
†
bcdcc] = (δrac

†
b ± δrbc

†
a)cdcc(3)

one evaluates [cr, H1] =
∑
b hrbcb and [cr, H2] = 1

2

∑
bcd(vrbcd ± vbrcd)c

†
bcdcc. First

the dummy indices c and d are exchanged in the second term; next the destruc-
tion operators are exchanged: cccd = ±cdcc. Then [ψr, H2] = 1

2

∑
bcd(vrbcd +

vbrdc)c
†
bcdcc. Because of the exchange symmetry the two matrix elements are equal,

and the final expression is obtained:

(4) [cr, H] =
∑
b

hrbcb +
∑
bcd

vrbcdc
†
bcdcc

An immediate consequence is the useful operator identity:

(5)
∑
r

c†r[cr, H] = H1 + 2H2

Another consequence is the equation of motion of a destruction operator:

(6) i~
d

dt
cr(t) =

∑
b

hrbcb(t) +
∑
bcd

vrbcd(c
†
bcdcc)(t)

Exercise 1. Obtain the equation of motion of the creation operator.

Exercise 2. Evaluate [c†rcs, H] (it is the starting point for the ”Time-dependent
Hartree-Fock approximation”).
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2. The ground state energy

Eq.(5) yields an expression for the total energy, due to Galitskii and Migdal.
The expectation value on the exact ground state is

〈H1 + 2H2〉 = i~
∑
r

〈c†r(t)
d

dt
cr(t)〉 = i~ lim

t′→t+

∑
r

d

dt
〈c†r(t′)cr(t)〉

Since t′ > t a T -ordering can be introduced in the inner product. This allows to
exchange the operators and obtain:

(7) 〈H1 + 2H2〉 = ∓~ d
dt

∑
r

Grr(t, t
+)

where the one-particle Green function, in a generic basis, is:

iGrr′(t, t
′) = 〈Tcr(t)c†r′(t

′)〉(8)

= θ(t− t′)〈cr(t)c†r′(t
′)〉 ± θ(t′ − t)〈c†r′(t

′)cr(t)〉

The equation provides the expectation value of the interaction in terms of the one-
particle Green function1. The total energy is Egs = 〈H1〉+ 〈H2〉:

Egs = ± i
2

lim
t′→t+

∑
ab

[
i~δab

∂

∂t
+ hab

]
Gba(t, t′)(9)

In the basis of position and spin, and for an external potential that does not depend
on spin:

Egs = ± i
2

∑
m

∫
d3x

[
i~
∂

∂t
− ~2

2m
∇2
~x + U(~x)

]
Gmm(~xt, ~x′t′)

∣∣∣
~x′,t′=~x,t+

Exercise 3. Show that, in presence of space-time translation invariance and spin
independent interaction, the formula (9) simplifies to

Egs
V

= ±i (2s+ 1)

2

∫
d3k dω

(2π)4
[~ω + ε(~k)]G(~k, ω)eiωη

where V is the volume. Evaluate the integrals for the ideal electron gas.

3. Equation of motion of the propagator

Let us evaluate

i~
∂

∂t
Grr′(t, t

′) = ~
∂

∂t

[
θ(t− t′)〈cr(t)c†r′(t

′)〉 ± θ(t′ − t)〈c†r′(t
′)cr(t)〉

]
= ~δ(t− t′)〈cr(t)c†r′(t

′)∓ c†r′(t
′)cr(t)〉+ ~〈T dcr(t)

dt
c†r′(t

′)〉

= ~δ(t− t′)δrr′ − i
∑
b

hrb〈Tcb(t)c†r′(t
′)〉 − i

∑
bcd

vrbcd〈T (c†bcdcc)(t)c
†
r′(t
′)〉

In the last term, the T ordering acts on the triplet as a single operator. To treat
the three operators individually, the ambiguity of equal time is avoided by adding

1The single particle average is evaluated as usual: 〈H1〉 = ∓i
∑

ab habGba(t, t
+).
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infinitesimal time shifts that keep memory of the original order:

〈T (c†bcdcc)(t)c
†
r′(t
′)〉 =〈Tc†b(t

++)cd(t
+)cc(t)c

†
r′(t
′)〉

=〈Tcc(t)cd(t+)c†r′(t
′)c†b(t

++)〉

The T product allows to permute operators freely, up to a sign. The ++ and + must
be left in place as far as T is present. The matrix element has been written with
creation operators at the right, to comply with the definition of the two-particle
Green function:

i2Gabcd(ta, tb, tc, td) = 〈Tca(ta)cb(tb)c
†
d(td)c

†
c(tc)〉(10)

(note the positions of labels c and d). Because of T−ordering:

Gabcd(ta, tb, tc, td) = ±Gbacd(tb, ta, tc, td) = ±Gabdc(ta, tb, td, tc)(11)

The equation of motion of the propagator is obtained:∑
b

(
i~
∂

∂t
δrb − hrb

)
Gbr′(t, t

′) = ~δrr′δ(t− t′)(12)

+i
∑
bcd

vrbcdGcdbr′(t, t
+, t++, t′)

It is the first of an infinite hierarchy of equations, first obtained by Martin and
Schwinger, which involve higher order Green functions at each step.
In position representation, for spin independent interactions, the equation (12) is:(

i~
∂

∂t
− h(~x)

)
Gmm′(~xt, ~x′t′) = ~δmm′δ3(~x− ~x′)δ(t− t′)(13)

+i
∑
m′′

∫
d3y v(~x, ~y)Gmm′′m′′m′(~xt, ~yt+, ~yt++, ~x′t′)

In 4-dimensional notation, with U0(x, x′) =: v(~x, ~x′)δ(t− t′):(
i~
∂

∂t
− h(~x)

)
Gmm′(x, x′) = ~δmm′δ4(x− x′)(14)

+i
∑
m′′

∫
d4y U0(x, y)Gmm′′m′′m′(x, y+, y++, x′)

If the two-particle interaction is absent, the equation of motion does not involve
higher order functions. Let us pause for a while on Green functions of non-
interacting particles.

4. Independent particles

For independent particles the Green function is a generalized function that solves
the equation

(15) [i~δab∂t − hab]G0
bc(t, t

′) = ~δacδ(t− t′)

Its very usefulness appears in the solution of the inhomogeneous equation

[i~δab∂t − hab]fb(t) = ga(t)
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with unknown fa(t) and assigned source ga(t). The general solution is the sum of
the general solution of the homogeneus equation f0a (t) and a particular solution.
The latter can be generated through the Green function:

fa(t) = f0a (t) +
1

~

∫
dt′G0

ab(t, t
′)gb(t

′).

It must be noted that (15) does not have a unique solution (we have the freedom
to add a solution of the homogeneous problem). This is better seen in frequency
space, where (15) is: [~ωδab − hab]G

0
bc(ω) = ~δac,. which is the basis-projected

equation for the resolvent operator:

[~ωI− h] G0(ω) = ~ I

with G0
ab(ω) = 〈a|G0(ω)|b〉. The solution is well defined for ω ∈ C/σ(h).

The Fourier integral of G0
ab(ω) back to G0

ab(t, t
′) runs on the real axis. The poles and

cuts (i.e. the real spectrum of the single particle Hamiltonian h) has to be shifted
off the real axis by an infinitesimal amount. This can be done in various ways, that
lead to Green functions that differ by solutions of the homogeneous equation. The
most useful ones are the retarded and the time-ordered Green functions.

4.1. The retarded Green function. In the retarded Green function the whole
spectrum of h is shifted by an infinitesimal amount into the lower half-plane of the
ω−plane:

G0R
ab (ω) =: 〈a|(ω − h/~ + iη)−1|b〉 =

∑
n

〈a|n〉〈n|b〉
ω − ωn + iη

(16)

where h|n〉 = ~ωn|n〉, and we neglect the continuum. In passing we note that the
imaginary part of the diagonal matrix elements in the position basis give the local
density of states:

− 1

π
ImG0R(~x, ~x;ω) =:

∑
n

|〈~x|n〉|2δ(ω − ωn)(17)

The trace (which is basis-independent) is the density of states of the Hamiltonian.
Since the retarded Green function is analytic in the upper half plane, its Fourier
transform to the time variables is zero for t′ > t, by the residue theorem,

G0R
ab (t, t′) =

∫ +∞

−∞

dω

2π
e−iω(t−t

′)GRab(ω)

= − i θ(t− t′)
∑
n

e−iωn(t−t′)〈a|n〉〈n|b〉

= − i θ(t− t′) 〈a|U(t, t′)|b〉

This feature is of great importance in physics as it expresses causality: the particular
solution

fRa (t) =

∫
dtG0R

ab (t, t′) gb(t
′)

only depends on the values g(t′) at t′ < t.
In a many body system, the retarded Green function is the expectation value of the
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commutator (bosons) or anticommutator (fermions) at unequal times (the definition
holds also for interacting systems):

(18) iGRab(t, t
′) = θ(t− t′) 〈gs|

[
ca(t), c†b(t

′)
]
∓
|gs〉

Exercise 4. Evaluate the retarded Green function for free particles (the result does
not depend on statistics)

iGR(~x, t; ~x′, t′) = θ(t− t′)
∫

d3k

(2π)3
ei
~k·(~x−~x′)−iωk(t−t′)

= −θ(t− t′)
[

m

2π~(t− t′)

]3/2
exp

[
−i m

2~
|~x− ~x′|2

t− t′

]
.

4.2. The time-ordered Green function - fermions. In the time ordered Green
function a reference Fermi frequency divides the spectrum into a portion that gains
a positive imaginary part and another that gains a negative imaginary correction:

G0T
ab (ω) =:

∑
n

〈a|n〉〈n|b〉
ω − ωn + iη sign(ω − ωF )

(19)

If states are ordered according to increasing frequencies, ωF is the highest frequency
available for N fermions in the ground state.
The Fourier transform to time variables is (in position basis)

iG0T (~x, t; ~x′, t′) =
∑
n

e−iωn(t−t′)〈~x|n〉〈n|~x′〉(20)

× [θ(t− t′)θ(ω − ωF )− θ(t′ − t)θ(ωF − ω)]

for t > t′ the propagation involves energy states above the Fermi frequency (particle
excitations), for t < t′ it involves states below the Fermi frequency (hole excita-
tions).

By means of the unperturbed (time ordered) Green function, the equation of
motion for the one particle Green function can be written in integral form:

Gmm′(x, x′) = G0
mm′(x, x′) +

i

~
∑

m′′m′′′

∫
d4y d4y′

G0
mm′′′(x, y′)U0(y′, y)Gm′′′m′′m′′m′(y′, y+, y++, x′)(21)

The equation G = G0 + G0U0G4 can be compared with the Dyson equation for
the proper self-energy, G = G0 +G0Σ?G, to express the self energy in terms of G4

(repeated indices are summed or integrated):

(22) Σ?mm′′(x, y)Gm′′m′(y, x′) =
i

~
U0(x, y)Gmm′′m′′m′(x, y+, y++, x′)

5. Hartree Fock approximation

The two-particle Green function admits a decomposition into connected compo-
nents:

Gabcd(ta, tb, tc, td)(23)

= Gac(ta, tc)Gbd(tb, td)±Gad(ta, td)Gbc(tb, tc) +Gcabcd(ta, tb, tc, td)



6 LUCA GUIDO MOLINARI

One of the several equivalent ways to perform the Hartree Fock approximation is to
neglect completely the connected part of the two particle Green function, meaning
that the two particles evolve independently. This truncates the Martin-Schwinger
hierarchy of equations at the first level. In the equation of motion (13) for the one
particle Green function we approximate:

Gmm′′m′′m′(~xt, ~yt+, ~yt++, ~x′t′)

≈ Gm′′m′(~yt, ~x′t′)Gmm′′(~xt, ~yt+)±Gm′′m′′(~yt, ~yt+)Gmm′(~xt, ~x′t′)

Then (13) becomes a closed quadratic equation for the propagator in HF approxi-
mation:(

i~
d

dt
− h(~x)

)
GHFmm′(~xt, ~x′t′) = ~δmm′δ3(~x− ~x′)δ(t− t′) + i

∑
m′′

∫
d3yv(~x, ~y)

×
[
GHFm′′m′(~yt, ~x′t′)GHFmm′′(~xt, ~yt+)±GHFm′′m′′(~yt, ~yt+)GHFmm′(~xt, ~x′t′)

]
Since ±i

∑
m′′ Gm′′m′′(~yt, ~yt+) = n(~y), we obtain the Hartree interaction with HF

density

UH(~x) =

∫
d3y v(~x, ~y)nHF (~y)

The equation of motion is(
i~
d

dt
− h(~x)− UH(~x)

)
GHFmm′(~xt, ~x′t′) = ~δmm′δ3(~x− ~x′)δ(t− t′)

+i
∑
m′′

∫
d3y v(~x, ~y) GHFm′′m′(~yt, ~x′t′)Gmm′′(~xt, ~yt+)

In ω space:

[~ω − h(~x)− UH(~x)]GHFmm′(~x, ~x′, ω) = ~δmm′δ3(~x− ~x′)

+ i
∑
m′′

∫
d3y v(~x, ~y) GHFm′′m′(~y, ~x′, ω)

∫
dω′

2π
GHFmm′′(~x, ~y, ω′)eiηω

′

To solve the equation we assume a spectral representation typical of independent
particles

GHFmm′(~x, ~x′, ω) =
∑
a

ua(~x,m)ua(~x′,m′)∗

ω − ωa + iη sign (ωa − ωF )
(24)

with unknown orthonormal functions ua and real frequencies ωa.
Insert the representation in the equation for G, multiply by ua(~x′,m′) and integrate
in ~x′ and sum on m′, Because of orthogonality:

[~ω − h(~x)− UH(~x)]
ua(~x,m)

ω − ωa ± iη
= ~ua(~x,m)

+ i
∑
m′′

∫
d3y v(~x, ~y)

ua(~y,m′′)

ω − ωa ± iη

∫
dω′

2π
GHFmm′′(~x, ~y, ω′)eiηω

′

Here UH is evaluated with

nHF (~y) =
∑
b

∑
m

|ub(~x,m)|2θ(ωF − ωb).
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The integral in ω′ is evaluated by residues and gives: i
∑
b ub(~x,m)ub(~y,m

′′)∗θ(ωF−
ωb). Next, the limit ω → ωa is taken, and the system of Hartree-Fock equations is
obtained:

[h(~x) + UH(~x)]ua(~x,m)−
∑
b,m′′

θ(ωF − ωb)ub(~x,m)(25)

×
∫
d3y v(~x, ~y) ua(~y,m′′)ub(~y,m

′′)∗ = ~ωaua(~x,m)

The spin dependence may be chosen to factorize (then it is a quantum number):
ua,σ(~x,m) = faσ(~x)vσ(m). Then:

∑
m′′ vσ(m′′)vσ′(m′′) = δσσ′ and

[h(~x) + UH(~x)] faσ(~x)−
∑
b

θ(ωF − ωb)fbσ(~x)

∫
d3y v(~x, ~y) faσ(~y)fbσ(~y)∗

= ~ωafaσ(~x)

If the Hartree Fock approximation is done in eq.(22), one reads the HF approxima-
tion for the self energy:

Σ?mm′(x, x′) =
i

~
GHFmm′(x, x′+)U0(x, x′)

± i

~
δmm′δ4(x− x′)

∑
m′′

∫
d4y U0(x, y)GHFm′′m′′(y, y+)(26)

Therefore, we obtained another characterization of the Hartree Fock approximation:
the HF self-energy is provided by the two self energy graphs of first order expansion,
with the self-consistent GHF replacing G0.
An important remark is that the Hartree-Fock self-energy is independent of time.

Exercise 5. Evaluate the HF self-energy (26), by using the expansion (24) with
functions that factorize.

Exercise 6. Show that the HF self-energy Σ?(k) for fermions with only two-body
interaction v(|~x− ~y|) coincides with the correction to the energy of a free fermion.

Exercise 7. Show that the self energy may be viewed as a bilocal potential in HF
equations:(

i~
d

dt
− h(~x)

)
ua(~xm)− ~

∑
m′

∫
d3yΣ?mm′(~x, ~x′)ua(~x′m′) = ~ωaua(~xm)


