
GREEN FUNCTIONS

LUCA GUIDO MOLINARI

A system of bosons or fermions is described by the Hamiltonian H = H1 +H2,
where H1 and H2 are the one and two particle operators

H1 =
∑
ab

habc
†
acb, H2 = 1

2

∑
abcd

vabcdc
†
ac
†
bcdcc(1)

An arbitrary one-particle basis is used, with corresponding canonical operators ca
and c†a. The matrix elements are hab = 〈a|h|b〉 and vabcd = 〈ab|v|cd〉 = vbadc
(invariance for exchange of particles).
The ground state of H is |gs〉; the Heisenberg time-evolution of an operator is
O(t) = eiHt/~Oe−iHt/~. It solves the equation of motion

i~
d

dt
O(t) = eiHt/~[O,H]e−iHt/~.(2)

Let us evaluate [cr, H]. By means of the commutators

[cr, c
†
acb] = δarcb(3)

[cr, c
†
ac
†
bcdcc] = (δrac

†
b ± δrbc

†
a)cdcc(4)

we obtain [cr, H1] =
∑
b hrbcb and [cr, H2] = 1

2

∑
bcd(vrbcd ± vbrcd)c

†
bcdcc. The

indices c and d are exchanged in the second term; next the destruction operators

are exchanged: cccd = ±cdcc. Then [cr, H2] = 1
2

∑
bcd(vrbcd + vbrdc)c

†
bcdcc. Since

〈ab|v|cd〉 = 〈ba|v|dc〉, the final expression is obtained:

(5) [cr, H] =
∑
b

hrbcb +
∑
bcd

vrbcdc
†
bcdcc

The following algebraic identities are useful, and simple to obtain:

Exercise 1. Show that ∑
r

c†r[cr, H] = H1 + 2H2(6)

[c†r, H] = −
∑
a

c†ahar −
∑
abc

vabrcc
†
ac
†
bcc(7)

i~
d

dt
cr(t) =

∑
b

hrbcb(t) +
∑
bcd

vrbcd(c
†
bcdcc)(t)(8)
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1. The time-ordered Green function

Let us introduce the symbol T of time-ordering of operators. Its action on a
product of creation/destruction operators of any set of states, at different times
of Heisenberg evolution with the same Hamiltonian, is to reorder them with times
decreasing from left to right:

TA1(t1) . . . AN (tN ) = (±1)σAσ1
(tσ1

) . . . AσN
(tσN

), tσ1
> · · · > tσN

(9)

σ is the permutation that produces the time-ordered product, (±1)σ is 1 for boson
statistics, or ±1 for Fermi statistics, according to the number of exchanges in σ
being even or odd.
Example: Tcr(t)c

†
s(t+ 1)cq(t− 1) = ±c†s(t+ 1)cr(t)cq(t− 1).

The definition implies that creation/destruction operators may be permuted (any
permutation σ) under the symbol of T-ordering, up to a sign:

TA1(t1) . . . AN (tN ) = (±1)σTAσ1
(tσ1

) . . . AσN
(tσN

)(10)

The action on a product of generic operators, in second quantization and at differ-
ent times is defined by linearity.

The 1-particle time-ordered Green function is:

iGrr′(t, t
′) = 〈gs|Tcr(t)c†r′(t

′)|gs〉(11)

If the action of T and the Heisenberg evolution are written explicitly, it is:

iGrr′(t, t
′) = θ(t− t′)e− i

~Egs(t
′−t)〈gs|crU(t− t′)c†r′ |gs〉

± θ(t′ − t)e− i
~Egs(t−t′)〈gs|c†r′U(t′ − t)cr|gs〉

The interpretation is simple. If t > t′, the matrix element 〈gs|crU(t − t′)c†r′ |gs〉
is the projetion of the state c†r′ |gs〉, propagated in time t − t′, on the state c†r|gs〉.
States are not normalized: ‖c†r|gs〉‖2 = 〈gs|crc†r|gs〉 = 1± nr. If the normalization
is taken into account and if, for fermions, nr < 1 and nr′ < 1,

|Gr,r′(t, t′)|2 =
|〈gs|crU(t− t′)c†r′ |gs〉|2

(1± nr)(1± nr′)
= P (r′, t′ → r, t|gs)

is the probability that a particle created in a state r′, is observed in a state r after
a time t− t′, indistiguished from the particles in the ground state.
With the knowledge of the Green function, the ground-state average of any 1-
particle operator may be evaluated by it:

〈gs|c†rcs|gs〉 = 〈c†r(t+)cs(t)〉 = 〈Tc†r(t+)cs(t)〉 = ±iGsr(t, t+)(12)

Then: 〈O〉 = ±i
∑
rsOrsGsr(t, t

+).

2. The ground state energy

The operator identity eq.(6) yields an expression for the total energy, due to
Galitskii and Migdal. First apply Heisenberg’s evolution in time and use [cr(t), H] =
i~ċr(t). Next take the expectation value on the exact ground state; for any operator
it is 〈gs|O(t)|gs〉 = 〈gs|O|gs〉. Then:

〈gs|H1 + 2H2|gs〉 = i~
∑
r

〈c†r(t)
d

dt
cr(t)〉 = i~ lim

t′→t

∑
r

∂

∂t
〈c†r(t′)cr(t)〉



GREEN FUNCTIONS 3

If t′ > t+ a T-ordering can be introduced in the inner product; this allows to
exchange the operators and obtain:

〈H1〉+ 2〈H2〉 = ∓~ lim
t′→t+

∂

∂t

∑
r

Grr(t, t
′)

The equation provides the expectation value of the 2-particle operator H2 in terms
of the 1-particle Green function1. The total energy is EGS = 〈H1〉+ 〈H2〉:

EGS = ± i
2

lim
t′→t+

∑
ab

[
i~δab

∂

∂t
+ hab

]
Gba(t, t′)(13)

In the basis of position and spin, and for a potential that does not depend on spin:

EGS = ± i
2

∑
m

∫
d3x

[
i~
∂

∂t
− ~2

2m
∇2

x + U(x)

]
Gmm(xt,x′t′)

∣∣∣
(x′,t′)=(x,t+)

Exercise 2. Show that, in presence of translation invariance and spin independent
interaction, the formula simplifies to

Egs
V

= ±i (2s+ 1)

2

∫
d3k dω

(2π)4
[~ω + ε(k)]G(k, ω)eiωη

where V is the volume.

3. Equation of motion of the propagator

Let us evaluate

i~
∂

∂t
Grr′(t, t

′) = ~
∂

∂t

[
θ(t− t′)〈cr(t)c†r′(t

′)〉 ± θ(t′ − t)〈c†r′(t
′)cr(t)〉

]
= ~δ(t− t′)〈cr(t)c†r′(t

′)∓ c†r′(t
′)cr(t)〉+ ~〈Tdcr(t)

dt
c†r′(t

′)〉

= ~δ(t− t′)δrr′ − i
∑
b

hrb〈Tcb(t)c†r′(t
′)〉 − i

∑
bcd

vrbcd〈T (c†bcdcc)(t)c
†
r′(t
′)〉

∑
b

[
δrbi~

∂

∂t
− hrb

]
Gbr′(t, t

′) = ~δ(t− t′)δrr′ − i
∑
bcd

vrbcd〈T (c†bcdcc)(t)c
†
r′(t
′)〉

In the last term, the T ordering acts on the triplet as a single operator at time t.
To treat the three operators individually, the ambiguity of equal time is avoided by
adding infinitesimal time shifts that keep memory of the original order:

〈T(c†bcdcc)(t)c
†
r′(t
′)〉 =〈Tc†b(t

++)cd(t
+)cc(t)c

†
r′(t
′)〉

=〈Tcc(t)cd(t+)c†r′(t
′)c†b(t

++)〉

Inside a T product operators may be permuted, up to a sign. The ++ and + must
be left in place as far as T is present. The matrix element has been written with
creation operators at the right, to comply with the definition of the two-particle
Green function:

i2Gabcd(ta, tb, tc, td) = 〈Tca(ta)cb(tb)c
†
d(td)c

†
c(tc)〉(14)

1The single particle average is: 〈H1〉 = ∓i
∑

ab habGba(t, t
+).
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(note the positions of labels c and d). Because of T−ordering:

Gabcd(ta, tb, tc, td) = ±Gbacd(tb, ta, tc, td) = ±Gabdc(ta, tb, td, tc)(15)

The equation of motion of the propagator is obtained:∑
b

(i~δrb∂t − hrb)Gbr′(t, t′) = ~δrr′δ(t− t′) + i
∑
bcd

vrbcdGcdbr′(t, t
+, t++, t′)(16)

It is the first equation in an infinite hierarchy, first obtained by Martin and Schwinger,
where each step involves higher order Green functions.
In the position representation, for spin-independent interactions, the equation is:

(i~∂t − h(x))Gmm′(xt,x′t′) = ~δmm′δ3(x− x′)δ(t− t′)(17)

+i
∑
m′′

∫
d3y v(x,y)Gmm′′m′′m′(xt,yt+,yt++,x′t′)

If the particles do not interact, the equation of motion does not involve the 2-particle
Green function. Let us pause for a while on Green functions of non-interacting
particles.

4. Independent particles

For independent particles the Green function is a generalized function solving

(18) (i~δab∂t − hab)G0
bc(t, t

′) = ~δacδ(t− t′)
The equation does not have a unique solution, as one may add a solution of the
homogeneous problem.
In frequency space the equation is (~ωδab−hab)G0

bc(ω) = ~δac, which is recognized
as the basis-projected equation for the resolvent operator:

(~ω − h) G0(ω) = ~
with G0

ab(ω) = 〈a|G0(ω)|b〉. The resolvent G0(ω) = (ω − h/~)−1 exists for ~ω not
in the spectrum of h and, assuming a discrete spectrum for h:

G0
ab(ω) =

∑
j

〈a|j〉〈j|b〉
ω − εj/~

To make sense of the Fourier integral for G0
ab(t, t

′) one must shift poles (and cuts)
off the real axis by infinitesimal amounts. This can be done in various ways, leading
to Green functions that differ by solutions of the homogeneous equation. The most
useful ones are the retarded and the time-ordered Green functions.

4.1. The retarded Green function. In the retarded Green function the whole
spectrum of h is slightly shifted to the lower half of the ω−plane:

G0R
ab (ω) =:

∑
j

〈a|j〉〈j|b〉
ω − εj/~ + iη

(19)

In passing we note that the imaginary part of the diagonal matrix elements in the
position basis give the local density of states:

− 1

π
ImG0R(x,x;ω) =:

∑
n

|〈x|n〉|2δ(ω − ωn)(20)

The trace (which is basis-independent) is the density of states of the Hamiltonian.



GREEN FUNCTIONS 5

Consider the inhomogeneous equation [i~δab∂t−hab]fb(t) = ga(t) with unknown
fa(t) and assigned source ga(t). The general solution can be obtained with the aid
of the Green function:

fa(t) = f0a (t) +
1

~

∫
dt′G0

ab(t, t
′)gb(t

′);

where f0a (t) solves the homogeneus equation.
Since the retarded Green function is analytic in the upper half plane, its Fourier

transform to the time variables is zero for t′ > t, by the residue theorem,

G0R
ab (t, t′) =

∫ +∞

−∞

dω

2π
e−iω(t−t

′)GRab(ω)

= − i θ(t− t′)
∑
n

e−iωn(t−t′)〈a|n〉〈n|b〉

= − i θ(t− t′) 〈a|U(t, t′)|b〉

This feature is of great importance in physics as it expresses causality: the particular
solution

fRa (t) =

∫
dtG0R

ab (t, t′) gb(t
′)

only depends on the values g(t′) at t′ < t.
In a many body system, the retarded Green function is the expectation value of the
commutator (bosons) or anticommutator (fermions) at unequal times (the definition
holds also for interacting systems):

(21) iGRab(t, t
′) = θ(t− t′) 〈gs|

[
ca(t), c†b(t

′)
]
∓
|gs〉

Exercise 3. Evaluate the retarded Green function for free particles (the result does
not depend on statistics)

iGR(x, t;x′, t′) = θ(t− t′)
∫

d3k

(2π)3
eik·(x−x

′)−iωk(t−t′)

= −θ(t− t′)
[

m

2π~(t− t′)

]3/2
exp

[
−i m

2~
|x− x′|2

t− t′

]
.

4.2. The time-ordered Green function - fermions. In the time ordered Green
function the Fermi frequency divides the spectrum into a portion that gains a
positive imaginary part and another that gains a negative imaginary correction:

G0T
ab (ω) =:

∑
n

〈a|n〉〈n|b〉
ω − ωn + iη sign(ω − ωF )

(22)

If states are ordered according to increasing frequencies, ωF is the highest frequency
available for N fermions in the ground state.
The Fourier transform to time variables is (in position basis)

iG0T (x, t;x′, t′) =
∑
n

e−iωn(t−t′)〈x|n〉〈n|x′〉(23)

× [θ(t− t′)θ(ω − ωF )− θ(t′ − t)θ(ωF − ω)]
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for t > t′ the propagation involves energy states above the Fermi frequency (particle
excitations), for t < t′ it involves states below the Fermi frequency (hole excita-
tions).

By means of the unperturbed (time ordered) Green function, the equation of
motion for the one particle Green function can be written in integral form:

Gmm′(x, x′) = G0
mm′(x, x′) +

i

~
∑

m′′m′′′

∫
d4y d4y′

G0
mm′′′(x, y′)U0(y′, y)Gm′′′m′′m′′m′(y′, y+, y++, x′)(24)

The equation G = G0 + G0U0G4 can be compared with the Dyson equation for
the proper self-energy, G = G0 +G0Σ?G, to express the self energy in terms of G4

(repeated indices are summed or integrated):

(25) Σ?mm′′(x, y)Gm′′m′(y, x′) =
i

~
U0(x, y)Gmm′′m′′m′(x, y+, y++, x′)

5. Hartree Fock approximation

The 2-particle Green function admits a decomposition in connected components:

Gabcd(ta, tb, tc, td)(26)

= Gac(ta, tc)Gbd(tb, td)±Gad(ta, td)Gbc(tb, tc) +Gcabcd(ta, tb, tc, td)

One of the equivalent forms of Hartree Fock approximation is to neglect completely
the connected part of the 2-particle Green function, meaning that the two particles
evolve independently. This truncates the Martin-Schwinger hierarchy of equations
at the first level. If in the equation of motion (18) for the 1-particle Green function
we neglect the connected part of G4 we obtain:∑

b

[i~δrb∂t − hrb]Gbr′(t, t′) = ~δrr′δ(t− t′)(27)

+ i
∑
bcd

vrbcd[Gcb(t, t
+)Gdr′(t, t

′)±Gcr′(t, t′)Gdb(t, t+)]

In frequency space it is:∑
b

(
~ωδrb − hrb −

∑
ad

vrabd〈c†acd〉

)
Gbr′(ω) = ~δrr′ ±

∑
bcd

vrbcd〈c†bcc〉Gdr′(ω)

Gmm′′m′′m′(xt,yt+,yt++,x′t′)

≈ Gm′′m′(yt,x′t′)Gmm′′(xt,yt+)±Gm′′m′′(yt,yt+)Gmm′(xt,x′t′)

Then (18) becomes a closed quadratic equation for the propagator in HF approxi-
mation:(

i~
d

dt
− h(x)

)
GHFmm′(xt,x′t′) = ~δmm′δ3(x− x′)δ(t− t′) + i

∑
m′′

∫
d3yv(x,y)

×
[
GHFm′′m′(yt,x′t′)GHFmm′′(xt,yt+)±GHFm′′m′′(yt,yt+)GHFmm′(xt,x′t′)

]
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Since ±i
∑
m′′ Gm′′m′′(yt,yt+) = n(y), we obtain the Hartree interaction with HF

density

UH(x) =

∫
d3y v(x,y)nHF (y)

The equation of motion is(
i~
d

dt
− h(x)− UH(x)

)
GHFmm′(xt,x′t′) = ~δmm′δ3(x− x′)δ(t− t′)

+i
∑
m′′

∫
d3y v(x,y) GHFm′′m′(yt,x′t′)Gmm′′(xt,yt+)

In ω space:

[~ω − h(x)− UH(x)]GHFmm′(x,x′, ω) = ~δmm′δ3(x− x′)

+ i
∑
m′′

∫
d3y v(x,y) GHFm′′m′(y,x′, ω)

∫
dω′

2π
GHFmm′′(x,y, ω′)eiηω

′

To solve the equation we assume a spectral representation typical of independent
particles

GHFmm′(x,x′, ω) =
∑
a

ua(x,m)ua(x′,m′)∗

ω − ωa + iη sign (ωa − ωF )
(28)

with unknown orthonormal functions ua and real frequencies ωa.
Insert the representation in the equation for G, multiply by ua(x′,m′) and integrate
in x′ and sum on m′, Because of orthogonality:

[~ω − h(x)− UH(x)]
ua(x,m)

ω − ωa ± iη
= ~ua(x,m)

+ i
∑
m′′

∫
d3y v(x,y)

ua(y,m′′)

ω − ωa ± iη

∫
dω′

2π
GHFmm′′(x,y, ω′)eiηω

′

Here UH is evaluated with

nHF (y) =
∑
b

∑
m

|ub(x,m)|2θ(ωF − ωb).

The integral in ω′ is evaluated by residues and gives: i
∑
b ub(x,m)ub(y,m

′′)∗θ(ωF−
ωb). Next, the limit ω → ωa is taken, and the system of Hartree-Fock equations is
obtained:

[h(x) + UH(x)]ua(x,m)−
∑
b,m′′

θ(ωF − ωb)ub(x,m)(29)

×
∫
d3y v(x,y) ua(y,m′′)ub(y,m

′′)∗ = ~ωaua(x,m)

The spin dependence may be chosen to factorize (then it is a quantum number):
ua,σ(x,m) = faσ(x)vσ(m). Then:

∑
m′′ vσ(m′′)vσ′(m′′) = δσσ′ and

[h(x) + UH(x)] faσ(x)−
∑
b

θ(ωF − ωb)fbσ(x)

∫
d3y v(x,y) faσ(y)fbσ(y)∗

= ~ωafaσ(x)
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If the Hartree Fock approximation is done in eq.(26), one reads the HF approxima-
tion for the self energy:

Σ?mm′(x, x′) =
i

~
GHFmm′(x, x′+)U0(x, x′)

± i

~
δmm′δ4(x− x′)

∑
m′′

∫
d4y U0(x, y)GHFm′′m′′(y, y+)(30)

Therefore, we obtained another characterization of the Hartree Fock approximation:
the HF self-energy is provided by the two self energy graphs of first order expansion,
with the self-consistent GHF replacing G0.
An important remark is that the Hartree-Fock self-energy is independent of time.

Exercise 4. Evaluate the HF self-energy (31), by using the expansion (29) with
functions that factorize.

Exercise 5. Show that the HF self-energy Σ?(k) for fermions with only two-body
interaction v(|x− y|) coincides with the correction to the energy of a free fermion.

Exercise 6. Show that the self energy may be viewed as a bilocal potential in HF
equations:(

i~
d

dt
− h(x)

)
ua(xm)− ~

∑
m′

∫
d3yΣ?mm′(x,x′)ua(x′m′) = ~ωaua(xm)


