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The Ginzburg-Landau theory
of superconductivity (1950)

Notes by Luca G. Molinari

Before any clue on a microscopic mechanism, and just
by assuming that superconductivity can be described
by a complex order parameter ψ(x), Vitaly Ginzburg
(Nobel 2003) and Lev Landau (Nobel 1962) developed
a theory1 valid near Tc. It was inspired by the recent
theory of second-order phase transitions developed by
Landau. The free energy is a functional of the order
parameter but, since the latter is small near the transi-
tion, the free energy is written as an expansion. Being a
phenomenological theory based on thermodynamics, it
is quite universal.

For a uniform infinite superconductor in absence of
magnetic field, the free energy density is a function of
the order parameter ψ, independent of position, and is
expanded as follows:

fs[ψ, ψ̄] = fn + a|ψ|2 +
b

2
|ψ|4

fn is the free energy of the normal phase, a and b are pa-
rameters that describe the material and depend on tem-
perature. For stability, it is necessary that b > 0.
Minimization in the order parameter gives ψ(a+b|ψ|2) =
0. Them either ψ = 0 or

ψ2
∞ = −a

b

meaning that a(T ) < 0 for T < Tc (the free energy is a
double well in |ψ|2). The difference in free energies is the
condensation energy density

fs(T )− fn(T ) = −a
2

2b
= −Hc(T )2

8π

Therefore:

a2 =
b

4π
Hc(0)2

[
1− T 2

T 2
c

]2
Ginzburg and Landau put a(T ) = α(T − Tc) and b con-
stant near Tc. This gives ψ ∝

√
Tc − T .

The jump of specific heat per unit volume at the transi-
tion is:

cs − cn = Tc
α2

b

In presence of an external magnetic field H, the order
parameter ψ and the induction field B = ∇×A are not
uniform. While B approaches the external field H near
the surface, the order parameter approaches in modulus
the uniform value ψ∞ deep in the superconductor.

The free energy is postulated as

Fs[ψ,ψ,A] = Fn[0] +

∫
d3x

1

2m?

∣∣∣∣(p +
e?

c
A

)
ψ(x)

∣∣∣∣2
+ a|ψ(x)|2 +

b

2
|ψ(x)|4 +

1

8π
(∇×A)2 (1)

Fn is the free energy of the normal phase in absence of the
fieldH; a and b are the parameters of the superconductor,
−e? and m? are the charge and mass of the particles that
compose the superfluid with density |ψ(x)|2.
The integral extends to the whole space.

A. The first GL equation

Minimization of Fs with respect to ψ or ψ gives the
first G.L. equation or its complex conjugate:

1

2m?

(
p +

e?

c
A

)2

ψ + aψ + b|ψ|2ψ = 0 (2)

In deriving the equation, integration by parts produces a
boundary term that vanishes if

n · (p +
e?

c
A)ψ = 0

The left-multiplication of the GL equation by ψ is an
equation whose imaginary part can be written in the form
divJs = 0, where

Js = − e?

2m?
ψ̄

(
p +

e?

c
A

)
ψ + c.c. (3)

will be soon understood as the supercurrent density.
It is analogue of the probability current density of the
Schrödinger equation. It reinforces the picture that |ψ|2
is the density of some conserved fluid of particles with
charge −e? and mass m?. The net flux of JS out of a
closed surface is zero.
The afore b.c. is sufficient for ensuring the physical con-
dition that the supercurrent flows parallel to the bound-
ary surface: n · JS = 0. Pierre Gilles de Gennes stated a
more general condition5:

n ·
(
p +

e?

c
A

)
ψ = iλψ (4)

where λ = 0 for contact with an insulator and λ is real
non-zero for contact with a metal. In the second case
the condition allows for the “proximity effect”, whence
a layer near the superconductor gains superconducting
properties.

Deep inside a superconductor it is A = 0 and the order
parameter |ψ| equals ψ∞. It is convenient to put ψ(x) =
ψ∞f(x), where f is complex and |f | ≤ 1 (the bulk value).
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The GL equation for f , after division by |a|, is greatly
simplified in appearance:

ξ2
(
−i∇ +

e?

~c
A

)2

f − f + |f |2f = 0 (5)

where ξ is the coherence length:

ξ(T ) =

√
~2

2m?|a(T )|
(6)

It diverges at the critical temperature. It is the scale of
decay of the order parameter in a s-to-n transition.

Consider the GL equation in 1D, in absence of field H
with b.c. f = 1 and f ′ = 0 for x� 0:

−ξ2f ′′ − f + f3 = 0

Multiply by −4f ′: d
dx (2ξ2f ′2 + 2f2 − f4) = 0. Then

2ξ2f ′2 + 2f2−f4 = C. The b.c. give C = 1. Noting that
f ′ < 0 in the transition from s to n, the square root is:
ξ
√

2f ′ = −(1− f2). The integral is:

f(z) = tanh

(
x0 − x
ξ
√

2

)
, x < x0 (7)

B. The second G-L equation

It is a general statement that, at equilibrium and away
from the macrosopic currents that generate H, it is14:

δF

δA(x)
= 0.

This condition gives the second G.L. equation. Amaz-
ingly, it is a Maxwell equation with the supercurrent den-
sity:

∇×B =
4π

c
Js (8)

The boundary condition is continuity of the tangent
component of B and H.

With ψ = |ψ|eiθ the supercurrent becomes:

JS = − e?2

m?c
|ψ|2

(
~c
e?

∇θ + A

)
(9)

A first interesting result is now obtained: divide by |ψ|2
and integrate on a closed circuit. Since the order param-
eter is single-valued, the phase θ can only change by an
integer multiple of 2π:

−m
?c

e?2

∮
C

JS · d`
|ψ|2

− hc

e?
n =

∫
σ

B · n da (10)

If the path C is in a region where the first integral is
negligible, it turns out that the flux of B through the
surface σ is quantized in units of the fundamental flux

φ0 =
hc

e?
(11)

The identity rot rotB = grad divB − ∇2B and the
Maxwell equation div B=0 give −∇2B = 4π

c rotJS .
Now use the property rot(λv) = λrotv − v×∇λ:

∇2B =
4πe?2

m?c2
ψ2
∞|f |2B−

8π

c
JS ·

∇|f |
|f |

If the density f slowly changes on the scale of change of
the magnetic field, the rotor of the 2nd GL equation is:

∇2B =
1

δ2
|f |2B (12)

where δ(T ) is the penetration depth:

δ(T ) =

√
m?c2b

4πe?2|a(T )|
(13)

It diverges near the transition.
Consider a superconductor in half-space x ≤ 0 in
presence of a uniform field H along the z-axis in x > 0.
If ξ � δ we approximate |f | = 1. The field B solves
B′′(x) = B(x)/δ with b.c. B(0) = H. The solution is
B(x) = Hex/δ. i.e. the field penetrates a length δ in the
superconductor.

The ratio δ/ξ is independent of temperature, and de-
fines the important Ginzburg-Landau parameter

κ =
δ(T )

ξ(T )
=
m?c

~e?

√
b

2π
(14)

Tc (∗) δ (nm) ξ (nm) Hc(mT)(∗)
Cd 0.517 110 760 2.805

Al 1.175 16 1600 10.49

Sn 3.722 34 230 30.55

Pb 7.196 37 83 80.34

Nb 9.25 39 38 206

(*) Data from Springer handbook of condensed matter
and materials (2005).
Nb: Hc2=0.42 T, Hc1=0.17 T (slides of A. Gurevich, Nat.
High Magn. Field Lab. Florida).

C. The Gibbs potential

Consider an extended homogeneous material, in pres-
ence of a field H. Suppose that the order parameter as
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well as B may be not uniform. The Gibbs potential, after
integration by parts, is

Gs = Fn +

∫
dx
[
ψ̄

1

2m?
(p +

e?

c
A)2ψ

+a|ψ|2 +
b

2
|ψ|4 +

B2

8π
− B ·H

4π

]
Simplify with the 1st G.L. equation:

Gs = Fn +

∫
dx
[B2

8π
− B ·H

4π
− b

2
|ψ|4

]
In the normal phase Gn = Fn +

∫
dxH2/8π. Insert ψ =

ψ∞f = (|a|/b)f and use the relation a2/2b = H2
c (T )/8π

(condensation energy density):

Gs −Gn =
H2
c

8π

∫
dx
[(H−B

Hc

)2

− |f |4
]

(15)

At T < Tc and H = Hc(T ), two cases are interesting:
• Uniform case. Gus = Gun with the equivalent situations
at the transition line: |f | = 1 and B = 0 or |f | = 0 and
B = Hc.
• Mixed case, coexistence of s and n regions. The
integral is non-zero in the transition region because
both B and |f | vary, and on different scales: f grows
towards bulk s-region, while B decays from the value Hc

in n-phase. The mixed phase occurs when Gmixs < Gus ,
i.e. when the integral is negative.

In d = 1 the difference per unit area is

∆G

A
=
H2
c

8π

∫ +∞

−∞
dx
[(

1− B(x)

Hc

)2

− f4(x)
]

(16)

The integral defines the length L of the transition region,
that depends on how B and f decay in opposite direc-
tions. If it is negative a s-n interface is favoured within
the material.

A 1-dimensional problem1

Even in d = 1 the coupled GL equations cannot be
exactly solved. Consider an infinite superconducting ma-
terial that is normal (n) for x� 0 with a magnetic field
Hc in direction z, and superconducting (s) for x� 0.

f(x)→

{
1 x→ −∞
0 x→ +∞

B(x)→

{
0 x→ −∞
Hc x→ +∞

The induction field B(x), with orientation z, is ob-
tained from a vector potential A(x) = (0, A(x), 0). The
equation B = rotA is A′(x) = B(x).
With f = |f(x)|eiθ(x) the supercurrent is

JS = − e?2

m?c

|a|
b
|f(x)|2(

~c
e?
θ′(x), A(x), 0)

The x component of the 2nd GL equation gives: θ′(x) =
0. We set θ = 0. The y component and A′ = B give:

A′′(x) =
1

δ2
f2A (17)

The z component is zero. The first GL equation is

−ξ2f ′′(x) +
e?2A2(x)

2m?c2|a|
f(x)− f(x) + f3(x) = 0

Multiply by 2f ′ and show a total derivative:

d

dx

[
−ξ2f ′2 +

e?2A2

2m?c2|a|
f2 − f2 +

f4

2

]
= f2

e?2AA′

m?c2|a|

Note that f2AA′ = δ2A′A′′ is a total derivative. Then:

−ξ2f ′2 +
e?2A2

2m?c2|a|
f2 − f2 +

f4

2
− e?2

m?c2|a|
δ2
A′2

2
= C

The constant C = −1/2 is found with the b.c. at −∞.
This is the final integral:

f ′2 − (1− f2)2

2ξ2
=

(
e?

~c

)2

(A2f2 − δ2A′2) (18)

Limit cases.
• κ � 1. Let B(x) = Hcθ(x) (δ = 0). The function f is
the solution (7) with x0 = 0 because for x > 0 B is const.

(f = 0 in (17) givesB′ = 0). L =
∫ 0

−∞ dx(1−f4) > 0 (the

mixed phase does not occur). The integral can be done:

L =
∫ 0

−∞ dx(1 − f2)(1 + f2) = −ξ
√

2
∫ 0

−∞ dxf ′(x)(1 +

f2) = ξ
√

2
∫ 1

0
df(1 + f2) = 4

3ξ
√

2.

• κ = 1/
√

2. The condition f2(x) = (1 − B(x)/Hc) in
(16) makes L = 0. With the equations of the 1D problem,

it is found to occur at κ = 1/
√

2.
• κ� 1. Now f(x) = θ(−x). The field B(x) decays from

Hc in x < 0: B(x) = Hce
x/δ. Then: L =

∫ 0

−∞ dx[(1 −
ex/δ)2 − 1] = −1.5δ (there is the mixed phase).

(texts report the result L = − 8
3 (
√

2− 1)δ ≈ −1.1δ)

D. Mixed superconductors (1957).

Alexei Abrikosov (Nobel 2003) discovered that the lin-
earized G.L. first equation admits a mixed solution2,
where the external field penetrates the bulk of the su-
perconductor in quantized fluxes. I made my derivation
of the vortex lattice in 1953 but publication was postponed
since Landau at first disagreed with the whole idea. Only
after R. Feynman published his paper on vortices in su-
perfluid Helium (1955) and Landau accepted the idea of
vortices, did he agree with my derivation, and I published
my paper3.

For T < TC consider the problem of lowering the inten-
sity of a uniform magnetic field H to a value where the
first solution of the GL solution appears. This highest
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possible value corresponds to a small field ψ, and justi-
fies the omission of the cubic term in the GL equation.
In the Landau gauge, for H aligned in the z direction, a
choice is A = (0, Hx, 0). The linearized equation is that
of a harmonic oscillator

ξ2
[
− ∂2

∂x2
+ (−i ∂

∂y
+
e?H

~c
x)2 − ∂2

∂z2

]
f − f = 0

Let us introduce the magnetic length `2 = ~c/e?H and
measure lengths with this unit. The solutions have the
form f(x, y, z) = eiky+iqzu(s) where u solves

−d
2u

ds2
+ (k`+ s)2u+ q2`2u =

`2

ξ2
u

The equation admits integrable solutions only for the dis-
crete values of the harmonic oscillator:

`2/ξ2 = q2`2 + 2n+ 1, n = 0, 1, 2, ...

The largest possible H (smallest `) occurs for q = 0 and
n = 0. In this situation ξ2 = `2 i.e. there is a unit flux
of the critical field in an area 2πξ2

2πξ2Hc2 =
hc

e?

Remembering that H2
c (T ) = 4π|a|/b, the equation is

Hc2(T )

Hc(T )
= κ
√

2 (19)

The solution is translation invariant along the z-axis, and
is a superposition of shifted Gaussians:

f(x, y) =
∑
k

ck exp

[
iky − 1

2`2
(x+ k`2)2

]
It is periodic in y if k = 2πp/L:

f(x, y) =
∑
p

cp exp

[
i
2π

L
py − 1

2`2
(x+ p

2π

L
`2)2

]
It is also periodic in x, up to a phase, if cp are all equal.

f(x, y + L) = f(x, y), f(x+ 2π
L `

2, y) = f(x, y)e−i
2π
L y

The unit cell of the lattice has area 2πξ2. It is a square
if L = ξ

√
2π. Each cell is crossed by a unit flux of the

critical field.
The periodic solution (up to a phase) is now rewritten:

f(x, y) =e
− x2

2ξ2

[
1 + 2

∑∞

p=1
e−πp

2

cos

(
p
√

2π
y + ix

ξ

)]
=e
− x2

2ξ2 θ3

(√
π

2

y + ix

ξ
; e−π

)
(20)

where θ3(z, q) = 1+
∑∞
n=1 q

n2

cos(2nz) is a Jacobi Theta

function. The periods are ξ
√

2π and iξ
√

2π.
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FIG. 1: Level curves of |f(x, y)|2 for the square Abrikosov
lattice, eq.(20) with ξ = 1. The central contour is a peak,
while the concentric circles point to a zero, where the critical
field is stronger. The phase of f changes by 2π along a circuit
around a single zero. The lattice period is

√
2π ≈ 2.50

FIG. 2: STM picture of the triangular Abrikosov lattice in
NbSe2 (Tc = 7.2, Hc2 = 3.2T). The width of the scan is 6000
Å. Previous observations used fine magnetic particles to mark
the flux lines. The STM allows observation of the lattice in
the full range of magnetic fields, and to observe the variation
of the density of the states in and around a single flux line.
(Hess et al.8).

It was later discovered, by considering the quartic
term, that the triangular lattice has a lower free energy10.

The highest field allowed in a superconductor is

Hc2 = κ
√

2Hc(T ) (21)

The relation requires κ > 1/
√

2, which defines type II
superconductors.
A higher threshold Hc3 ≈ 1.7Hc2 describes the onset of
superconductivity in a surface layer of width ξ(T ).
The lower critical field for the mixed phase is

Hc1 = Hc
log κ

κ
√

2
(22)
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FIG. 3: The critical fields (from above) Hc2/Hc and Hc1/Hc

(continuous lines), as functions of T/Tc. Below Hc1 there is
no mixed phase (κ = 2).

It is the value at which a single vortex grows in the type
II superconductor when the H field is increased above
the pure diamagnetic (Meissner) phase. (Gs −Gn = 0).

For Hc1 < H < Hc2 the field penetrates in tubes where
the phase is normal and the flux is quantized. The flux
tubes form a triangular array (Abrikosov lattice). Each
tube is surrounded by the superconducting phase and a
thin layer of supercurrents that shield it. For H > Hc2

the normal phase occurs. Nothing occurs at the value
Hc(T ). Type II superconductors resist fields of some tesla
up a record field of 45.5T.

All superconducting chemical elements are Type I,
with the exception of Vanadium (V, Tc = 5.46), Nio-
bium (Nb, Tc = 9.25) and Technetium (Tc, Tc = 7.77)
that are type II.

The Jacobi function θ3(z, q)

θ3(z, q) =
∑
n∈Z

ei(2nz+n
2πτ) Imτ > 0 (23)

= 1 + 2

∞∑
n=1

qn
2

cos(2nz) (24)

with q = exp(iπτ). The function is analytic in C and
doubly-periodic up to a factor, with periods π and iπτ :

θ3(z+ π, q) = θ3(z, q), θ3(z+ πτ, q) =
1

q
e−2izθ3(z, q)

A representation as infinite product:

θ3(z, q) = G

∞∏
n=1

(1 + 2q2n−1 cos(2z) + q4n−2)

G =

∞∏
n=1

(1− q2n)

By putting to zero the factor n = 1 we find a zero of
the function at z0 = π

2 (1 + iτ), that replicates with the
periodicity of the lattice.
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