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1. The Bose oscillator

Consider a canonical pair [b̂, b̂†] = 1, irreducible on some Hilbert space (no
operator exists that commutes with them, except unity). The number operator

is self-adjoint and unbounded, with orthonormal eigenvectors b̂†b̂|n〉 = n |n〉, n =
0, 1, 2, ..., that span the Hilbert space: 1 =

∑
n |n〉〈n| (completeness).

The action of the operators is b̂†|n〉 =
√
n+ 1|n + 1〉 and b̂|n〉 =

√
n|n − 1〉. The

vectors are obtained from the vacuum by

|n〉 =
1√
n!
b̂†n|0〉

A coherent state is an eigenvector of the destruction operator:

b̂|α〉 = α|α〉(1)

The equation has a normalized solution for any complex value α:

|α〉 = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
|n〉(2)

The series is summed as |α〉 = e−
1
2 |α|

2

eαb̂
†
e−ᾱb̂|0〉 (the extra factor acts as unit oper-

ator). With the formula eAeB = eA+B+
1
2 [A,B], that truncates the Baker Campbell

Hausdorff expansion if [A,B] commutes with A and B, one gets a unitary operator
acting as translation in C:

|α〉 = eαb̂
†−ᾱb̂|0〉

Two coherent states are never orthogonal, with overlap: |〈α|α′〉| = e−
1
2 |α−α

′|2 .
Being a continuum, coherent states are an overcomplete set:∫

d2α

π
|α〉〈α| = 1(3)

Date: 27 nov 2021.

1



2 L.G.MOLINARI

Proof: ∫
d2α

π
|α〉〈α| =

∑
n,m

|n〉〈m|
∫
d2α

π
〈n|α〉〈α|m〉

=
∑
n,m

|n〉〈m|
∫
d2α

π
e−|α|

2 αn√
n!

ᾱm√
m!

=
∑
n,m

|n〉〈m|δn,m

One can extract countable subsets of coherent states that are still complete [1].

Exercise 1.1. Find eigenvectors and eigenvalues of the shifted oscillator B̂†B̂, with

B̂ = b̂− β, B̂† = b̂† − β∗ (in terms of those of b̂†b̂).

The Bose oscillator has two important representations:

Harmonic oscillator. In L2(R), on the dense subspace S (R) define:

(b̂ϕ)(x) =
1√
2

[xϕ(x) + ϕ′(x)], (b̂†ϕ)(x) =
1√
2

[xϕ(x)− ϕ′(x)]

(b̂†b̂ ϕ)(x) = − 1
2ϕ
′′(x) + 1

2 (x2 − 1)ϕ(x) with Hermite functions as number states:

un(x) = 〈x|n〉 =
1√

2nn!
√
π
e−

1
2x

2

Hn(x)

The coherent states are shifted Gaussians

Φα(x) = 〈x|α〉 =
1
4
√
π
e−

1
2 (x−α

√
2)2

Holomorphic representation. The Bargmann space [2] is the Hilbert space of

entire functions such that
∫
d2z
π e−|z|

2 |f(z)|2 < ∞ (d2z = dx dy) with the inner
product

(f, g) =

∫
d2z

π
e−|z|

2

f(z)g(z)

The monomials un(z) = zn√
n!

are a complete orthonormal system1. The canonical

operators are adjoints of each other, with action:

(b̂f)(z) = f ′(z), (b̂†f)(z) = zf(z)

The monomials un are the normalized eigenfunctions of the number operator z d
dz .

The coherent states are exponential functions:

Φα(z) = e−
1
2 |α|

2
∞∑
n=0

αn√
n!
un(z) = e−

1
2 |α|

2+αz

If the basis functions un(z) are replaced by the Hermite functions un(x), the coher-
ent state of the harmonic oscillator is obtained, which can be seen as a generating
function of Hermite functions.

1The power expansion of an entire function has infinite radius of absolute convergence, and
uniform convergence on any compact set in C.
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Appendix. Two useful integrals:∫
d2z

π
e−|z|

2

z̄nzm = n! δnm(4) ∫
d2z

π
e−|z|

2+αz̄zm = αm(5)

The last one gives
∫
d2z
π e−|z|

2+αz̄f(z) = f(α) (the function e−|z|
2+αz̄ is named “re-

producing kernel”).

2. The thermal partition function for bosons

The thermal partition function with sources is the generator of Green functions.
The log of it, is the generator of connected Green functions. We then give a path-
integral representation of it, based on coherent states.

Consider a many-boson Hamiltonian, written in second quantization with CCR

operators b̂†r, b̂r where the index r = 1, 2, ... enumerates an arbitrary 1-particle
orthonormal complete basis |r〉 :

K = Ĥ − µN̂ =
∑
rs

b̂†r(hrs − µδrs)b̂s +
1

2

∑
rr′ss′

b̂†r b̂
†
svrsr′s′ b̂s′ b̂r′

Time-ordered thermal averages can be evaluated with the help of auxiliary classical
fields (sources) φr(τ) and φr(τ):

K[φ̄, φ] = K − ~
∑
r

[b̂rφr(τ) + b̂†rφr(τ)]

The τ -evolution with sources is given by the operator U (τ, 0). In the interaction
picture: U (τ, 0) = exp(− 1

~Kτ)UI(τ, 0) where

UI(τ, 0) = T exp

[∑
r

∫ τ

0

dτ ′b̂r(τ
′)φr(τ ′) + b̂†r(τ

′)φr(τ
′)

]
with evolution of b̂r and b̂†r ruled by K. The partition function with sources is

Z[φ̄, φ] = tr[U (~β, 0)] = Z〈UI(~β, 0)〉K(6)

where Z = tr(e−βK).
The average of operators in presence of the sources is defined in the interaction
picture:

〈TO1(τ1) . . . On(τn)〉φ,φ̄ =
〈TUI(~β, 0)O1(τ1) . . . On(τn)〉K

〈UI(~β, 0)〉K
It is a thermal average when sources are turned off.

Sources are useful to perform functional derivatives that, in this case, produce
T-ordered averages of creation and destruction operators, in presence of the sources:

〈b̂r(τ)〉φ,φ̄ =
〈TUI(~β, 0)b̂r(τ)〉K
〈UI(~β, 0)〉K

=
1

Z[φ̄, φ]

δZ[φ̄, φ]

δφr(τ)
(7)

〈Tb̂r(τ)b̂†r′(τ
′)〉φ,φ̄ =

1

Z[φ̄, φ]

δ2Z[φ̄, φ]

δφr(τ)δφr′(τ ′)
(8)
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and so on. They become thermal averages (thermal Green functions) when the
sources, in the end, are turned off.
In analogy with statistical mechanics, we introduce the functional

W [φ̄, φ] = logZ[φ̄, φ](9)

The functional W [φ̄, φ] is the generator of connected correlators in presence of the
sources. This is shown in the example:

δ2W [φ̄, φ]

δφs(τ ′)δφr(τ)
=

δ

δφs(τ ′)

(
1

Z[φ̄, φ]

δZ[φ̄, φ]

δφr(τ)

)
=〈Tb̂r(τ)b̂†r′(τ

′)〉φ,φ̄ − 〈b̂r(τ)〉φ,φ̄〈b̂
†
r′(τ

′)〉φ,φ̄

δ3W [φ̄, φ]

δφ(1)δφ(2)δφ(3)
=

δ

δφ(1)
[〈Tb̂(3)b̂†(2)〉φ,φ̄ − 〈b̂(3)〉φ,φ̄〈b̂†(2)〉φ,φ̄]

= 〈Tb̂(3)b̂†(2)b̂†(1)〉φ,φ̄ − 〈Tb̂(3)b̂†(2)〉φ,φ̄〈b̂†(1)〉φ,φ̄ − 〈T̂b(3)b̂†(1)〉φ,φ̄〈b̂†(2)〉φ,φ̄
− 〈b̂(3)〉φ,φ̄〈Tb̂†(2)b̂†(1)〉φ,φ̄ + 2〈b̂(3)〉φ,φ̄〈b̂†(2)〉φ,φ̄〈b̂†(1)〉φφ̄

As sources are turned off, unless a broken symmetry occurs (BEC), the values that

do not conserve the number, like 〈b̂r〉 and 〈b†r〉, vanish.

3. Functional representation

We now give a functional representation of the partition function without sources.
Sources will be added in the end.
The eigenvectors of b̂†r b̂r, r = 1, 2, ..., are the number basis |n〉 = |n1, n2, ..., n∞〉 of
Fock space. An overcomplete basis are the coherent states |α〉 = |α1, α2, ..., α∞〉,
where b̂r|α〉 = αr|α〉. They are very convenient because in second quantization the
operators are normally ordered, then:

〈α|b̂†r b̂s|α′〉 = 〈α|α′〉αrα′s, 〈α|b̂†r b̂†sb̂r′ b̂s′ |̂α′〉 = 〈α|α′〉αr αsαs′ αs′

Let us introduce the notation 〈α|K̂|α′〉 = 〈α|α′〉K(α,α′).
The partition function at temperature β is

Z = tr(e−βK) =

∫ ∞∏
k=1

d2αk
π
〈α|e−βK |α〉

In view of the next steps we introduce time labels τ ∈ [0, ~β] for each overcomplete
resolution of the identity, and rewrite Z:

Z =

∫ ∞∏
k=1

d2αk(0)

π
〈α(~β)|e−βK |α(0)〉,(10)

with label τ = 0 and with the boundary condition α(~β) = α(0).
The temperature interval [0, ~β] is divided into subintervals (τi, τi+1) with τ0 = 0
and τN+1 = ~β, and the exponential is factored:

e−βK = e−
1
~ (~β−τN )Ke−

1
~ (τN−τN−1)K ...e−

1
~ (τ1−0)K
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Between the factors, at τj , an identity
∫
d2α(τj)|α(τj)〉〈α(τj)| is inserted.

Z =

∫ N∏
k=0

d2α(τk)〈α(~β)|e− 1
~ (~β−τN )K |α(τN )〉〈α(τN )|e− 1

~ (τN−τN−1)K |α(τN−1)〉

...〈α(τ1)|e− 1
~ (τ1−τ0)K |α(0)〉

For small intervals, a factor is:

〈α(τi+1)|e− 1
~ (τi+1−τi)K |α(τi)〉

≈ 〈α(τi+1)|α(τi)〉
[
1− 1

~
(τi+1 − τi)

〈α(τi+1)|K|α(τi)〉
〈α(τi+1)|α(τi)〉

+ ...

]
≈ 〈α(τi+1)|α(τi)〉 exp

[
−1

~
(τi+1 − τi)K(α(τi+1)α(τi))

]
The exponents of the prefactors 〈α(τi+1)|α(τi)〉 are collected:

N∑
i=0

[
− 1

2‖α(τi+1)‖2 − 1
2‖α(τi)‖2 + α(τi+1)α(τi)

]
=

N∑
i=0

[
−‖α(τi+1)‖2 + α(τi+1)α(τi)

]
= −(τi+1 − τi)

N∑
i=0

α(τi+1)
α(τi+1)−α(τi)

τi+1 − τi

The full exponent is

−1

~

N∑
i=0

(τi+1 − τi)
[
~α(τi+1)

α(τi+1)−α(τi)

τi+1 − τi
+K(α(τi+1),α(τi))

]
In the (formal) limit N →∞ we write the action:

S = −1

~

∫ ~β

0

dτ

[
~α(τ)

∂α(τ)

∂τ
+K(α(τ),α(τ))

]
The partition function is a functional integral on an infinite set of functions αr(τ)

Z =

∫
D2α(τ)e−

1
~S(11)

If the Bose operators are indexed by position (spin zero), i.e. r = x, the complex
vector α(τ) is replaced by a complex field ψ(x, τ) with periodic b.c. ψ(x, ~β) =
ψ(x, 0).

Z =

∫
D2ψ(x, τ)e−

1
~S(12)

S =

∫ ~β

0

dτ
[ ∫

dxψ(xτ)

(
~
∂

∂τ
− ~2

2m
∇2 + V (x)− µ

)
ψ(xτ)(13)

+
1

2

∫
dxdyψ(xτ)ψ(xτ) v(x− y)ψ(yτ)ψ(yτ)

]
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The ideal gas of bosons. The convenient choice is the basis r = k. The field is
Fourier expanded in bosonic Matsubara frequencies ωn = nπ

~β (n even) that fulfill

the condition ψ(k, 0) = ψ(k, ~β).

ψ(k, τ) =
1√
~β

∑
n

ψ(k, iωn)e−iωnτ(14)

The transformation is unitary and the measure does not change:

S0 =
∑
n,k

ψ(k, iωn)
(
−i~ωn + ε0k − µ

)
ψ(k, iωn)

Z0 =
∏
k,n

∫
d2z

π
exp

[
(iωn −

ε0k − µ
~

)|z|2
]

=
∏
k,n

1

iωn −
ε0k−µ

~

The factor 1/π for each mode has been recovered, and µ < 0 for convergence of the
Gaussian integral. The partition function Ω0 = − 1

β logZ0 is2:

Ω0 =
∑
k

1

β

∑
n

log

(
iωn −

ε0k − µ
~

)
eiωnη =

1

β

∑
k

log
[
1− e−β(ε0k−µ)

]
.

4. Partition function with sources

The partition function with sources is the generator of Green functions. For this
purpose we add a source-term in the action:

S[φ̄, φ] = S0 − ~
∫ ~β

0

dτ
∑
r

[αr(τ)φr(τ) + φr(τ)αr(τ)]

The functional derivatives of Z[φ̄, φ] in the sources produce time-ordered correlation
functions in presence of the sources. For example:

〈b̂r(τ)〉 =
1

Z[φ̄, φ]

δZ[φ̄, φ]

δφr(τ)
=

1

Z[φ̄, φ]

∫
D2α(τ)e−

1
~S[φ̄,φ]αr(τ)

When the sources are turned off one obtains the thermal average.
The time-ordering is well understood at the defining level of the functional in-

tegral. The term −~
∑
r[b̂
†
rφr(τ) + φr(τ)b̂r] is added to K. After the slicing of the

interval [0, ~β], one adds the term to the weight at exponent in each subinterval

−~(τj+1 − τj)
∑

r
[αr(τj+1)φr(τj) + φr(τj)αr(τj)]

This explains why functional derivatives in the sources drop down fields into a
time-ordered sequence.

2Note: in the action we could include a factor e−iωnη to stress the fact that the field in the

left is at time τ = ~β = 0+. The factor then appears in the denominator of the final expression

for Z0.
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5. Non-interacting bosons with sources

A shift of the fields in the measure does not change the measure and the func-
tional integral. For the infinitesimal shift δα(τ), the linear change in Z[φ̄, φ] is:

0 = −1

~

∫
D2α(τ)e−

1
~S
∑
r

δαr(τ)

[
~
∂αr(τ)

∂τ
+
∑
s

hrsαs(τ)− µαr(τ)− ~φr(τ)

]
The arbitrariness of the shift gives a Ward identity for 〈αs(τ)〉:

~
∂〈αr(τ)〉

∂τ
+
∑
s

hrs〈αs(τ)〉 − µ〈αr(τ)〉 = ~φr(τ)(15)

The equation is solved with the Green function without sources:∑
s

[
δrs~

∂

∂τ
+ hrs − µδrs

]
G 0(s, τ ; r′, τ ′) = −~δrr′δ(τ − τ ′)

〈αr(τ)〉 =
1

Z[φ̄, φ]

δZ[φ̄, φ]

δφr(τ)
= −

∫ ~β

0

dτ ′
∑
r′

G 0(r, τ ; r′, τ ′)φr′(τ
′)

where we are assuming that the field is zero for φ = 0 (the homogeneous solution).
The functional equation has solution

logZ[φ̄, φ] = logZ0 −
∑
r,r′

∫∫ ~β

0

dτdτ ′φr(τ)G 0(r, τ ; r′, τ ′)φr′(τ
′)(16)

Wick theorem. The partition function of non interacting particles with sources
can be written in two ways:∫

D2α(τ)e−
1
~S+

∑
r

∫ ~β
0

dτ(φ̄rαr+φrᾱr)(τ) = Z0e
−

∑
rs

∫∫
φ̄r(τ)G 0(rτ ;sτ ′)φs(τ

′)

〈
∏
r

e
∫ ~β
0

dτφ̄rαr
∏
s

e
∫ ~β
0

dτᾱrφr 〉 =
∏
rs

e−
∫∫

φ̄r(τ)G 0(rτ ;sτ ′)φs(τ
′)dτdτ ′

The multilinear expansion of the left side in the sources gives coefficients 〈
∏
αr
∏
ᾱs〉0.

The expansion of the right side in the sources gives products of propagators. Every
correlator in the left is either 0 or a product of propagators.
For example, in the expansions of both sides the coefficient φ̄r1(τ1)φ̄r2(τ2)φr3(τ3)φr4(τ4)
gives the equality:

〈Tb̂r1(τ1)b̂r2(τ2)b̂†r3(τ3)b̂†r4(τ4)〉 = G 0(r1τ1; r3τ3)G 0(r2τ2; r4τ4)

+G 0(r1τ1; r4τ4)G 0(r2τ2; r3τ3)

6. Interacting bosons with sources

Ward identities originate in the same way for interacting particles. After a shift
in the field αr(τ):[

δrs~
∂

∂τ
+
∑
s

hrs − µδrs

]
〈αs(τ)〉+

∑
srr′

vrsr′s′〈ᾱs(τ)αr′(τ)αs′(τ)〉 = ~φr(τ)
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A derivative in the source φv(τ
′) gives an equation of motion for the propagator:[

δrs~
∂

∂τ
− µδrs +

∑
s

hrs

]
G (sτ ; vτ ′)−

∑
srr′

vrsr′s′〈ᾱs(τ)αr′(τ)αs′(τ)ᾱv(τ
′)〉

= −~δrvδ(τ − τ ′)
where the average can now be taken with no sources.

Perturbation theory. In presence of an interaction among bosons, the perturba-
tive approach in the position basis is as follows. Let v(x− x′)δ(τ − τ ′) ≡ U0(x.x′).
The action is written as

S[φ̄, φ] = S0[φ̄, φ] +
1

2

∫∫
dx dx′ ψ(x)ψ(x)U0(x, x′)ψ(x′)ψ(x′)

Z[φ̄, φ] =

∫
D2ψ(x)e−

1
~S0[φ̄,φ]

∑
k

(−1)k

k!(2~)k

[ ∫
dxdy ψ̄(x)ψ̄(y)U0(x, y)ψ(y)ψ(x)

]k
= Z0

∑
k

(−1)k

k!(2~)k

[∫
dxdyU0(x, y)

δ4

δφ(x)δφ(y)δφ̄(y)δφ̄(x)

]k
e−

∫∫
dudvφ̄(u)G 0(u,v)φ(v)

With sources turned off, this generates all vacuum graphs (connected and uncon-
nected). The perturbative expansion for Green functions is done by applying further
functional derivatives, whose arguments are the external points.
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