
Chapter 24

LINEAR OPERATORS IN
HILBERT SPACES

24.1 Linear Functionals

Definition 24.1.1. The space of continuous linear functionals L (H ,C) is H ∗,
the dual space of H .

Theorem 24.1.2 (Riesz’s lemma). For each F ∈ H
∗ there is a unique

xF ∈ H such that Fx = (xF |x) for all x ∈ H . In addition ‖F‖ = ‖xF ‖.

Proof. If KerF=H then xF = 0. If KerF is a proper subspace, then there
is a vector y orthogonal to it. Any vector x can be decomposed as x = (x −
y Fx

Fy
) + y Fx

Fy
, where the first term belongs to KerF and then is orthogonal to y.

The evaluation (y|x) = Fx (y|y)
Fy

shows that xF = y (Fy)∗

‖y‖2 . The vector is unique,

for suppose that Fx = (xF |x) = (x′F |x) for all x, then 0 = (xF − x′F |x) i.e.
xF = x′F .

Because of Schwarz’s inequality: |Fx|
‖x‖ = |(xF |x)|

‖x‖ ≤ ‖xF ‖. Note that equality is

attained at x = xF , then: ‖F‖ = supx
|Fx|
‖x‖ = ‖xF ‖.

24.2 Bounded linear Operators

The linear bounded operators with domain H to H form the Banach space
L (H ). The operator set is closed under the involutive action of adjunction:

Theorem 24.2.1. For any linear operator A ∈ L (H ) there is an operator
A† ∈ L (H ) (the adjoint of A) such that

(x|Ay) = (A†x|y) ∀x, y (24.0)

and ‖A†‖ = ‖A‖.
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Proof. Fix x ∈ H , the map y → (x|Ay) is a linear bounded functional. Then,
by Riesz’ theorem, there is a vector v such that (x|Ay) = (v|y) for all y. The
vector v depends on x linearly, i.e. v = A†x.
Equality of norms follows from Schwarz’s inequality and boundedness of A:
|(A†x|y)| = |(x|Ay)| ≤ ‖x‖ ‖A‖‖y‖, if y = A†x then ‖A†x‖ ≤ ‖x‖‖A‖ i.e. A† is
bounded and ‖A†‖ ≤ ‖A‖. The proof of equality is left to the reader.

E) Show that: (A+B)† = A† +B†, (λA)† = λA†, (AB)† = B†A†, (A†)† = A.

Proposition 24.2.2. If A ∈ L (H ), it is

H = RanA⊕ KerA† (24.0)

Proof. Since Â is continuous, its range is a closed set. Then H = RanA ⊕
(RanA)⊥. If x ∈ Ker A†, it is 0 = (A†x|y) = (x|Ay) ∀y. Then x ⊥ Ran A, i.e.
x ∈ (RanA)⊥. The converse is also true, therefore Ker A† = (RanA)⊥.

Definition 24.2.3. An operator A ∈ L (H ) is selfadjoint if A = A†.

If the equation Âx = λx has nonzero solution x ∈ H , then λ and x are
respectively an eigenvalue and an eigenvector of A (it follows that λ and x are
eigenvalue and eigenvector of A†). Moreover |λ| ≤ ‖A‖.

Theorem 24.2.4. The eigenvalues of a selfadjoint operator in L (H ) are real,
and the eigenvectors corresponding to different eigenvalues are orthogonal.

Proof. Let x and x′ be eigenvectors corresponding to eigenvalues λ 6= λ′. From
(Ax|x) = (x|Ax) one obtains λ = λ. From (Ax|x′) = (x|Ax′) one obtains
(λ− λ′)(x|x′) = 0.

E) Show that if A is normal (i.e. AA† = A†A), then eigenvectors correponding
to different eigenvalues of A are orthogonal.
E) Show that if A = A†, and λ is an eigenvalue, inf‖x‖=1(x|Âx) ≤ λ ≤
sup‖x‖=1(x|Âx).

24.2.1 Integral operators

An important class of linear operators in functional analyis are integral op-
erators. They arise for example in the study of linear differential equations.
Consider the inhomogeneous integral equation f(x) = g(x)+λ

∫

Ω dtk(x, y)f(y),
where λ is a parameter, g is given and f is the unknown function. In operator
form it is: f = g + λK̂f , with

(K̂f)(x) =

∫

Ω

dy k(x, y) f(y)

The appropriate functional setting is suggested by the g and the kernel k.
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Let Ω = [0, 1]; if k ∈ L2(Q) (Q is the unit square) then K̂ is bounded
operator on L2(0, 1): by Fubini’s theorem the function t → |h(t, s)| is measur-
able and belongs to L2(0, 1), by Schwarz’s inequality |(K̂f)(x)| ≤ ‖k(x, .)‖‖f‖.
Integration in x gives:

‖K̂f‖ ≤ ‖k‖ ‖f‖
where ‖k‖2 =

∫

Q
dxdy|k(x, y)|2. The adjoint is now studied1: (h|K̂f) =

∫ 1

0
dxh(x)

[

∫ 1

0
dyk(x, y)f(y)

]

=
∫ 1

0
dy

[

∫ 1

0
dxk(x, y)h(x)

]

f(y). Then the adjoint

operator is:

(K̂†h)(x) =

∫ 1

0

dyk(y, x)h(y)

The integral operator is self-adjoint if k(x, y) = k(y, x).
Let us enquire about the solution of the integral equation (I − λK̂)f = g. A
solution exists if g ∈ Ran(I − λK) i.e. g ⊥ Ker(I − λK†). This means that g

must be orthogonal to the eigenvectors K̂†u = λ
−1
u.

In particular, if |λ|‖K‖ < 1, it is both Ker (1−λK†) = {0} and Ker (1−λK) =
{0}, and the operator (1− λK̂)−1 exists with domain H . The operator can be
expanded in a geometric series that converges for any g:

f = g + λK̂g + λ2K̂2g + . . .

The powers of the operator are integral operators with kernels kn+1(x, y) =
∫ 1

0 du k(x, u) kn(u, y), k1 = k.

Example. Consider the equation f(x) = g(x) +
∫ x

0
f(y)dy, a.e. x ∈ [0, 1],

g ∈ L2(0, 1) (it corresponds to the Cauchy problem f ′ = f + g′ with f(0) =
g(0)). The kernel k(x, y) = θ(x − y) has norm 1/

√
2, therefore the iterative

solution of the integral equation converges, with iterated kernels kn+1(x, y) =
θ(x− y) (x− y)n/n!:

f(x) = g(x) +

∫ x

0

dy ex−yg(y)

Example. In L2(0, 2π) consider the equation f = λK̂f + g with

(K̂f)(x) =

∫ 2π

0

dy sin(x + y)f(y) = A sinx+B cosx

where A = (cos |f) and B = (sin |f) (we restrict to real functions and parameter
λ). The operator K̂ has finite range and is self-adjoint. The problem is then
basically two dimensional and the solution, if existent, is of the form:

f(x) = A sinx+B cosx+ g(x)

1the steps are justified by Fubini’s theorem for the exchange of order of integration: let
f(x, y) be measurable on M ×N , then

R

M
dm(

R

N
dm|f |) < ∞ iff

R

N
dm(

R

M
dm|f |) < ∞ and,

if they are finite it is:
Z

M

dm(

Z

N

dmf) =

Z

N

dm(

Z

M

dmf)
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By taking the inner products with sinx and cosx we get:

[

1 −λπ
−λπ 1

] [

A
B

]

=

[

(cos |g)
(sin |g)

]

The solution exists for any g if λ 6= ±1/π:

f(x) = g(x) +

∫ 2π

0

dy
sin(x− y) + λπ cos(x− y)

1 − λ2π2
g(y)

If λ = 1/π, a solution exists if g is in the range of (I − 1
π
K̂) i.e. g is orthogonal

to Ker (I− 1
π
K̂) (remember that K̂ is self-adjoint). The Kernel set contains the

solutions of the equation: K̂u = πu: (up to a prefactor) u(x) = sinx + cosx.
Then: f(x) = A(sinx+ cosx) + g(x) where A is an arbitrary constant.

24.2.2 Orthogonal Projections

Recall that, given a closed subspace M and a vector x, the projection theorem
states that x = p + w, where p ∈ M and w ∈ M⊥, and the decomposition is
unique. Therefore the projection operator on M , P̂ (M) : x→ p, is well defined.

Proposition 24.2.5. The map P̂ (M) is a linear selfadjoint operator, such that
P̂ (M)2 = P̂ (M).

Proof. For short we write P̂ for P̂ (M). Linearity: let P̂ x = p and P̂ x′ = p′. For
any α and β it is αx+ βx′ = (αp+ βp′)+ (αw+ βw′), where αp+ βp′ ∈M and
αw+βw′ ∈M⊥. As the decomposition is unique, necessarily it is P (αx+βx′) =
αp+ βp′.
(x − P̂ x|y − P̂ y) = (x − P̂ x|y) (because x − P̂ x is orthogonal to M), and for
analogous reason (x− P̂ x|y − P̂ y) = (x|y − P̂ y); then (P̂ x|y) = (x|P̂ y).
P̂ 2x = P̂ p = p = P̂ x, then P̂ 2 = P̂ (P̂ is idempotent).

Remarks
1) Since ‖x‖2 = ‖P̂ x+ (x− P̂ x)‖2 = ‖P̂x‖2 + ‖x− P̂x‖2 it follows that ‖x‖ ≥
‖P̂x‖ with equality holding for x ∈ M . Then ‖P̂‖ = 1. Being bounded, P̂ is
continuous.
2) It is Ran P̂ (M) = M and Ker P̂ (M) = M⊥.
3) A projector P̂ (M) has only the eigenvalues 1 and 0, with eigenspaces M and
M⊥.

Definition 24.2.6. An orthogonal projection operator is a linear operator on
H such that: P̂ 2 = P̂ , P̂ † = P̂ .

Examples: 1) In L2(R) the multiplication operator f → χ[a,b]f , where χ[a,b] is
the characteristic function of a interval [a, b], is an orthogonal projector. The
invariant subspace M is given by functions that vanish a.e. for x /∈ [a, b].
2) The operators (P±f)(x) = 1

2 [f(x)± f(−x)] are orthogonal projectors on the
orthogonal subspaces of (a.e.) even and odd functions.
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Proposition 24.2.7. Let P̂ (M) and P̂ (M ′) be projectors, then:
1) P̂ (M) + P̂ (M ′) is a projector iff M and M ′ are orthogonal. In this case
P̂ (M) + P̂ (M ′) = P̂ (M ⊕M ′).
2) P̂ (M)P̂ (M ′) is a projector iff P (M) and P (M ′) commute.

24.2.3 Unitary operators

Definition 24.2.8. An operator V on H to itself is an isometry if the domain
is the whole space and ‖V x‖ = ‖x‖ for all x. Moreover, if the range of V is the
whole Hilbert space, the operator is unitary.

1) The conservation of the norm implies that (Ux|Uy) = (x|y) for all x, y.
2) A unitary operator U has norm ‖U‖ = 1.
3) The adjoint operator coincides with the inverse operator, and are unitary
operators: (x|y) = (Ux|Uy) = (U †Ux|y) for all x, y implies U †U = I.

Two important families of unitary operators on L2(Rn) are the translations by

~a ∈ Rn and multiplications by a phase factor with vector ~k ∈ Rn:

(Û~af)(~x) = f(~x− ~a), (V̂~k
f)(~x) = ei~k·~xf(~x) (24.0)

Each family is an abelian group, with product rule Û~aÛ~b
= Û

~a+~b
, V̂~k

V̂~q = V̂~k+~q
.

Proposition 24.2.9 (Weyl’s commutation relations).

V̂~qÛ~a = ei~q·~aÛ~aV̂~q (24.0)

Proof. (V̂~qÛ~af)(~x) = ei~q·~x(Û~af)(~x) = ei~q·~xf(~x− ~a) = ei~q·~a(V̂~qf)(~x− ~a)

= ei~q·~a(Û~aV̂~qf)(~x)

The translations (and phase multiplications) along a direction ~a = s~n, s ∈ R,
are strongly continuous one-parameter unitary groups (continuity in the origin
suffices, because of the group property):

Definition 24.2.10. A family of unitary operators Ûs, s ∈ R, is a strongly
continuous one-parameter unitary group if:
1) ÛsÛs′ = Ûs+s′

2) lims→0 ‖Usx− x‖ = 0 ∀x ∈ H .

For such groups, the following fundamental theorem holds:

Theorem 24.2.11 (Stone). Let Ûs be a strongly continuous one-parameter
unitary group on a Hilbert space. Then there is a selfadjoint operator Ĥ (the
infinitesimal generator) such that

Ûs = eisĤ

The domain of Ĥ is the set of vectors x such that lims→0
Usx−x

s
exists.
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The generators of translations along the three directions are the momentum
operators P̂i = −i~∂i on a suitable dense domain (a minus and a constant ~ are
introduced for convenience)

Û~a = e−
i

~
~a·

~̂
P

This can be checked on analytic functions, by Taylor expansion: (Û~af)(~x) =
f(~x−~a) = f(~x)−ak(∂kf)(~x)+ 1

2!akaℓ(∂k∂ℓf)(~x)+. . . Since the group is Abelian,

the generators form an abelian algebra: [P̂i, P̂j ] = 0. The generators of phase

multiplications are the position operators (Q̂if)(~x) = xif(~x), and [Q̂i, Q̂j] = 0 .
The generators of the two groups form Heisenberg’s algebra, with the extra Lie
brackets: [Q̂i, P̂j ] = i~δij .

24.3 The Rotation group

24.3.1 space rotations, SO(3)

The space rotations are described by 3 × 3 matrices R such that RRt = I and
detR = 1; they form the group SO(3). Rows or colums of R are orthogonal and
normalized. A useful choice of parameters are the unit vector ~n that identifies
the direction and the rotation angle ϕ, measured anticlockwise. Note that R~n =
~n, and an eigenvalue is unity. The other two have product 1. If they are real the
matrix is diagonal (1,1,1 gives the unit rotation, 1,-1,-1 in various order gives
the 3 possible inversions of two axis). Therefore nondiagonal rotation matrices
have eigenvalues 1, e±iϕ (it can be shown that ϕ is the angle of rotation around
the invariant vector ~n. Note that trR = R11 +R22 +R33 = 1 + 2 cosϕ.)

For an infinitesimal angle the rotation is expanded near the unity of the
group, R = I + δϕA+ . . .; the matrix A turns to be real antisymmetric. Since
A~n = 0, A is obtained explicitly (up to a constant that is absorbed in δϕ):

A =





0 −n3 n2

n3 0 −n1

−n2 n1 0



 = ~n · ~A (24.0)

A1 =





0 0 0
0 0 −1
0 1 0



 , A2 =





0 0 1
0 0 0
−1 0 0



 , A3 =





0 −1 0
1 0 0
0 0 0





The infinitesimal rotation gives the well known expressionR~x = ~x+δϕ~n×~x+. . ..
The rotations with same invariant vector form a commutative subgroup:

R(~nϕ1)R(~nϕ2) = R(~n(ϕ1 + ϕ2)) (24.-1)

If one angle is infinitesimal: R(~nϕ)(I + δϕ~n · ~A + . . .) = R(~n(ϕ + δϕ)). Since
the factors can be exchanged, one concludes that the matrices of the subgroup
R(~nϕ) commute with ~n · ~A. Moreover, by taking the limit δϕ to zero:

d

dϕ
R(~nϕ) = (~n · ~A)R(~nϕ) (24.-1)
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with the initial condition R(0) = I. Since factors commute, the solution is

R(~nϕ) = eϕ ~n· ~A (24.-1)

The matrix ~n · ~A is the generator of rotations along the direction ~n. The three
matrices Ai are the generators along the three coordinate directions, and are
a basis for antisymmetric matrices. The antisymmetric matrices form a linear
space that is closed under the operation A,A′ → [A,A′]. The commutator is a
Lie product2, and the linear space with Lie product is the Lie algebra so(3) of
the SO(3) group.
Because Ai are a basis, the Lie product of two basis matrices is expandable in
the basis itself,

[Ai, Aj ] = ǫijkAk (24.-1)

The coefficients (structure constants) are typical of the rotation group.
By means of Cayley-Hamilton equation, it is possible to expand the exponential
into a finite sum of powers:

R(~nϕ) = I + sinϕ(~n ·A) + (1 − cosϕ)(~n · ~A)2 (24.-1)

Each rotation of SO(3) is identified by a vector ~nϕ in the ball of radius
π. A diameter corresponds to the subgroup of rotations with same rotation
axis; points ±~nπ (antipodal at the surface) give the same rotation and must be
identified. The diameter is then a circle, and the manifold of parameters is a
sphere with pairs of points at the surface identified: a bundle of circles through
the origin (unit element of the group). The identification makes the manifold
doubly connected: two rotations (two points in the manifold) are connected by
two inequivalent paths (one cannot be deformed continuously into the other).
For example: a segment and a path that touches the surface and continues from
the antipode.

24.3.2 SU(2)

A more fundamental group is SU(2) of unitary 2×2 complex matrices (U †U = I)
with detU = 1. Their explicit form is

U(~nϕ) = e−
i

2
ϕ~n·~σ = cos

ϕ

2
− i~n · ~σ sin

ϕ

2
(24.0)

where σi are the Pauli matrices. The matrices σi/2 are a basis for traceless
Hermitian 2 × 2 matrices. With the Lie product H,H ′ → −i[H,H ′] the space
is the Lie algebra su(2), and the structure constants are the same of su(3):

−i
[σi

2
,
σj

2

]

= ǫijk

σk

2
(24.0)

2In a linear space X, a Lie product is a bilinear map ∗ : X × X → X such that x ∗ x = 0,
x ∗ y = −y ∗ x, (x ∗ y) ∗ z + (y ∗ z) ∗ x + (z ∗ x) ∗ y = 0 (Jacobi property).
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The exponential map takes the Lie algebra to the Lie group: exp : su(2) →
SU(2). Despite the diversity of matrices in SO(3) and SU(2), their exponential
representation is formally identical: only a replacement of the basis matrices
changes one into another, the structure constants being the same.
In SU(2) the parameter space is the ball with radius 2π. However, all the
“surface” points correspond to the single matrix of inversion: U(±~n 2π) = −1.
Therefore, the manifold is a bundle of circles (the one parameter subgroups)
with points ±1 in common, and it is simply connected. This makes the SU(2)
unitary group more fundamental than SO(3)
E) Show that U †~σU = R~σ, R ∈ SO(3). Therefore both ±U correspond to the
same R matrix.

24.3.3 Representations

From the point of view of physics, space rotations are a subgroup both of the
Galilei and the Lorentz groups of symmetries for physical laws. An observer O is
specified by an orthonormal frame ik, which can be identified materially by rigid
bars of unit lenght for measuring positions positioned at a point (the origin).
In O a physical point P receives coordinates xk, meaning that the sequence of
rigid shifts xkik from the origin reaches the point P .
A rotated observer O’ is an orthonormal frame i′k with same origin and orienta-
tion. The point P has coordinates x′k linked by a rotation matrix: x′k = Rkjxj .
Suppose that O and O′ measure in every point some quantity (a field). In the
simplest case the quantity would be a single number (a scalar) that is a property
of the point. They measure two fields f and f ′, but the field values at P must
be the same:

f(x) = f ′(x′), i.e. f ′(x) = f(R−1x) (24.0)

If they measure a vector field (for example a force field), they measure a physical
arrow at each point. Since they use rotated frames, the components of the arrow
at a point are different:

∑

k

Vk(x)ik =
∑

k

V ′
k(x′)i′k, ⇒ V ′

k(x) = RkjVj(R
−1x) (24.0)

The two laws describe the transformation of a scalar field and a vector field under
rotations. A spinor 1/2 field is a two component complex field that transforms
with a SU(2) rotation:

ψ′(x, a) = U(R)abψ(R−1x, b) (24.1)

If the scalar, spinor, vector or whatever fields F, F ′ measured by O and O′

are thought of as points in the same functional space, the rotation of coordinates
R induces a map UR : F → F ′. Since fields can be linearly combined, the map
is asked to be linear. If two rotations R and R′ are done in the order, the
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observer O′′ is linked to O by x′′ = R′Rx, and thus F ′′(x) = UR′RF i.e. maps
form a linear representation of the rotation group:

UR′R = UR′UR (24.1)

Scalar field Think of a scalar field f as a point in L2(R3). A rotation
induces the linear map f ′ = URf defined by (ÛRf)(x) =: f(R−1x). The op-
erators UR are unitary because Lebesgue’s measure is rotation invariant, then
Û(I) = 0, ÛR−1 = Û †

R.
The rotations with fixed direction n correspond to a commutative subgroup
parametrized by the angle: U~n(ϕ)U~n(ϕ′) = U~n(ϕ + ϕ′). They are a strongly
continuous one-parameter group, by Stone’s theorem there is a self-adjoint (un-
bounded) generator such that

Ûn(ϕ) = e−
i

~
ϕL̂(~n)

The selfadjoint operator L̂(~n) is the generator of the one parameter group, and
corresponds to the projection along ~n of the orbital angular momentum. A
simpler approach is to assume that f is analytic and consider an infinitesimal
rotation:

U(~nδϕ)f(~x) = f(~x− δϕ~n× ~x+ . . .) = f(x) − δϕ(~n× x)k

∂f

∂xk

(x) + . . .

then:

U(~nδϕ) = I − i

~
δϕ~n · ~L+ . . . , ~L = ~x× (−i~~∇) (24.0)

The components are operators L̂x, L̂y and L̂z that satisfy the Lie algebra

−i[L̂i, L̂j] = ~ ǫijkL̂k (24.1)

For a 1/2 spinor field, the expansion near unity gives

(U(~nδϕ)ψ)(~x, a) = (δab − iδϕ~n · ~σab

2
+ . . .)(I − i

~
δϕ~n · ~L+ . . .)ψ(~x, b)

i.e. U(~n δϕ) ≈ I− i
~
δϕ~n · ~J . The generator is the vector sum of spin and orbital

angular momentum operators (total angular momentum), that act separately
on the spin variables and on the position variables:

~J =
~

2
~σ + ~L (24.1)

and again the algebra is −i[Ĵi, Ĵj ] = ~ ǫijkĴk.
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